MB MarineSpace concrete center

216
MarineSpace Ltd in conjunction with ABPmer and Fjordr 07/09/2012 Version 1.0 A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments

description

cconcrete center

Transcript of MB MarineSpace concrete center

Page 1: MB MarineSpace  concrete center

   

 

 

MarineSpace Ltd in conjunction with 

ABPmer and Fjordr 

07/09/2012 

Version 1.0 

AReviewofMarineEnvironmentalConsiderationsAssociatedwithConcreteGravity

BaseFoundationsinOffshoreWindDevelopments

Page 2: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

 

Document Reference: 2012‐6‐1.0 

Date  Originator  Version  Action  Signature 

28 May 2012  Ian Reach  0.1  For client review  

04 July 2012  Ian Reach  0.2 Amended following GFIG 

workshop and TCC comments    

30 July 2012  Ian Reach  0.3 Amended with GFIG and TCC 

consultation comments   

07 September 2012  Ian Reach  1.0 Amended with further comments 

received from GFIG   

Cover image: © DONG Energy and The Concrete Centre 

Document Produced For: 

The Concrete Centre  

 

Project Manager:  Andrew Minson 

Postal Address:  MPA ‐ The Concrete Centre, Riverside House, 4 Meadows Business 

Park, Blackwater, Camberley, GU17 9AB 

Telephone:  01276 606828 

Email:  [email protected] 

 

Document Produced By: 

MarineSpace Ltd 

 

Project Manager:  Ian Reach 

Postal Address:  Ocean Village Innovation Centre, Ocean Village, Southampton.    

SO14 3JZ 

Telephone:  02380 381945 

Email:  [email protected] 

Web:  www.marinespace.co.uk 

Page 3: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

 

 

 

Document Produced In Conjunction With: 

ABPmer 

 

Project Manager:    Bill Cooper 

Postal Address:      ABP Marine Environmental Research Ltd, Suite B, Waterside House, 

        Town Quay, Southampton SO14 2AQ 

Telephone:      02380 711840 

Email:        [email protected]  

Web:        www.abpmer.co.uk 

 

Fjordr 

 

Project Manager:  Antony Firth 

Postal Address:  Post Office House, High Street, Tisbury, SP3 6LD 

Telephone:  01747 873806 

Email:  [email protected]  

Web:  www.fjordr.com 

   

This report should be cited as: 

Reach, I.S., Cooper, W.S., Firth, A.J., Langman, R.J, Lloyd Jones, D., Lowe, S.A. and Warner, I.C., 2012. 

A Review of Marine Environmental Considerations associated with Concrete Gravity Base 

Foundations in Offshore Wind Developments. A report for The Concrete Centre by Marine Space 

Limited. 160pp. 

 

   

Page 4: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

 

Page left blank 

 

Page 5: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

 

TableofContentsEXECUTIVE SUMMARY ............................................................................................................................. i 

1  Introduction .................................................................................................................................... 1 

1.1  Aims and Objectives ................................................................................................................ 1 

1.2  Basis for the Assessment ........................................................................................................ 1 

1.3  Assumptions ............................................................................................................................ 4 

2  Permitting of Offshore Windfarms in the UK.................................................................................. 6 

2.1  Round 1 and 2 Compared to Round 3 ..................................................................................... 6 

2.2  Governmental Requirements.................................................................................................. 6 

3  Construction Options ...................................................................................................................... 7 

3.1  Concrete Gravity Base Foundations ...................................................................................... 10 

3.2  Monopiles ............................................................................................................................. 11 

3.3  Tripod .................................................................................................................................... 12 

3.4  Steel Jacket ............................................................................................................................ 13 

3.5  Suction Caissons .................................................................................................................... 14 

3.6  Floating Platforms ................................................................................................................. 15 

3.7  Comparison between Structures .......................................................................................... 16 

4  History of Gravity Bases ................................................................................................................ 17 

4.1  Thornton Bank 1 .................................................................................................................... 20 

4.2  Rødsand 1 and 2 .................................................................................................................... 23 

5  Foreseeable Effects ....................................................................................................................... 26 

5.1  Stages of construction and placement ................................................................................. 26 

5.2  Effects .................................................................................................................................... 27 

5.2.1  Effects relating to the preparation of the ground where the CGBF is to be placed 

(if required) ................................................................................................................... 27 

5.2.2  Effects relating to the emplacement works associated with the CGBF ........................ 29 

5.2.3  Effects associated with the remedial activities required by the CGBF (if required) ..... 30 

5.2.4  Effects relating to the settlement of the CGBF following emplacement ...................... 31 

5.2.5  Effects of operation of the CGBF .................................................................................. 32 

5.2.6  Effects associated with decommissioning of the CGBF (if required) ............................ 33 

5.3  Conceptualisation of Effects ................................................................................................. 35 

5.3.1  Coastal Processes Study ................................................................................................ 35 

5.3.2  Project Design Statement ............................................................................................. 36 

Page 6: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

 

6  Physical Receptors ........................................................................................................................ 37 

6.1  Introduction: Aims and Scope ............................................................................................... 37 

6.2  Physical Receptors ................................................................................................................ 37 

6.2.1  Water Column ............................................................................................................... 38 

6.2.2  Sub‐seabed Geology ..................................................................................................... 42 

6.2.3  Sediment Regime .......................................................................................................... 43 

6.2.4  Summary ....................................................................................................................... 49 

7  Biological Receptors ...................................................................................................................... 51 

7.1  Introduction Aims and Scope ................................................................................................ 51 

7.2  Benthic Resources ................................................................................................................. 52 

7.2.1  Notable Benthic Receptor Groups ................................................................................ 54 

7.2.2  Some Key Aspects of Benthic Habitat and Community Responses to CGBFs ............... 56 

7.3  Fish Fauna and Assemblages ................................................................................................. 65 

7.3.1  Important Fish Resources ............................................................................................. 66 

7.3.2  Important Interactions between Fish Species and Assemblages with CGBFs .............. 67 

7.4  Megafauna Resources ‐ Marine Mammals, Turtles and Basking Sharks .............................. 71 

7.4.1  Important Megafaunal Resources ................................................................................ 71 

7.4.2  Important Interactions between Marine Mammals and Basking Sharks with CGBFs .. 72 

7.5  Avifauna ‐ Birds ..................................................................................................................... 76 

7.5.1  Important Bird Resources ............................................................................................. 76 

7.5.2  Important Interactions between Birds And CGBFs ....................................................... 77 

7.6  Noise ..................................................................................................................................... 79 

7.6.1  Sensitive Noise Receptors ............................................................................................. 80 

7.6.2  Important Interactions between Noise Sensitive Receptors and CGBFs ...................... 82 

7.6.3  Summary ....................................................................................................................... 86 

7.7  Designated Sites and other Nature Conservation Interests ................................................. 88 

7.7.1  Nature Conservation Features ...................................................................................... 88 

7.7.2  Important Interactions between Nature Conservation Features and CGBFs ............... 90 

7.9  Summary of Biological Receptors ..................................................................................... 94 

8  Human Receptors ....................................................................................................................... 105 

8.1  Vessel Presence during Emplacement, Ground Preparation, Remediation and Removal of 

the CGBF .............................................................................................................................. 105 

8.1.1  Secondary Effects ........................................................................................................ 105 

8.2  CGBF Presence during Settlement and Operation .............................................................. 106 

Page 7: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

 

8.2.1  Secondary Effects ........................................................................................................ 106 

8.3  Effects as a Result of Biological Impacts ............................................................................. 106 

8.4  Fisheries .............................................................................................................................. 106 

8.5  Navigation ........................................................................................................................... 107 

8.6  Archaeology and other Historical Uses of the Seabed ........................................................ 107 

8.7  Summary ............................................................................................................................. 113 

9  Cumulative and In‐combination Effects ...................................................................................... 115 

10  Decommissioning .................................................................................................................... 121 

11  Discussion ................................................................................................................................ 122 

12  Conclusions ............................................................................................................................. 127 

13  Observations and Recommendations ..................................................................................... 131 

14  References .............................................................................................................................. 133 

Appendices .......................................................................................................................................... 143 

 

 

Page 8: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

 

ListofFiguresFigure 1.1: Images of the Concrete Gravity Base Foundation solutions from members of The 

Concrete Centre’s Gravity Foundation Interest Group © various GFIG members ............... 3 

Figure 1.2: Figure highlighting the elements of CGBFs and windfarms that are included within this 

document and those that are not. ........................................................................................ 5 

Figure 3.1: Illustration of various foundation types for use with offshore wind turbines ..................... 7 

Figure 3.2: Seabed area interaction with selected foundation types for 5MW turbine. ....................... 9 

Figure 3.3: Depth profiles and applicable foundation types. ................................................................. 9 

Figure 4.1.1: Bathymetry around Turbine D1 at Thornton Bank, Belgian waters. ............................... 21 

Figure 4.1.2: General arrangement of the CGBFs at Thornton Bank, Belgian waters. ......................... 22 

Figure 4.2.1: Preparation of the seabed required at Rødsand 2. ......................................................... 23 

Figure 4.2.2: Design of the CGBFs utilised at Rødsand 2 ...................................................................... 24 

Figure 5.1: Effects arising as a result of ground preparation ................................................................ 27 

Figure 5.2: Effects arising as a result of emplacement ......................................................................... 29 

Figure 5.3: Effects arising as a result of remedial activities .................................................................. 30 

Figure 5.4: Effects arising as a result of settlement .............................................................................. 31 

Figure 5.5: Effects arising as a result of operation................................................................................ 32 

Figure 5.6: Effects arising as a result of decommissioning ................................................................... 33 

Figure 7.1:  Benthic habitats and Round 3 offshore windfarm zones................................................... 53 

Figure 7.2: Diagrammatic cross‐section of CGBF base, foundation layers and scour protection from 

Thornton Bank OWF, Belgian waters. ................................................................................. 58 

Figure 7.3: Multi‐purpose barge Thornton 1 depicted in backfill and infill mode. ............................... 64 

Figure 9.1: Flow diagram for assessing cumulative impacts. .............................................................. 116 

 

ListofTablesTable 1.1: Details of the technical specifications of the CGBFs considered within this document.. ...... 2 

Table 3.1: Comparison between foundation types ................................................................................ 8 

Table 3.1.1: Overview of generic effects associated with use of CGBF structure. ............................... 10 

Table 3.2.1.: Overview of generic effects associated with use of monopile structure......................... 12 

Table 3.3.1: Overview of generic effects associated with use of tripod structure. .............................. 13 

Table 3.4.1: Overview of generic effects associated with use of steel jacket structure. ...................... 14 

Table 3.5.1: Overview of generic effects associated with use of suction caisson structure. ............... 15 

Table 3.6.1: Overview of generic effects associated with use of floating platform structure. ............ 15 

Table 3.7.1: Comparison of broad effects between foundation types. ................................................ 16 

Table 4.1: Existing Offshore Concrete Structures for Oil and Gas Production ..................................... 18 

Page 9: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

 

Table 4.2: Offshore windfarms utilising GBFs to date .......................................................................... 20 

Table 6.1: Indicative scour protection parameters for individual turbine locations (excluding   

foundation area take). ........................................................................................................ 44 

Table 6.2: Total seabed area directly lost to a combination of foundation and scour protection 

required for a 5MW turbine. .............................................................................................. 44 

 

   

Page 10: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

 

Page left blank 

Page 11: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

 

GlossaryandAbbreviations 

Abbreviation  Description  Definition 

BCD  Below Chart Datum 

Beneath the level of water that charted 

depths displayed on a nautical chart 

are measured from.  

  Benthic Relating to the seabed or organisms 

that live there. 

  Biotope 

An area of uniform environmental 

conditions providing a living place for a 

specific assemblage of plants and 

animals. Biotope is almost synonymous 

with the term habitat, but while the 

subject of a habitat is a species or a 

population, the subject of a biotope is a 

biological community.  

CCW  Countryside Council for Wales The Government’s statutory advisor on 

the Welsh natural environment. 

CFD  Computational Fluid Dynamics 

Computational fluid dynamics (CFD) 

analyses fluid flows using numerical 

methods and algorithms 

CGBFs  Concrete Gravity Base Foundations 

Concrete structures on which wind 

turbines can be placed and that stay in 

place as a result of their weight 

EIA  Environmental Impact Assessment 

Process by which the effects of a plan 

or project on the environment, and its 

constituent parts, is determined. 

EIA Directive Environmental Impact Assessment 

Directive 1997 

The Directive from the European 

Commission that requires an EIA to be 

undertaken for certain projects 

  Epifauna 

Also called epibenthos, are marine 

animals that live on the bottom 

substratum as opposed to within it, 

that is, the benthic fauna that live on 

top of the sediment surface at the 

seafloor. 

  Epiphytes 

Marine algae and plants that live 

attached to other marine algae or 

plants (or occasionally animals). 

  Far Field Beyond the footprint of the primary 

and secondary impact zones 

  Direct Effects Effects resulting from the placement of 

the CGBFs on the seabed 

Page 12: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

 

  Habitat 

An ecological or environmental area 

that is inhabited by a particular species 

of animal, plant, or other type of 

organism. It is the natural environment 

in which an organism lives, or the 

physical environment that surrounds 

(influences and is utilized by) a species 

population. 

  Indirect Effects 

Effects extending beyond the 

boundaries of the direct effects, where 

the placement of the CGBF has 

changed the natural environment 

and/or physical processes that existed 

prior to its placement. 

  Infauna 

Benthic organisms that live within the 

bottom substratum of a body of water, 

especially within the bottom‐most 

oceanic sediments, rather than on its 

surface. 

MCA  Maritime and Coastguard Agency 

The Government's statutory advisory 

body for maritime safety policy in the 

UK. 

MMO  Marine Management Organisation 

The executive non‐departmental public 

body responsible for most activities 

licensed within the marine 

environment 

MPA  Marine Protected Area 

Any area of the intertidal or subtidal 

terrain, together with its overlying 

water and associated flora, fauna, 

historical and cultural features, which 

has been reserved by law or other 

effective means to protect part or all of 

the enclosed environment. 

MW  Megawatt  One million Watts of energy 

NE  Natural England The Government’s statutory advisor on 

the English natural environment. 

  Near Field Within the footprint of the primary and 

secondary impact zones 

PDS  Project Design Statement 

The outline engineering description for 

the full range of options to be 

considered for consent and which 

achieves the target generating capacity 

for the project.   

PIZ  Primary Impact Zone  The direct footprint of the proposed 

Page 13: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

 

development 

TCC  The Concrete Centre 

The Concrete Centre is the central 

development organisation for the UK 

concrete industry 

REA  Regional Environmental Assessment 

Assessment of marine aggregate 

extraction environmental effects at a 

regional sea scale considering 

cumulative effects. It is a non‐statutory 

instrument. 

REC  Regional Environmental Characterisation 

Broadscale description at a regional sea 

scale of the environment associated 

with marine aggregate extraction 

licenses. 

 

 

 

 

Rochdale Envelope  

 

(also known as the  

Engineering Envelope) 

This approach allows for an EIA to be 

completed on a development proposal 

for which a degree of flexibility is 

required in the final design of that 

project at the point of consent 

determination. The approach allows 

the maximum environmental effects of 

a project to be described by defining 

the ‘worst case scenario’. This is 

premised on the fact that any lesser 

development scenario would result in 

no greater (and in most cases lesser) 

environmental effects than those 

described by the ‘worst case scenario’ 

detailed in the EIA. 

SEA  Strategic Environmental Assessment 

Is a statutory assessment procedure 

required by EU Directive 2001/42/EC 

(known as the SEA Directive). The SEA 

Directive aims at introducing 

systematic assessment of the 

environmental effects of strategic 

related plans and programs. 

SIZ  Secondary Impact Zone The footprint of effects arising as a 

result of the proposed development 

SNH  Scottish Natural Heritage The Government’s statutory advisor on 

the Scottish natural environment. 

 

   

Page 14: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

 

AcknowledgementsThe following members of The Concrete Centre Interest Group for Gravity Foundations have 

provided financial support and expert technical advice for this publication: 

Ballast Nedham Offshore B.V.  Vici Ventus Construction 

Skanska Construction  Laing O’Rourke 

WindAtBase  Vinci Construction UK Ltd 

BAM Nuttall Ltd  Seatower AS 

Strabag Offshore Wind GmbH  Sir Robert McAlpine 

Hochtief – Costain – Arup Consortium   

 

A full list of The Concrete Centre Interest Group members can be found at: 

http://www.concretecentre.com/technical_information/infrastructure/wind_energy/special_interest_group 

 

 

The Mineral Products Association is the trade association for the aggregates, asphalt, cement, 

concrete, dimension stone, lime, mortar and silica sand industries.  

The Mineral Products Association (MPA) is the trade association for the aggregates, asphalt, cement, 

concrete, dimension stone, lime, mortar and silica sand industries. With the recent addition of The 

British Precast Concrete Federation (BPCF) and the British Association of Reinforcement (BAR), it has 

a growing membership of 450 companies and is the sectoral voice for mineral products. MPA 

membership is made up of the vast majority of independent SME companies throughout the UK, as 

well as the 9 major international and global companies. It covers 100% of GB cement production, 

90% of aggregates production and 95% of asphalt and ready‐mixed concrete production and 70% of 

precast concrete production. Each year the industry supplies £9 billion of materials and services to 

the £120 billion construction and other sectors. Industry production represents the largest materials 

flow in the UK economy and is also one of the largest manufacturing sectors. 

 

All advice or information from MPA The Concrete Centre is intended only for use in the UK by those 

who will evaluate the significance and limitations of its contents and take responsibility for its use 

and application. No liability (including that for negligence) for any loss resulting from such advice or 

information is accepted by Mineral Products Association or its subcontractors, suppliers or advisors. 

Readers should note that the publications from MPA The Concrete Centre are subject to revision 

from time to time and should therefore ensure that they are in possession of the latest version. 

Page 15: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

i  

EXECUTIVESUMMARYThe Concrete Centre (TCC) and the Gravity Foundation Interest Group (GFIG) commissioned A 

Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations 

in Offshore Wind Developments. The report investigates the current evidence base for offshore 

windfarm foundation structures in a European context and also reviews the use of concrete 

structures from other relevant marine sectors such as oil and gas. The review focuses on the use of 

Concrete Gravity Base Foundations (CGBFs) and relates the potential environmental footprint of 

these structures to other existing types of foundation solution for offshore windfarms. 

Specific CGBF designs intended to compete in the UK market have not been compared side‐by‐side 

within the report. Rather, the over‐arching environmental effects are considered with a mind to 

realistic worst case scenarios. 

The review focuses on the possible environmental effects and pathways associated with the various 

phases of the lifecycle of concrete gravity base foundations (CGBFs) in the marine environment 

including: ground preparation (if required); emplacement on the seabed; scour protection (if 

required); operation; and decommissioning. Offshore and underwater effects are considered in 

relation to the foundation structure itself: power cables, towers, turbines and rotors are not 

reviewed or assessed. 

The likely receptor groups and their prominent components are detailed, with an in‐depth review of 

the existing evidence base, including: the physical environment and processes (water column, 

seabed geology and sediment regime); biological environment (benthos, fish fauna, marine 

mammals and other mobile megafauna, birds and nature conservation features); and the human 

environment (fisheries, navigation and archaeology, including heritage features). Whilst many of 

these effects are not CGBF specific, effects may differ in magnitude from those of other foundation 

types that may be deployed within the same environments. The document reviews all known 

potential environmental effects, recognising the links between various receptor groups and 

considers possible / likely impacts, particularly in relation to the marine environment associated with 

Round 3 of the UK’s offshore renewables programme.  

The report draws upon the detailed evidence base associated with shallow water use of steel 

monopiles to set a baseline context that most developers, engineers, regulators and their statutory / 

technical advisors and other practitioners are familiar with in the UK i.e. Round 1 and 2 offshore 

windfarms and those installed in Danish and Belgian waters. Evidence associated with concrete 

gravity bases, steel jackets and tripods is drawn from existing examples deployed in UK, Danish, 

Belgian and German waters. 

However, it is widely acknowledged that there will be a requirement for a significant number of 

Round 3 projects to consider alternative engineering solutions to monopile foundations, such as 

concrete gravity bases, steel jackets, tripods, and suction caissons. The spatial scale of effects and 

resultant impacts are anticipated to be different to those associated with Round 1 and 2 arrays. 

These are detailed and comparisons are drawn between CGBFs and other deeper water foundation 

solutions. Possible cumulative effects are also described where possible. 

Page 16: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

ii  

Many, though not all, of the Round 3 zones are sufficiently distant from coastlines (50‐200km) that 

coastal impact studies may require less focus than was required for Round 1 and 2 arrays. Deeper 

water at these offshore sites means that an alteration to the local wave climate and subsequent 

wave‐induced effects are not likely to impinge upon the seabed or reach the coast. Any local 

changes to tidal currents or surface sediment transport pathways are similarly less likely to interface 

with coastal systems. Modelling will be required at a project‐specific level to inform an EIA, but 

overall blockage effects are expected to be negligible or significantly lower risk than for Round 1 and 

2 projects; especially for those solutions with comparable blockage effects to the large monopiles. 

CGBFs can have a long‐term surface area footprint (habitat loss and alteration) at the seabed similar 

to other deeper water foundation solutions once shadowing of the sediment habitat through ‘halo’ 

or ‘fringe’ effects associated with the alternative solutions are taken into account. There may be a 

short‐term habitat loss associated with seabed preparation and sub‐surface scour protection (if 

required). It is anticipated that these impacts may be limited to 6‐24 months for mobile sand 

habitats but up to 8 years or greater for consolidated gravel habitats.  

In addition, reef effects will occur as a result of the additional hard substrata introduced to the 

environment during emplacement for all foundation solutions. This may have effects on the wider 

biological composition of the region and interactions at an ecosystem scale. 

By far the greatest advantage of CGBFs, over the proven, viable alternatives, is the lack of damaging 

underwater noise emissions generated during their installation and emplacement. With increased 

requirements for consideration of noise in legislative controls, underwater noise will be a primary 

consideration for deep water solutions for Round 3 developments. 

 

Page 17: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

1  

1 IntroductionThis document has been produced on behalf of The Concrete Centre (TCC) and the Gravity 

Foundation Interest Group (GFIG) by MarineSpace Ltd, with specialist input from ABPmer and Fjordr. 

MarineSpace are an environmental consultancy with key skills in marine Environmental Impact 

Assessment, physical process studies, biological characterisation and conservation review. 

Recognising the importance of physical process modelling in understanding the impacts arising from 

Concrete Gravity Base Foundations (CGBFs) for windfarms, ABPmer have produced this portion of 

the document along with input at other relevant sections. Specialist archaeological advice was also 

sought, with Fjordr producing related sections of the document. 

1.1 AimsandObjectivesThis document is intended to allow the CGBF engineering/construction industry to demonstrate the 

effects associated with a CGBF and set these in relation to alternative foundation solutions; whilst 

highlighting any identified benefits associated with the use of CGBFs. Specific consideration of the 

cause and effect pathways and footprints described within this document will enable an evidence‐

based, knowledgeable and independent view of CGBFs to be presented by industry and developers. 

The specific aims and objectives of this guidance note are to provide The Concrete Centre and the 

Gravity Foundation Interest Group with a report that: 

Highlights the likely environmental concerns surrounding the permitting of CGBFs in the marine environment; 

Identifies other relevant guidance available for other sectors that may be utilised for CGBFs; 

Identifies effects and their pathways that may need to be addressed for CGBFs specifically, and also identify effects that can be screened out as not relevant or significant; 

Describes possible CGBF‐specific positive and negative effects and applications; 

Sets the context for the use of CGBF structures as part of the UK Round 3 initiative; and 

Acts as a resource that identifies a CGBF‐specific environmental footprint and provides context for industry, regulators, statutory advisors and wider stakeholders including members of the general public. 

 

1.2 BasisfortheAssessmentThe main suppliers of CGBFs have provided details on the structures representative of the CGBFs 

considered in this document. These details were collated by TCC and are presented in Table 1.1 

below. These parameters have been used for the basis of this document, although it is important to 

note that as a result of design differences and placement within various environmental conditions, 

the impacts are likely to be bespoke to each site. A selection of design options are presented in 

Figure 1.1. 

   

Page 18: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

2  

Table 1.1: Details of the technical specifications of the CGBFs considered within this document (Extracted from technical submissions of the Gravity Foundation Solution Providers for the purpose of establishing Rochdale Envelope parameters). (Values quoted are Average and Worst Case respectively). 

Parameter  Average Values Maximum (Worst Case) Values 

35m Depth 5MW Turbine 50m Depth 5MW Turbine

Bedrock  Sands  Bedrock  Sands 

PERMANENT INSTALLATION

A.1 External surface area of concrete (extra habitat) (m2) 

2,8254,675 

2,7394,675 

3,421 5,800 

3,3385,800 

A.2 Elevational area from surface of sea bed to water surface (coastal processes) (m2) 

901 1,690 

863 1,690 

1,201 2,067 

1,145 2,067 

A.3 Area of concrete footprint at surface level of sea bed (loss of habitat) (m2) 

865 1,150 

900 1,150 

1,000 1,386 

1,029 1,386 

A.3.b Inferred diameter at seabed (calculated from A.3) (m) 

33.238.3 

33.938.3 

35.7 42.0 

36.242.0 

A.4 Diameter at water surface (or shape and maximum projected width if not circular) (impact on wave climate) (m) 

6.5 8 

6.65 8 

6.36 7 

6.5 7 

A.5 Area of scour protection if used (change in habitat) (m2) 

Assumed N/A 2,0953,500 

Assumed N/A 2,3244,005 

A.6 Gradings specification of top layer of scour protection if applicable (nature of new habitat)  

Assumed N/A No data supplied 

Assumed N/A No data supplied 

A.7 Density of wind towers (no/km2) 1

1.23 1

1.23 1 

1.23 1

1.23 

INSTALLATION

B.1 Area of sea bed preparation (if required) (m2) 

Assumed N/A Variable and 

project specific Assumed N/A 

Variable and project specific 

B.2 Depth of sea bed preparation (B.1xB.2 = volume of removals) (m3) 

Assumed N/A Variable and 

project specific Assumed N/A 

Variable and project specific 

B.3 Area of sea bed impact from installation vessels (numbers and footprint of jack up barge spuds, anchors, and duration)  (Foundation only, not including tower and turbine attachment) 

~416m2 per jack‐up and assuming one 

visit for foundation 

emplacement. 

~416m2 per jack‐up and assuming one 

visit for foundation 

emplacement. 

~416m2 per jack‐up and assuming one 

visit for foundation 

emplacement. 

~416m2 per jack‐up and assuming one 

visit for foundation 

emplacement. 

B.4 Aggregates for ballast:Tonnage required and preferred material/specification if known  (t) 

7,250  12,000 

8,460  15,000 

6,700 12,000 

7,400 12,000 

B.5 Nature of vessel for delivery of scour protection: side dumping barge, steerable vessel, other (accuracy of placement, known impact area) 

Assumed N/A Variable and 

project specific Assumed N/A 

Variable and project specific 

REMOVAL

C.1 Area of sea bed impact from Removal Vessels (e.g. barge spuds) (m2) 

Typically None  Typically None  Typically None  Typically None 

C.2 Duration of removal process (foundation only) and any other details that may have impacts (days) 

3.6 7 

4.2 7 

3.6 7 

4.2 7 

Page 19: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

3  

Figure 1.1: Images of the Concrete Gravity Base Foundation solutions from members of The Concrete Centre’s Gravity Foundation Interest Group © various GFIG members  

 

An additional solution is available from Laing O’Rourke 

Page 20: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

4  

1.3 AssumptionsThis document has also made several assumptions which are outlined below: 

1 The effects arising as a result of the turbine on the sea surface or the structure in the wider 

environment and seascape have not been included within this document. There is already a 

significant amount of documentation pertaining to the requirements for this aspect of 

windfarm development which is considered inappropriate to reproduce here. The most 

relevant document is the Guidance Note for Environmental Impact Assessment in Respect of 

FEPA and CPA Requirements produced by Cefas in 2004. This document provides a 

comprehensive review of the data, information and scientific evidence that will be required 

by the regulator to consent offshore windfarm developments. 

2 The materials utilised in the construction of the CGBFs (aggregate and cement) have not 

been included. It is assumed that as the production of aggregate and cement requires 

consent to operate, these activities have been, or will be, assessed under separate 

legislation. It is also assumed that any sediment utilised to infill the structures will also have 

been consented under a different regime. Therefore, the impacts arising from the 

production, transport, use and construction of the CGBFs is not included within this 

document. 

3 Shore‐based infrastructure and cable landing are not included within this document. As with 

the turbine structure above the sea surface, there is a significant amount of guidance and 

information relating to the effects of the landing of the power cable and the infrastructure 

required to attach to the national grid. 

4 Cables transferring power through the array are also not included within this document. The 

methods for laying the cables between the turbines and to the shore are also not included 

within this assessment. These effects will be dependent upon the methodologies involved 

and the environment through which the cable passes. In addition, significant guidance 

already exists for the assessment of the effects of cables and pipelines within the marine 

environment.  

5 Surveys and their associated impacts are also excluded for consideration under this 

document. These require specific licenses to be obtained from the MMO and/or through The 

Crown Estate. The MMO provide information on geophysical surveys at 

www.marinemanagement.org.uk/protecting/wildlife/geophysical . Geotechnical and 

ecological sampling surveys require a Marine Licence obtained through the MMO who 

provide a series of guidance notes for applicants to follow. The guidance and application 

details can be found at www.marinemanagement.org.uk/licensing/marine.htm. In addition 

sampling will require consent from The Crown Estate and should be contacted directly for 

details of the process and application forms required. 

These assumptions are highlighted in Figure 1.2 which shows the elements included within, and 

those excluded from, this document. 

 

   

Page 21: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

5  

Figure 1.2: Figure highlighting the elements of CGBFs and windfarms that are included within this document and those that are not. 

 

 

Page 22: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

6  

2 PermittingofOffshoreWindfarmsintheUKPermitting of windfarms in the UK requires two separate permits:  

1. The commercial agreement between the operator and the land owner (typically The Crown 

Estate) 

2. The governmental permit that considers the environmental implications for the 

development and setting mitigation and monitoring requirements for the development. 

2.1 Round1and2ComparedtoRound3The Crown Estate has offered five rounds of tendering for offshore windfarms to date. These include 

Round 1, Round 2, Scottish Territorial Waters, Round 1 and 2 extensions and Round 3. The majority 

of Round 1, Round 2 and Scottish windfarm sites are located within 12 nautical miles (approximately 

22km) of the coastline and are typified by shallow water, sediment seabed habitats and relatively 

benign wave conditions.  

As a result of the marine environmental conditions experienced at the Round 1 and Round 2 

windfarm sites, steel monopiles have been the foundation construction choice for the windfarms 

constructed in the UK to date. However, as Round 3 windfarm zones generally occupy deeper water 

and more exposed conditions, with a mixture of seabed types which are typically further offshore 

than the previous Round 1, Round 2 and Scottish Territorial Waters arrays and at a considerably 

larger scale. It is likely that different construction options will need to be considered due to the 

different physical environment.  

As a result this document is written to address the requirements of the Round 3 sites that are yet to 

be constructed and therefore considers deeper water and more exposed conditions experienced at 

the proposed Round 3 windfarm sites. Whilst primarily considering Round 3 the findings and 

determinations made in this report may also be applicable to those deeper water projects offshore 

in Scottish Territorial Waters. 

2.2 GovernmentalRequirementsThere are various domestic and international legislation requiring the assessment of environmental 

impacts associated with projects including Round 3 developments. More details on the legislative 

requirement can be found in Appendix A. 

Generally there are two routes for the obtaining of an environmental permit in UK waters: 

1. Permits from small projects (less than 100MW) can be obtained through the MMO or the 

devolved administrations. The applications are made through the Coastal and Marine 

Access Act 2009. 

2. Projects of more than 100MW must be made through the Planning Act 2008, which is 

administered by the Planning Inspectorate for all sea areas under UK jurisdiction. 

More details on the requirements for the environmental permitting routes can be found in 

Appendix A.  

   

Page 23: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

7  

3 ConstructionOptionsThis section of the document has been written to compare and contrast the various options for 

foundations used in offshore windfarms in the UK. Foundation options currently deployed in UK 

waters or available for use in Round 3 construction are: 

Concrete Gravity Base; 

Monopile; 

Tripod; 

Steel Jacket; 

Suction Caisson; and 

Floating Platform. 

Figure 3.1 provides an illustration of the different foundation solutions reviewed in this section. 

Figure 3.1: Illustration of various foundation types for use with offshore wind turbines (adapted from STRABAG illustration). 

 

Research presented in Table 3.1 was reported by the Department for Energy and Climate Change 

(DECC, 2011a) and provides a comparison between various foundation types detailing basic 

parameters such as deployment depth range, seabed types, and structure metrics such as width, 

footprint area and weight. Where appropriate the information from Table 3.1 has been used in 

conjunction with CGBF‐specific parameters presented by solution providers in Table 1.1 to set the 

basis for the sub‐sections that follow. 

   

Page 24: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

8  

Table 3.1: Comparison between foundation types (from DECC, 2011a) 

Structural Form  Materials  Applicable ranges  Structu

re 

Width (m

Seab

ed 

footprin

t1 (m

2)   

Weigh

t (to

nnes) 

Main Type 

Variatio

Prim

ary 

Other 

MSL W

ater 

Depth (m

Turbine 

Size (M

W) 

Seabed conditions 

Monopile    S  S, G  Up to 25 ‐ 35 

3 – 5 Clay/sand/weak rock 

4 – 7 12 – 300  400 –750 

    C2   S, G  35+  5+ 6+ 20 + 

Gravity  Base 

Conical Caisson 

C, S3   S, Sa/Gr/R 

0 ‐ >70 Up to 10 Firm clay, med dense sand/gravel, rock 

20 – 50  300 – 3,500 3,000 –12,000 

Jacket  4‐leg Tripod 

S  S, G  <20 ‐ >70 Up to 10 Sand/silt/clay / weak rock 

15 – 50  6 – 500  600 –2,000† 

Suction Caisson 

  S, C  < about 50 

Up to 10 Clay/sand/open gravel no obstructions, not hard or very dense 

15 – 30  175 – 2,000

Floating  Catenary  S, C4   S, Sa/Gr/R, FRP 

>50  Up to 10 All, subject to foundation type5 

10 – 80  5 – 1,2006  1,000 –3,000‡ 

  Tension  Leg 

S, C  S, Sa/Gr/R, FRP 

>60  Up to 10 All, subject to foundation type5 

35 – 60  5 – 1,2006  1,000 –3,000‡ 

Artificial Island 

  Sa/Gr  R/C/S  <20  Up to 10 All but very soft 50 ‐ 250   

* S = Steel, C = Concrete, G = Grout, Sa = Sand, Gr = Gravel, R = Rock, FRP = Fibre Reinforced Polymer.  † includes piles and transition piece.   ‡ Excludes mooring lines and sea bed anchorage.  Notes: 1. The range of areas for sea bed footprint includes an allowance for possible scour protection 2. There is insufficient information available for concrete monopiles to estimate the upper end of ranges but they are expected to be higher than for a steel monopile 3. Gravity structures are normally concrete but could be steel 4. Floating structures could be steel or concrete 5. Mooring lines can be fixed to the sea bed by a range of foundations (anchors, piles, gravity and suction caisson) depending on conditions 6. For floating structures, the footprint is the area disturbed by mooring line foundations, rather than the total area of sea bed beneath the structure.  

During the development of UK Round 1 and 2 offshore windfarm projects there has been a general 

presumption that CGBFs present the worst case scenario regarding total direct area of seabed 

contact / loss under the footprint of the foundation structure (see Table 3.1). This relates to a direct 

loss of seabed habitats and associated communities, both individually per foundation and 

cumulatively; either within an array or between windfarms. However, alteration of the seabed and 

loss of sediment habitat is not only a reflection of the structure’s direct footprint but also due to 

area covered / ‘over‐shadowed’ by the foundation structure itself – e.g. seabed located beneath the 

lattice of a steel jacket but not under one of the feet. When considering the ‘shadowing’ effect, steel 

Page 25: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

9  

jackets and tripods can present a comparable surface area of seabed interaction than CGBFs 

(Figure 3.2). 

Figure 3.2: Seabed area interaction with selected foundation types for 5MW turbine (adapted from STRABAG, 2012). 

  Concrete Gravity Base  Steel Jacket  Tripod  Suction Caisson  

     

Footprint – 

seabed 

habitat loss 

1,200 m2   800 m2  1,000 m2   2,000 m2 

Water depth and seabed geology has an influence on the engineering parameters required to 

provide a stable foundation for turbines – particularly regarding turbines of 5 MW capacity and 

above. Different foundation solutions have optimal depth ranges for provision of stability for 

turbines along with engineering constraints and cost benefit analyses. Increased water depth will 

require greater penetration depths for monopile solutions and the possibility of larger storm wave 

loadings means more resilient grouting at the foundation / transition piece connection. This increase 

in water depth when factored with likely increased wave energetics will result in a potential shift 

from reliance upon monopile foundations to alternative foundation solutions (see Section 3.2 and 

Section 5.3.1 for further discussion). Figure 3.3 illustrates the water depth correlation to the 

feasibility of various foundation structures and their deployment parameters. 

Figure 3.3: Depth profiles and applicable foundation types (adapted from DECC, 2011a). 

 

Page 26: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

10  

At the end of each of the following sub‐sections, the base structure is compared to CGBFs in 

environmental terms, and suitability for use within certain marine environments. 

3.1 ConcreteGravityBaseFoundationsConcrete Gravity Base Foundations (CGBFs) are structures made in concrete, and in most cases 

ballasted with sand / gravel, that are designed to be held in place by gravity. The tower supporting 

the wind turbine is attached to the top of the CGBF which is designed to stand proud of the sea 

surface. The structures are typically constructed onshore, transported to site and finally positioned 

accurately onto the seabed. There is no piling required so no attendant underwater noise impacts of 

the magnitude associated with monopiles, tripods and steel jackets. Transportation and 

emplacement time is in the order of 3‐7 days excluding weather downtime. 

The design of the CGBF structures will vary depending upon the designer, manufacturer and critically 

the conditions experienced at the intended deployment location which may different for any 

location within the array.  However, whilst their design may vary, the broad parameters of their 

design will remain similar across the site as shown in Table 1.1. 

As a result of the varied characteristics of the designs proposed and the environment at the 

deployment location for CGBFs, the preparation required at a foundation location is likely to vary 

from site to site. Some designs are based on the premise of minimising the extent of sea‐bed 

preparation whereas others require sea‐bed preparation as part of the construction process. There 

are some sites where seabed preparation or mitigation will be inevitable such as areas with large 

(2m plus in height) sand waves and areas with exposed rock at the surface. Examples of the potential 

preparation and / or mitigation required are shown in Section 4. 

Therefore it is possible to generate the table of effects below: 

Table 3.1: Overview of generic effects associated with use of CGBF structure. 

Parameter  CGBFs 

Experience  40+ years of use 

Water Depth  Shallow to deep water 

Price  Favourable 

Availability  Favourable 

Maintenance required  Low 

Ground preparation (temp habitat loss)  None to high 

Emplacement weather / condition window  Moderate conditions acceptable 

Sound emitted during emplacement  Low 

Seabed footprint (habitat loss)  High 

Scour  None to Moderate 

Blockage effects  Moderate to High 

Reef effects  Moderate to High 

Decommissioning  Favourable to remove entire structure 

 

 

Page 27: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

11  

3.2 MonopilesMonopiles have been the most commonly used foundation method used during the construction of 

UK Round 1 and Round 2 offshore windfarms. Monopiles are tubular sections of steel that are 

typically driven into the seabed to a suitable depth, ensuring that the transition piece, tower and 

turbine placed atop of the structure are stable. Steel monopiles are typically pile‐driven into sandy 

seabeds by using a large hammer or a combination of hammering and drilling where sub‐seabed 

geology is harder. Strike rates vary depending upon the local seabed conditions but Zucco et al. 

(2006) and RPS Energy and RWE NPower Renewables (2011) recorded a range of 20‐40 strikes per 

minute for durations between 1.5‐4 hrs per monopile (in sandy seabeds) .  The monopiles may take 

between 1000‐7000 strikes to install them to operational depth (Zucco et al., 2006). This range 

accounts for variations in sub‐surface geology and also differences in monopile diameters (4‐6 m 

diameter). Centrica Energy (2010) reports that installation of a turbine foundation typically takes 12 

hours with favourable weather conditions and an  additional one or two days are required to 

reposition the piling vessel / jack‐up barge to the next turbine location.  Piling hammers can weigh 

225 t and deliver blow forces of 200‐500 kJ per strike (Bailey et al., 2010), with Norro et al. (2010) 

reporting piling blow energies of up to 990kJ.  

Once the monopile has reached a suitable depth, the transition piece and tower are grouted in place 

and the turbine is then secured atop. Monopiles tend to create a greater scour area than the other 

structures and take longer to install on site in many cases. In addition, monopile structures are less 

suited to deep water depths as they can become unstable due to hydrodynamic stresses including 

susceptibility to wave action (Seidel, 2010) and the possibility of larger storm wave loadings means 

more resilient grouting at the foundation / transition / tower connection. Taller monopiles are also 

less stable when considering the effects of rotor sweep and transmission of rotational forces / cyclic 

loading through the tower and foundation making it difficult to meet the requirements for turbine 

operation. Increased water depth will require deeper penetration depths for monopile solutions and 

resilience results in increased diameter of monopiles and thicker pile walls.  These factors mean that 

longer piling periods are required with greater sustained hammering using heavier hammers in 

comparison to shallow water installation. Therefore noise effects are likely to increase, and will 

propagate further in the deep water locations where the Round 3 sites are typically located.  

There are also the technical considerations of actually building tall, thick‐walled 6m+ diameter 

monopiles and transporting them from fabrication centres to ports (EWEA, 2009). The cost of the 

steel required to build these deep‐water size monopile will also be expensive to the point that they 

may not be a cost effective solution. 

The table below highlights the comparative key facts: 

   

Page 28: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

12  

Table 3.2.1: Overview of generic effects associated with use of monopile structure. 

Parameter  Monopiles 

Experience  Used extensively in current offshore windfarms 

Water Depth  Shallow to mid water 

Price  Favourable inshore, high for offshore 

Availability  Favourable inshore, restricted offshore 

Maintenance required  High 

Ground preparation (temp habitat loss)  Low if drilled due to spoil from drill fines  

Emplacement weather / condition window  Wind and wave sensitive 

Sound emitted during emplacement  High 

Seabed footprint (habitat loss)  Low 

Maintenance required  High 

Scour  High  

Reef effects  Low to moderate 

Decommissioning  Difficult to remove entire structure 

 

3.3 TripodTripods are three legged structures that are generally secured in place using a pile to secure each 

‘foot’ through a pile sleeve to the seabed. There is the ability to use small suction caissons to secure 

the ‘feet’ to sandy sediments, though this is not normally the favoured securement option. Tripod 

foundations are typically made of steel. The design of the structure allows the weight and loads 

generated by the turbine to be transferred as axial loads to the ground, which may be advantageous 

in weaker soils (Schaumann and Böker, 2005).  

Once in place and secured the tower and wind turbine are added to the foundation and grouted or 

swaged in place. Tripods can suffer from fatigue as a result of the complicated joints and have high 

construction costs due to complexity of design. However, as a result of their design and nature, the 

tripod is considered not to require a significant amount of ground preparation prior to installation 

and they are suitable for a variety of ground types. 

As for monopiles, piling operations are required for installation including the attendant engineering 

technicalities and associated noise impacts. It should be noted that three separate piling operations 

per foundation will be required to install the structure. The complete installation time typically 

requires between 4‐7 days per foundation, excluding any weather downtime. The underwater noise 

impacts associated with tripod installation have been scrutinised as part of the German BARD 

Offshore 1 project. The German authorities have imposed restrictions upon the construction of this 

project, including periods where cessation of piling operations has been required, to mitigate the 

noise‐related impacts on harbour porpoise. 

As a result the following parameters can be established: 

   

Page 29: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

13  

Table 3.3.1: Overview of generic effects associated with use of tripod structure. 

Parameter  Tripods 

Experience  Experimental/Test only 

Water Depth  Shallow to deep water 

Price  High cost 

Availability  Favourable 

Maintenance required  High 

Ground preparation (temp habitat loss)  None 

Emplacement weather / condition window  Wind and wave sensitive 

Sound emitted during emplacement  High 

Seabed footprint (habitat loss)  High 

Scour  Moderate 

Blockage effects  Moderate to High 

Reef effects  Moderate to High 

Decommissioning  Difficult to remove piles 

 

3.4 SteelJacketSteel jackets work in a similar way to tripods, although their design will vary depending on the site 

conditions and manufacturer. Typically the design incorporates 3‐4 legs. The structure supports a 

central column to which the tower and turbine is attached and from which the structure dissipates 

and transfers the weight and stresses to the ground. The structure is typically secured to the seabed 

using multiple piles (one at each of the jacket’s ‘feet’), although suction caissons can also be used. 

Steel jackets tend to be corrodible, in spite of corrosion protection paints/coatings, as a result of the 

large amount of steel components used in their construction. In addition, they also suffer from 

fatigue as a result of the complexity of the structures used and are also complex to manufacture and 

often most expensive per tonne of steel used (Schaumann and Böker, 2005). However they can be 

designed to meet the required ‘operational life’ specifications for offshore windfarm projects. 

Furthermore ground preparation is often required for these structures and piles may not be 

completely removed at the end of the structure’s lifespan (Schaumann and Böker, 2005). It is not 

known if this incomplete removal of infrastructure at decommissioning of the structures will result in 

persistent effects. In recent years these foundations have been used at several offshore windfarms 

including Ormonde and Beatrice. 

As for monopiles, piling operations are required for installation including the attendant engineering 

technicalities and associated noise impacts. It should be noted that 3‐4 separate piling operations 

per foundation will be required to install the structure. The complete installation time typically 

requires between 4‐7 days per foundation, excluding any weather downtime.  

The following can therefore be ascertained: 

   

Page 30: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

14  

Table 3.4.1: Overview of generic effects associated with use of steel jacket structure. 

Parameter  Steel Jackets 

Experience  >40 years’ experience from oil and gas platforms 

Water Depth  Shallow to deep water 

Price  High cost 

Availability  Favourable 

Maintenance required  High 

Ground preparation (temp habitat loss)  None 

Emplacement weather / condition window  Wind and wave sensitive 

Sound emitted during emplacement  High 

Seabed footprint (habitat loss)  Moderate‐High 

Scour  Moderate 

Blockage effects  Moderate to High 

Reef effects  High 

Decommissioning  Difficult to remove piles 

 

3.5 SuctionCaissonsSuction caissons are comparable to an upturned bucket and work by creating a seal around the base 

of the structure. The sediment and water trapped within the caisson is then pumped out forcing the 

caisson into the sediment and creating a negative pressure inside once a suitable geological unit is 

reached beneath the caisson. Seabed penetration depths of 10‐20 m are typically required for a 

stable platform. The hydrostatic pressure created during pumping is usually sufficient to achieve 

penetration depth. Due to the need to penetrate the seabed to achieve a hydrostatic seal this 

foundation solution is unsuitable for rock or consolidated seabed types. 

As with the other solutions, the tower and turbine are attached to the top of the structure which 

stands proud of the sea at all states of the tide. 

A limited amount of ground preparation may be required to achieve a level seabed surface however 

scour and sediment liquefaction are critical because of the importance of maintaining the negative 

pressure within the caisson. There is no piling required so no attendant underwater noise impacts of 

the magnitude for monopiles, tripods and steel jackets. Installation time is typically about 2 days 

excluding weather downtime. 

It should be noted that suction caissons have not been used extensively by the offshore renewables 

sector within the marine environment, but research by Houlsby et al. (2005) notes that the suction 

within the caisson within the examples monitored, have proved to be successful. 

As a result, the following can be concluded: 

   

Page 31: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

15  

Table 3.5.1: Overview of generic effects associated with use of suction caisson structure. 

Parameter  Suction Caissons 

Experience  Experimental/Test only 

Water Depth  Shallow to deep water 

Price  Favourable 

Availability  Low 

Maintenance required  High 

Ground preparation (temp habitat loss)  Moderate 

Emplacement weather / condition window  Wind and wave sensitive 

Sound emitted during emplacement  Low 

Seabed footprint (habitat loss)  High 

Scour  Moderate 

Blockage effects  Moderate to High 

Reef effects  Moderate to High 

Decommissioning  Favourable to remove entire structure 

 

3.6 FloatingPlatformsFloating platforms are designed to be buoyant within the water column, allowing the windfarm 

structure to be attached above the waterline and have been used to a limited extent in the offshore 

oil and gas industry. The floating platform is tethered to the seabed using anchors which may be 

piles, gravity or suction based. The loading forces placed on the floating structure are transferred to 

the seabed via the anchoring cables. 

An experimental floating platform at 1:6 scale was deployed off the Norwegian coast in 2011 

(Weinhold, 2012). Some technical issues have been encountered in storm conditions but it is 

believed that these relate to scale, rather than technical feasibility.  

The following table details the paucity of information for this solution type at this time:  

Table 3.6.1: Overview of generic effects associated with use of floating platform structure. 

Parameter  Floating Platforms 

Experience  Two test beds only 

Water Depth  Deep water 

Price  Unknown 

Availability  None for UK Round 3 

Maintenance required  Unknown 

Ground preparation (temp habitat loss)  None 

Emplacement weather / condition window  Unknown 

Sound emitted during emplacement  Low‐Moderate 

Seabed footprint (habitat loss)  Low 

Scour  Limited 

Blockage effects  None 

Reef effects  None to low 

Decommissioning  Favourable if anchors only are used, less favourable if piled as difficult to remove piles 

   

Page 32: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

16  

3.7 ComparisonbetweenStructuresCombining the results from the tables at the end of each section it is possible to create the following 

comparative table of effects and uses for each of the foundation types: 

Table 3.7.1: Comparison of broad effects between turbine foundation types (adapted from Schaumann and Böker, 2005; STRABAG, 2012; Houlsby et al., 2005; Frederiksen, 2008). 

Parameter  CGBFs  Monopiles  Tripods  Steel Jackets Suction 

Caissons 

Floating 

platforms 

Experience  

(No. of foundations 

currently installed) 

Good 

(332) 

Good 

(1810) 

Moderate 

(86) 

Moderate 

(88) 

Low 

(1) 

Trial only 

(2) 

Water Depth  All  Shallow  All  All  All  Deep 

Emplacement 

weather window Good  Restricted  Restricted  Restricted  Moderate  Unknown 

Maintenance 

required L  H  H  H  L  Unknown 

Price  L  H  H  H  Unknown  Unknown 

Availability – UK R3  Fav  Unfav†  Fav  Fav  Low  None 

Environmental Effects/Impacts  

Ground 

preparation  

(temp habitat loss) 

L  H  L  L  L  M  Neg  L 

Sound emitted 

during 

emplacement 

L  H  H  H  L  L  M 

Seabed footprint  

(habitat loss) H  M  H  H  H  L 

Scour  L  H  L  L  L  L  M 

Blockage effects  H‡  M  H‡  H  H  Neg 

Reef effects  H  M  H  H  H  Neg  L 

Decommissioning  L  H  H  H  L  H 

Neg = Negligible, L = Low; M = Moderate, H = High, Fav = Favourable, Unfav = Unfavourable 

Environmental Effects / Impacts are relative to baseline of ‘undisturbed’ i.e. no foundations present. 

†As deepwater solution 

‡Some solutions which do not exceed 9m diameter could be considered as Moderate (M). 

Page 33: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

17  

4 HistoryofGravityBasesThe emphasis of this report is to consider the use of concrete gravity bases as offshore wind turbine 

foundations. This section reviews the previous applications of concrete gravity bases in the marine 

environment (in a UK context). Whilst other construction materials, most notably steel and in‐

particular steel jackets, have been used extensively as foundation and support structures in the 

marine environment, the historical detail of their application is not presented due to the aims and 

objectives of this report (see Section 1.1). 

Concrete Gravity Bases have been used for offshore for many decades. Concrete structures have a 

significant advantage over their traditional steel‐built rivals when placed in the marine environment, 

as concrete is not as susceptible to corrosion and require less maintenance. Therefore, marine 

concrete structures have been seen as an attractive alternative for the offshore oil and gas industry 

for the past 40 years, where tanks, barges and platforms have been constructed using concrete. 

Some early examples of concrete structures exist offshore around the UK coast, such as the Nab 

Tower (installed in 1920), and also various Naval Forts in the Outer Thames, however these are often 

single structures rather than a group of several structures. 

The current CGBF solutions have been researched and developed using experience derived primarily 

from the oil and gas industry. The first concrete structure utilised by the offshore oil and gas industry 

was a tank for storage of oil in the Norwegian sector of the North Sea. Shortly after this in the mid‐

1970s, the first gravity base structures were utilised in by platforms in the North Sea. Beryl A and 

Brent B were both large platforms initiated in 1975 in water depths in excess of 100m. 

Over 50 major offshore concrete structures have been built worldwide (see Table 4.1). Designs for 

up to 300m water depth have been installed, such as Troll, but the majority of recent platforms have 

been in water depths more comparable with the Round 3 windfarms. The trend for shallower water 

platform installation commenced with the Ravenspurn North platform, installed in 1989 in the 

Hornsea zone, and the construction features of these smaller platforms are evident in the CGBFs 

now being proposed. 

   

Page 34: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

18  

Table 4.1: Existing Offshore Concrete Structures for Oil and Gas Production (adapted from International Federation for Structural Concrete (fib ‐ fédération internationale du béton), 2009) 

No Installation 

year Original Operator 

Field/Unit  Platform Type Water depth (m) 

Concrete Volume (m3) 

Location 

1  1973  Phillips  Ekofisk  Caisson. Jarlan Wall  71  80,000 North Sea 

(N) 

2  1974 Atlantic Richfield 

Ardjuna Field  LPG Barge  43  9,200  Indonesia 

3  1975  Mobil  Beryl A  GBS 3 shafts  118  52,000 North Sea 

(UK) 

4  1975  Shell  Brent B  GBS 3 shafts  140  64,000 North Sea 

(UK) 

5  1975  Elf  Frigg CDPI  GBS 1 shaft. Jarlan Wall  104  60,000 North Sea 

(UK) 

6  1976  Shell  Brent D  GBS 3 shafts  140  68,000 North Sea 

(UK) 

7  1976  Elf  Frigg TPI  GBS 2 shafts  104  49,000 North Sea 

(UK) 

8  1976  Elf  Frigg MCP‐01  GBS 1 shaft. Jarlan Wall  94  60,000 North Sea 

(N) 

9  1977  Shell  Dunlin A  GBS 4 shafts  153  90,000 North Sea 

(UK) 

10  1977  Elf  Frigg TCP2  GBS 3 shafts  104  50,000 North Sea 

(N) 

11  1977  Mobil  Statfjord A  GBS 3 shafts  145  87,000 North Sea 

(N) 

12  1977  Petrobras Ubarana‐Pub 

3 GBS caisson  15  15,000  Brazil 

13  1978  Petrobras Ubarana‐Pub 

2 GBS caisson  15  15,000  Brazil 

14  1978  Pctrobras Uburana‐Pag 

2 GBS caisson  15  15,000  Brazil 

15  1978  Shell  CormorantA  GBS 4 shafts  149  120,000 North Sea 

(UK) 

16  1978  Chevron Ninian Ccntrnl 

GBS 1 shaft. Jarlan Wall  136  140,000 North Sea 

(UK) 

17  1978  Shell  Brent C  GBS 4 shafts  141  105,000 North Sea 

(UK) 

18  1981  Mobil  Statfjord B  GBS 4 shafts  145  140,000 North Sea 

(N) 

19  1981 Dome 

Petroleum Tarsuit  Concrete Island. LWA  16  8,800 

Beaufort Sea 

20  1982  Phillips  Maureen ALC  Concrete base artic. LC  92  3,500 North Sea 

(UK) 

21  1983  Texaco Schwedeneck 

A* GBS Monotower  25  3,620 

North Sea (D) 

22  1983  Texaco Schwcdcneck 

B* GBS Monotower  16  3,060 

North Sea (D) 

Page 35: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

19  

No Installation 

year Original Operator 

Field/Unit  Platform Type Water 

depth (m) 

Concrete Volume (m3) 

Location 

23  1984  Mobil  Statfjord C  GBS 4 shafts  145  130,000  North Sea (N) 

24  1984 Global Marin 

Beaufort Sea ** 

GBS caisson, Arctic  16  14,300  Sakhalin (R) 

25  1986  Statoil  Gullfaks A  GBS 4 shafts  135  125,000  North Sea (N) 

26  1987  Statoil  Gullfaks B  GBS 3 shafts  141  101,000  North Sea (N) 

27  1988 Norsk Hydro 

Oseberg A  GBS 4 shafts  109  116,000  North Sea (N) 

28  1989  Statoil  Gullfaks C GBS 4 shafts. Skirt 

Piles 216  244,000  North Sea (N) 

29  1989 Hamilton Bros 

N. Ravenspurn 

GBS 3 shafts  42  98,000 North Sea 

(UK) 

30  1989  Phillips  Ekofisk P.B  Protection Ring  75  105,000  North Sea (N) 

31  1996  Elf Congo  N'Kossa  Concrete Barge  170  26,500  Congo 

32  1993  NAM  F3‐FB  GBS 3 shafts  43  23,300 North Sea 

(NL) 

33  1992  Saga  Snorre CFT Suction anchors,3 

cells 310  7,800  North Sea (N) 

34  1993  Statoil  Sleipner A  GBS4 shafts  82  77,000  North Sea (N) 

35  1993  Shell  Draugen  GBS Monotower  251  85,000  North Sea (N) 

36  1994  Conoco Heidrun Found 

Suction anchor.19 cells 

350  28,000  North Sea (N) 

37  1996  BP  Harding GBS 

Foundation/Storage 109  37,000 

North Sea (UK) 

38  1995  Shell  Troll A GBS 4 shafts, Skirt 

Piles 303  245,000  North Sea (N) 

39  1995  Conoco  Heidrun TLP  Concrete TLP, LWA  350  63,000  North Sea (N) 

40  1995 Norsk Hydro 

Troll B  Semisub  325  43,000  North Sea (N) 

41  1996  Esso  West Tuna  GBS 3 shafts  61  29,000  Australia 

42  1996  Esso  Bream B  GBS 1 shaft  61  14,000  Australia 

43  1996  Ampolex  Wandoo  GBS 4 shafts  54  28,000  Australia 

44  1997  Mobil  Hibernia GBS 4 shafts. Ice 

Wall 80  165,000  Canada 

45  1999 Amerada Hess 

South Arne  GBS  60  35,000 North Sea 

(DK) 

46  2000  Shell  Malampaya  GBS4 shafts  43  34,000  Philippines 

47  2005  SEIC Sakhalin LUN‐A 

GBS 4 shafts. Arctic  48  35,500  Sakhalin (R) 

48  2005  SEIC  Sakhalin PA∙B  GBS 4 shafts. Arctic  30  28,000  Sakhalin (R) 

49  2001  ExxonMobil  Adriatic LNG  LNG terminal  29  95,000 Adriatic Sea 

(I) Notes: *  The unit has been removed and demolished  

by the end of its life **  Relocated from Benufort Sea to Sakhalin 

 

D  Germany   NL  Netherlands DK  Denmark   R  Russia I  Italy    UK  United Kingdom N  Norway 

Page 36: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

20  

The world’s first offshore windfarm was constructed in Denmark in 1991 and was placed on concrete 

gravity bases.  According to LORC (Lindoe Offshore Renewables Center 2012), 16 offshore windfarms 

currently utilise 332 gravity base foundations. These are listed in Table 4.2. 

Table 4.2: Offshore windfarms utilising GBFs to date (Lindoe Offshore Renewables Center, 2012) 

Name  Country  Operator Installed Capacity 

Number of Turbines 

Avedore Holme  Denmark  DONG Energy  10.8 MW  3 

Breitling Demonstration 

Germany  WIND‐projekt  2.5 MW  1 

Donghai Bridge 1  China  Shanghai Donghai Wind Power  102 MW  34 

Ems Emden  Germany  ENOVA  4.5 MW  1 

Kemi Ajos  Finland  Innopower  30 MW  10 

Lillgrund  Sweden  Vattenfall  110.4 MW  48 

Middelgrunden  Denmark  DONG Energy  40 MW  20 

Nysted 1  Denmark  DONG Energy  165.6 MW  72 

Pori Offshore 1  Finland  Suomen Hyötytuuli  2.3 MW  1 

Rodsand 2  Denmark  E.ON  207 MW  90 

Ronland  Denmark Vindenergi/Harboøre Møllelaug + Thyborøn‐Harboøre Vindmøllelaug 

17.2 MW  8 

Sprogo  Denmark  Sund & Bælt  21 MW  7 

Thornton Bank 1  Belgium  C‐Power  30 MW  6 

Tuno Knob  Denmark  DONG Energy  5 MW  10 

Vindeby  Denmark  DONG Energy  4.95 MW  11 

Vindpark Vanern  Sweden  Vindpark Vänern  30 MW  10 

 

Some of these sites are demonstration projects utilising GBFs at a small scale and others are located 

in offshore environments significantly different to Round 3 conditions, but several of these examples 

are comparable to UK offshore environments, and are therefore described in detail below. 

4.1 ThorntonBank1The Thornton Bank windfarm was the first to be developed in Belgian waters. Although only 6 of the 

60 turbines planned utilise CGBFs, their location in the southern North Sea provides a reasonable 

analogy with the windfarms planned for UK waters. 

Thorough geophysical and geotechnical investigations were undertaken at the site, including 

Sidescan sonar, multibeam bathymetry, sampling with vibrocore, bore holes for pressure meter 

testing and cone penetration tests with the measurement of pore water pressures. After the data 

was analysed, foundation pits were dredged to a depth of around 1m compared to the surrounding 

sediments. The pits were needed to cater for the large mobile sand waves in the area which 

precluded direct placement of the foundations on the seabed. 

The dredged material was then deposited at three locations within the array to allow them to be 

reutilised for ballast infill during the placement of the structures. On average, 90,000m3 of sediment 

Page 37: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

21  

was removed from each of the foundations of the structures (Peire et al., 2009). Following 

preparation of the foundation pit, a bed layer of gravel was placed across the site to ensure stability. 

Figure 4.1.1: Bathymetry around Turbine D1 at Thornton Bank, Belgian waters. Note the foundation level is 1.3m below surrounding levels and that the vertical scale is exaggerated by 4 (Peire et al., 2009). 

 

The CGBFs were built in Oostende and constructed to be around 40m in height and weighed around 

3,000t. The CGBFs were lifted off the quayside by a Heavy Lift Vessel (HLV) that transported the 

CGBFs to their intended location. Once on site, the CGBFs were lowered into position before scour 

protection and infill of the CGBF occurred. The sands utilised for backfill and infill were reused from 

the ground preparation works described above. In addition to the sands described above, gravel and 

crushed rock was also utilised for scour protection and armouring. These were placed up to 15m 

from the scour protection layer, which itself extended around 10m from CGBF (Peire et al., 2009). 

Page 38: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

22  

Figure 4.1.2: General arrangement of the CGBFs at Thornton Bank, Belgian waters (Peire et al., 2009). 

 

The Thornton Bank windfarm was constructed in 2008. Since then, a number of monitoring surveys 

have been undertaken and reported. Degraer et al. (2010) report the results of the monitoring 

undertaken to date can be summarised as follows: 

No secondary erosion was noted at the CGBFs; 

Sand borrow areas were observed in areas where the fill material was sourced as a result of 

the 280,000m3 of sediment that was lost during backfill and infill; 

75 taxa were recorded in 2008/9, of which 42 had not been previously recorded at the site. 

Whilst the majority of these were subtidal, 13 intertidal species were also observed; 

Pouting was the most common fish species observed, inhabiting the scour protection layer. 

Each CGBF was estimated to support around 29,000 individuals; and 

No overall changes to the epibenthos, demersal fish or pelagic fish were noted, however, 

Sole density was noted to be reduced within the impact area and horse mackerel increased.  

Page 39: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

23  

4.2 Rødsand1and2Rødsand 1 and 2 are located in the Danish sector of the Baltic Sea. Rødsand 1 is also referred to as Nysted 1 and as can be seen from Table 4.2, these two offshore windfarms represent the two largest arrays that have been deployed utilising CGBFs.  

The CGBFs were designed with an ice cone at the top of the shaft to reduce the potential impacts 

from sea ice that forms in the Baltic Sea. Whilst this specific design is unlikely to be utilised in the 

regions under consideration in this document, the array design, preparation and array impacts may 

be transferrable to the areas under consideration in this document. 

The CGBFs utilised for the Nysted and Rødsand windfarms required a footprint of approximately 

17m by 17m and required considerable ground preparation and scour protection as outlined in 

Figure 4.2.1 and Figure 4.2.2 respectively. 

Figure 4.2.1: Preparation of the seabed required at Rødsand 2 (Aarsleff Bilfinger Berger Joint Venture, 2011). 

 

Foundations for the structures were dug until a horizon with sufficient bearing capacity was reached. 

Typically around 32,000m3 of sediment was removed; with around 44,000m3 utilised within the 

structure for stabilisation and for scour protection, as shown in Figure 4.2.2 below. In total, the 

gravity base foundations each occupy around 45,000m2 of the seabed, which represents around 

0.2% of the total area of the windfarm site (DONG Energy, 2006). 

Page 40: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

24  

Figure 4.2.2: Design of the CGBFs utilised at Rødsand 2 (Aarsleff Bilfinger Berger Joint Venture, 2011) 

 

The first turbines within the Nysted array were installed in 2001 and since then a number of 

monitoring studies have been undertaken to monitor the effects of the windfarm in the wider 

region. The physical effects of the structures was predicted to be small and localised as a result of 

the small tidal range, low tidal currents, shallow water and small wave exposure. As a result of the 

limited predicted effects on the physical environment, no results of the physical monitoring have 

been analysed to date (DONG Energy, 2006).  Ecological monitoring has shown that the array has 

promoted common mussels, barnacles and macroalgae on the concrete structures and scour 

protection measures which has in turn attracted associated crustaceans and fish (Boesen and 

Andersen, 2005). Any detrimental effects to eel grass beds during construction were noted to have 

recovered 2 years after the dredging events. Harbour porpoises were not observed to have changed 

in population or behaviour since prior to construction of the windfarm, but the construction traffic 

was seen to reduce porpoise sightings during this phase (Boesen and Andersen, 2005). Rødsand is an 

important area for both harbour seals and grey seals. During operation of the windfarm, seal 

behaviour and populations were seen to be unaffected by the windfarm, indeed populations had 

grown by up to 42% 2 years after construction (Boesen and Andersen, 2005). Bird activity was also 

Page 41: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

25  

recorded and avoidance of the windfarm was observed as it is in other windfarm where different 

construction methods have been employed. 

 

Page 42: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

26  

5 ForeseeableEffects

5.1 StagesofconstructionandplacementThe installation and emplacement of concrete gravity base foundations require a range of processes 

each of which has the potential to impact the marine environment and other users of the sea. These 

impacts will vary in their severity, spatial extent and longevity. There are 6 main phases associated 

with Gravity base foundations: 

1. Preparation of the ground where the CGBF is to be placed (if required); 

2. Emplacement works associated with the CGBF; 

3. Remedial activities associated with the CGBF (if required); 

4. Settlement of the CGBF in the natural environment following emplacement (if appropriate); 

5. Operation of the CGBF; and 

6. Decommissioning of the CGBF (if required). 

The potential activities and effects associated with each of these stages of development of the 

CGBFs in the marine environment are described within the sections below. The receptors which may 

be affected by the effects identified are presented within the following Sections 6, 7 and 8.  

 

 

 

 

 

 

 

Page 43: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

27  

5.2 EffectsThe following section details the potential effects associated with each phase of the placement of 

CGBFs identified within Section 0. The various potential CGBF engineering solutions (see 

Figure 1.2.1) will require a different combination of the following phases of works and associated 

activities e.g. one CGBF solution may require seabed preparation and another may not. 

5.2.1 EffectsrelatingtothepreparationofthegroundwheretheCGBFistobeplaced(ifrequired)

 Figure 5.1: Effects arising as a result of ground preparation 

 

 

During preparation of the seabed for emplacement of a CGBF structure several processes will be 

required that may result in effects.  Effects identified during preparation may include: 

a. Dredging.  Removal of seabed sediment or rock may be required to level the site.  If 

undertaken, effects of such works will include; 

i. Changes to the bathymetry – effects of tides and waves. 

Key: ActivityEffect on the 

Human Environment

Effect on the physical 

environment

Effect on the biological 

environment

Page 44: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

28  

ii. Removal of seabed sediment/rock ‐ effects on benthic habitat and communities, fish 

spawning habitat, fish feeding habitat, bird and mammal feeding habitat, 

archaeological sites/artefacts. 

iii. Turbidity ‐ effects on benthic habitats and communities, fish spawning habitat and 

activities, feeding success of birds and mammals. 

iv. Fine sediment deposition ‐ effects on benthic habitat and communities, fish 

spawning habitat, fish feeding habitat, bird and mammal feeding habitat. 

v. Noise ‐ disturbance/displacement of fish, birds and mammals. 

vi. Vessel presence (displacement) ‐ access issues for other users of the sea. 

vii. Damage to infrastructure ‐ damage to cables, pipelines and Oil and Gas 

infrastructure. 

 

b. Deposition of sub‐structure foundation. The structure may require a more solid foundation 

than that provided by natural seabed conditions. Therefore a layer of rock and/or sand may 

be required to be placed underneath the structure to act as a foundation for it. The potential 

effects arising from this element of the work are likely to be: 

i. Changes to the bathymetry – effects of tides and waves. 

ii. Smothering of seabed sediment/rock ‐ effects on benthic habitat and communities, 

fish spawning habitat, fish feeding habitat, bird and mammal feeding habitat, 

archaeological sites/artefacts. 

iii. Turbidity ‐ effects on benthic habitats and communities, fish spawning habitat and 

activities, feeding success of birds and mammals. 

iv. Fine sediment deposition ‐ effects on benthic habitat and communities, fish 

spawning habitat, fish feeding habitat, bird and mammal feeding habitat. 

v. Noise ‐ disturbance/displacement of fish, birds and mammals. 

vi. Vessel presence (displacement) ‐ access issues for other users of the sea. 

vii. Damage to infrastructure ‐ damage to cables, pipelines and Oil and Gas 

infrastructure. 

   

Page 45: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

29  

5.2.2 EffectsrelatingtotheemplacementworksassociatedwiththeCGBF Figure 5.2: Effects arising as a result of emplacement  

 

 

a. Emplacement.  Placement of the CGBF on the selected and prepared site, either floated out 

to site or placed on site from a barge and backfill of the CGBF (if needed); 

i. Changes to the bathymetry – effects of tides and waves. 

ii. Removal of seabed sediment/rock ‐ effects on benthic habitat and communities, fish 

spawning habitat, fish feeding habitat, bird and mammal feeding habitat, 

archaeological sites/artefacts. 

iii. Turbidity ‐ effects on benthic habitats and communities, fish spawning habitat and 

activities, feeding success of birds and mammals. 

iv. Fine sediment deposition ‐ effects on benthic habitat and communities, fish 

spawning habitat, fish feeding habitat, bird and mammal feeding habitat. 

v. Additional habitat – effects on benthic habitat and communities, fish, bird and 

mammal feeding habitat. 

vi. Noise ‐ disturbance/displacement of fish, birds and mammals. 

vii. Vessel presence (displacement) ‐ access issues for other users of the sea. 

viii. Navigation ‐ obstruction to established shipping routes and hazard to navigation. 

Key: ActivityEffect on the 

Human Environment

Effect on the physical 

environment

Effect on the biological 

environment

Page 46: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

30  

5.2.3 EffectsassociatedwiththeremedialactivitiesrequiredbytheCGBF(ifrequired) Figure 5.3: Effects arising as a result of remedial activities 

 

 

a. Scour protection.  Placement of the scour protection around the CGBF on the seabed in the 

appropriate locations if deemed appropriate for the site; 

i. Changes to the bathymetry – effects of tides and waves. 

ii. Removal of seabed sediment ‐ effects on benthic habitat and communities, fish 

spawning habitat, fish feeding habitat, bird and mammal feeding habitat, 

archaeological sites/artefacts. 

iii. Turbidity ‐ effects on benthic habitats and communities, fish spawning habitat and 

activities, feeding success of birds and mammals. 

iv. Fine sediment deposition ‐ effects on benthic habitat and communities, fish 

spawning habitat, fish feeding habitat, bird and mammal feeding habitat. 

v. Additional habitat – effects on benthic habitat and communities, fish, bird and 

mammal feeding habitat. 

vi. Noise ‐ disturbance/displacement of fish, birds and mammals. 

vii. Vessel presence (displacement) ‐ access issues for other users of the sea. 

viii. Navigation ‐ obstruction to established shipping routes and hazard to navigation. 

Key: ActivityEffect on the 

Human Environment

Effect on the physical 

environment

Effect on the biological 

environment

Page 47: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

31  

5.2.4 EffectsrelatingtothesettlementoftheCGBFfollowingemplacement(ifappropriate)

 Figure 5.4: Effects arising as a result of settlement  

 

 

a. Settlement.  Settlement in this context is the vertical movement of the seabed, due to 

consolidation, post‐construction.  Changing seabed level following placement of the CGBF 

has the potential to cause the following effects; 

i. Changes to the bathymetry – effects of tides and waves. 

ii. Changes to the seabed sediment ‐ effects on benthic habitat and communities, fish 

spawning habitat, fish feeding habitat, bird and mammal feeding habitat, 

archaeological sites/artefacts. 

iii. Turbidity ‐ effects on benthic habitats and communities, fish spawning habitat and 

activities, feeding success of birds and mammals. 

iv. Fine sediment deposition ‐ effects on benthic habitat and communities, fish 

spawning habitat, fish feeding habitat, bird and mammal feeding habitat. 

   

Key: ActivityEffect on the 

Human Environment

Effect on the physical 

environment

Effect on the biological 

environment

Page 48: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

32  

5.2.5 EffectsofoperationoftheCGBF Figure 5.5: Effects arising as a result of operation  

 

 

a. Presence.  The presence of the CGBF permanently on site has the potential for the following 

effects; 

i. Changes to the local hydrodynamics – effects of tides and waves. 

ii. Increases in wave noise ‐ disturbance/displacement of fish, birds and mammals. 

iii. CGBF presence (displacement) ‐ access issues for other users of the sea. 

iv. Changes to stratification. 

v. Fish aggregation – the array may perform as a fish aggregation device (FAD) acting as 

a refuge for fish species. There may also be a positive effect on foraging success 

which will also attract certain fish species – both result in an increase of density of 

fish. 

vi. Ecosystem service ‘cascade’ from FAD effect resulting in attraction of apex predators 

(e.g. seals and Harbour Porpoise) – may result in changes at a sub‐population scale. 

   

Key: ActivityEffect on the 

Human Environment

Effect on the physical 

environment

Effect on the biological 

environment

Page 49: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

33  

5.2.6 EffectsassociatedwithdecommissioningoftheCGBF(ifrequired) Figure 5.6: Effects arising as a result of decommissioning 

 

 

a. Remediation. Replacement of seabed sediments following removal of CGBF may be required 

in some cases to allow full recovery to occur; 

i. Changes to the bathymetry – effects of tides and waves. 

ii. Changes to seabed sediment/rock ‐ effects on benthic habitat and communities, fish 

spawning habitat, fish feeding habitat, bird and mammal feeding habitat, 

archaeological sites/artefacts. 

iii. Turbidity ‐ effects on benthic habitats and communities, fish spawning habitat and 

activities, feeding success of birds and mammals. 

iv. Fine sediment deposition ‐ effects on benthic habitat and communities, fish 

spawning habitat, fish feeding habitat, bird and mammal feeding habitat. 

v. Noise ‐ disturbance/displacement of fish, birds and mammals. 

vi. Vessel presence (displacement) ‐ access issues for other users of the sea. 

 b. Removal of CGBF fill / ballast.  Removal of seabed sediment fill may be required to refloat 

or remove the CGBF.  If undertaken, effects of such works will include; 

Key: ActivityEffect on the 

Human Environment

Effect on the physical 

environment

Effect on the biological 

environment

Page 50: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

34  

i. Changes to the bathymetry – effects of tides and waves. 

ii. Deposition of fill sediment ‐ effects on benthic habitat and communities, fish 

spawning habitat, fish feeding habitat, bird and mammal feeding habitat, 

archaeological sites/artefacts. 

iii. Turbidity ‐ effects on benthic habitats and communities, fish spawning habitat and 

activities, feeding success of birds and mammals. 

iv. Fine sediment deposition ‐ effects on benthic habitat and communities, fish 

spawning habitat, fish feeding habitat, bird and mammal feeding habitat. 

v. Noise ‐ disturbance/displacement of fish, birds and mammals. 

vi. Vessel presence (displacement) ‐ access issues for other users of the sea. 

 

c. Removal of CGBF. The structure will need to be removed once decommissioned. This will 

involve removing/refloating the CGBF from its operational location: 

i. Changes to the local hydrodynamics – effects of tides and waves. 

ii. Changes to stratification. 

iii. Smothering of seabed sediment/rock ‐ effects on benthic habitat and communities, 

fish spawning habitat, fish feeding habitat, bird and mammal feeding habitat, 

archaeological sites/artefacts. 

iv. Turbidity ‐ effects on benthic habitats and communities, fish spawning habitat and 

activities, feeding success of birds and mammals. 

v. Fine sediment deposition ‐ effects on benthic habitat and communities, fish 

spawning habitat, fish feeding habitat, bird and mammal feeding habitat. 

vi. Fish aggregation – the array may perform as a fish aggregation device (FAD) acting as 

a refuge for fish species. There may also be a positive effect on foraging success 

which will also attract certain fish species – both result in an increase of density of 

fish. 

vii. Ecosystem service ‘cascade’ from FAD effect resulting in attraction of apex predators 

(e.g. seals and Harbour Porpoise) – may result in changes at a sub‐population scale. 

viii. Noise ‐ disturbance/displacement of fish, birds and mammals. 

ix. Vessel presence (displacement) ‐ access issues for other users of the sea. 

 

d. Removal of foundation material and/or scour protection. The foundation material and any 

scour protection emplaced may need to be removed once decommissioned. This will involve 

dredging foundation sediment or scour protection (if used) and disposing of it: 

i. Changes to the local hydrodynamics – effects of tides and waves. 

ii. Smothering of seabed sediment/rock ‐ effects on benthic habitat and communities, 

fish spawning habitat, fish feeding habitat, bird and mammal feeding habitat, 

archaeological sites/artefacts. 

iii. Turbidity ‐ effects on benthic habitats and communities, fish spawning habitat and 

activities, feeding success of birds and mammals. 

iv. Fine sediment deposition ‐ effects on benthic habitat and communities, fish 

spawning habitat, fish feeding habitat, bird and mammal feeding habitat. 

v. Noise ‐ disturbance/displacement of fish, birds and mammals. 

vi. Vessel presence (displacement) ‐ access issues for other users of the sea. 

Page 51: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

35  

vii. Damage to infrastructure ‐ damage to cables, pipelines and Oil and Gas 

infrastructure 

5.3 ConceptualisationofEffectsAs the majority of effects arising from the use of CGBFs are related to changes to the physical 

environment, it is important to model these effects to ensure that the scale and magnitude of 

effects are fully understood. The modelling methods employed will change depending upon the local 

physical conditions and array design. The section below has been written to provide guidance on the 

scope required, depending upon these factors. 

5.3.1 CoastalProcessesStudyCoastal process studies form an important part of the environmental impact assessment (EIA) for 

any type of proposed offshore development.  These studies provide the means to describe the 

physical changes that might be expected to occur in the marine environment as a consequence of a 

development, including the case of offshore windfarms. 

The detailed requirements for a coastal process study related to an offshore windfarm are both site 

specific and project specific, however, there are now several publications that offer guidelines for 

the main issues of interest and describe appropriate means for investigation, including the use of 

numerical modelling. 

Chapter 4.7 of Guidelines for data acquisition to support marine environmental assessments for 

offshore renewable energy projects (Cefas, 2011), provides generic requirements for physical and 

sedimentary process studies.  This guidance also refers directly to approaches for physical process 

modelling developed for COWRIE (Lambkin et al, 2009).  These documents provide as a useful 

reference framework for establishing the requirement for EIA for offshore windfarms. 

In general terms, the two main themes of interest related to effects of offshore wind development 

on coastal processes can be summarised into: 

(i) Sediment disturbance issues during construction (and decommissioning) phase; and (ii) Blockage effects during operational phase. 

 The scales of effects related to these issues inherently vary between projects and due to differences 

in foundation types, array layouts and local environmental conditions.  The local environmental 

conditions also determine the design requirements for these installations in relation to maximising 

energy yield, indicating preferred foundation type as well as being used to derive loadings as part of 

foundation design. 

At the pre‐consent stage it remains important for a developer to retain sufficient flexibility in project 

design and not to submit an application with overly specific descriptions of turbine and foundation 

type or layout that subsequently constrain the (post‐consent) final design and build contracting.  

Instead it is preferred to describe a range of feasible options for the project and document an 

outline design in a Project Design Statement (PDS) (see Section 5.3.2 below).  The environmental 

assessment is then undertaken by considering the realistic worst case scenario (for a specific type of 

impact and receptor sensitivity) from across the range of options which the developer wishes their 

project to be considered.  The premise here is that if consent can be gained for the realistic worst 

Page 52: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

36  

case then by default all lesser options must also be suitable for consent.  This approach has now 

become the expected norm for offshore wind projects and is generally referred to as the Rochdale 

Envelope (DECC, 2011b). 

For Round 2 and Round 3 of offshore wind development in the UK there has been a greater 

tendency to include gravity base foundations as one of the foundation options, whereas in Round 1 

(smaller arrays in shallower water) the main option considered was commonly the monopile case.  

There are many reasons why gravity bases have been proposed for Round 3; but the main factor is 

that the new sites are further offshore and in deeper water, making it potentially more cost effective 

to use gravity bases, compared with larger monopiles with thicker walls required for deep water use. 

5.3.2 ProjectDesignStatementA Project Design Statement (PDS) provides, amongst other details, the outline engineering 

description for the full range of options to be considered for consent and which achieves the target 

generating capacity for the project.  A primary parameter for the PDS is the choice of turbine unit.  

Here, it is typical that a range of turbine rating capacities is offered with higher capacity units 

requiring larger rotor diameters which then influence the necessary spacing between units, the 

number of units and hence the overall layout.  It is also the case that the new generation of larger 

turbines will require larger foundations to withstand a larger overturning moment.  The choice of 

foundation type may also vary from monopile, steel jacket (e.g. tripod or multiple) or gravity base 

depending on site location and sea bed conditions. 

The number of possible permutations of layouts and foundation types make it impractical for the EIA 

to consider every one.  Instead, the Rochdale Envelope approach is applied.  The PDS is reviewed to 

determine those combinations of design choices which are likely to represent the realistic worst case 

in terms of a specific environmental impact.  The premise is that if the scale of this impact is not 

considered significant and be suitable for consent then all other combinations (which are regarded 

to be less than the realistic worst case option) should be permitted for consent. 

When considerations are offered on sediment disturbance and blockage related issues the gravity 

base option is often selected as the realistic worst foundation case.  The main reasons that this 

occurs is that, relative to other foundation types, the gravity base option is likely to be larger in scale 

through the water column (implying greater blockage) and requires a wider footprint on the seabed, 

in‐part due to the presumption that seabed preparation is always required e.g. levelling and 

foundation pit excavation (implying the potential for greater volumes of sediment disturbance).  This 

premise is consistent with Hammer et al. (2010), however is should be noted that some proven CGBF 

designs do fall below the thresholds and envelopes presented in Hammer et al. (2010).  Therefore, 

as detailed in this report, CGBFs do not realistically represent the worst case scenarios in all 

instances and certainly when considering underwater noise effects they are the most favourable 

proven foundation design to mitigate these impacts. 

 

Page 53: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

37  

6 PhysicalReceptors

6.1 Introduction:AimsandScopeThe future use of CGBFs is likely to be related to the Round 3 offshore windfarm developments.  

These are typically further offshore than those existing and proposed Round 1 and 2 developments.  

This section will bring together available information in order to describe the physical receptors and 

likely impacts associated with each stage of CGBF deployment, lifespan and decommissioning.  Focus 

will be given to the scale of effects likely from a single CGBF and particular consideration given to 

these effects in relation to monopile solutions.  Other foundation solutions will also be discussed, 

where data are available. 

6.2 PhysicalReceptorsThe placement of CGBFs in the offshore environment has the potential to cause both direct effects 

to physical receptors (e.g. by ground preparation (if required) and placement) and indirect effects 

(through modifications to the hydrodynamics and associated changes to sediment transport e.g. 

scour). 

Along with the relevant EIA guidelines, regulatory bodies are seeking developers to demonstrate an 

evidence based approach to underpin their applications for consent.  A number of relevant reviews 

are now available that present existing evidence related to monitoring the effects of offshore 

windfarms during construction and early stages of operation, both for the UK sites (Cooper et al., 

2008; Carroll et al., 2009; and Cefas, 2010), and also from elsewhere in Europe (Van de Eynde et al., 

2010). 

At the present time the majority of evidence relates to early UK Round 1 and 2 projects.  So far the 

majority of projects have opted for monopile foundations and it is the pre‐construction, construction 

and post‐construction environmental monitoring from these projects that forms the core of the 

evidence base. Notable exceptions which have used steel jacket foundations are the Ormonde 

Offshore Windfarm and Beatrice Demonstration Site in the UK; Alpha Ventus and BARD Offshore 1 in 

Germany; and Thornton Bank in Belgium, utilising or part‐utilising these solutions. 

There are no operating UK offshore windfarms yet where gravity bases have been used and the 

evidence base for this foundation type is presently limited to other examples around Europe.  The 

best example to date is Thornton Bank, Belgium, where consent was granted for a 300MW offshore 

scheme. Phase 1 of this project has installed a single row of six concrete gravity base structures, 

whereas Phase 2 and 3 of the project are now using steel jacket foundations.  At present, the 

monitoring evidence from this project appears to mainly relate to ecological parameters rather than 

any measures of physical processes. 

Currently, the evidence base for large arrays of gravity base, steel jacket, tripod, or caisson 

structures remains poor by comparison to projects using monopiles. Noting also that monopile 

projects remain relatively small, are located closer to the coast and are generally in shallower water.  

In the absence of direct monitoring evidence of physical change the substitute evidence remains 

largely based on theory.  Here too, the understanding of fluid dynamics is strongest for small 

cylinders (e.g. monopiles) rather than complex or larger shapes (e.g. multi‐piles or gravity bases). It is 

Page 54: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

38  

evident that each CGBF solution design will have to consider modelling for a single foundation 

structure to enable a better understanding of the specific interactions associated with its design. 

This research and development has already been conducted by some of the solution providers, for 

their designs considered within this report. 

The existing evidence can, however, be used to identify three overarching physical receptor groups 

that can potentially be affected by the foreseeable effects of CGBFs (see Section 5.2 and the flow 

diagrams presented therein): 

Water column; 

Sub‐seabed geology; and 

Sediments regime. 

6.2.1 WaterColumnAny structure placed in the marine environment can cause blockage effect.  In the context of 

offshore wind developments, blockage effects relate to the action of the structure’s cross‐sectional 

area placed in the water column blocking the normal passage of flows, waves and sediment 

pathways and occur following completion of the construction phase and during the operational 

phase.  The duration of this phase is generally between 25 to 50 years and accounts for the major 

part of the lease period.  As such, blockage issues need to consider the long‐term persistence of 

these effects, noting that these effects stem from multiple locations within the array at the scale of 

each structure.  This scale is termed the near‐field. 

Blockage effects for a windfarm vary as a function of the number of units, the scale and shape of 

each unit, their spacing (cross‐wind and down‐wind) across the array and with respect to the 

orientation or path of each process being blocked (e.g. wave direction).  A large cross‐sectional area 

single unit will generally lead to more interference than a smaller cross‐sectional area unit, but a 

project that is considering options with a small number of large units or a large number of small 

units may have different levels of blockage when added together, and it is not always immediately 

obvious which option has the greater cross‐sectional area blockage cumulatively for the array. 

If blockage can be parameterised at the simplest level as the proportional volume that a group of 

structures will occupy relative to the volume of water across an array then it is possible to contrast, 

at a high‐level, between foundation types and layouts.  For all currently known cases this relative 

blockage value is extremely small (<<0.1%, i.e. the proportion of water volume in the site taken up 

by all structures is much smaller than 0.1%).  Of the current commercially viable foundation types 

some of the gravity base and suction caisson options are largest and the monopile option smallest; 

floating platforms will have the least blockage effect but this technology is unlikely to be 

economically proven or available at the scale required, or in time, for Round 3 projects.  Between 

typically considered gravity base options a flat base foundation almost level with the sea bed has a 

smaller blockage effect relative to a conical foundation for the same turbine. 

ChangesinWaveConditionsWave‐induced seabed stress is an important driver of seabed sediment transport around much of 

the coastline of the United Kingdom.  Lambkin et al. (2009) indicate that if turbine foundations 

significantly affect the magnitude or direction of wave energy exiting the offshore windfarm site, 

then there is the potential for an indirect impact on sensitive receptors e.g. the stability of sandbank 

Page 55: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

39  

systems (Section 6.2.3); scour at the seabed immediately surrounding the turbine location (Section 

6.2.3); littoral sediment transport rates at the coastline (Section 6.2.3); or on organisms adapted to a 

particular sediment habitat type or wave‐dominated environment (Section 7.2.2). It should be 

noted, however, that wave effects on the seabed in deeper offshore waters are relatively small 

compared with the shallower UK Round 1 and Round 2 sites. 

The impact of monopiles on the wave climate has been investigated by Cefas (2005) who used radar 

to monitor wave conditions inshore of the Scroby Sands windfarm. This study found that no 

constructive or destructive waves were measurable in the lee of the windfarm, however it should be 

noted that the wave conditions during the survey were small when compared with longer‐term 

regional data (i.e. no storm wave activity occurred during the survey).  Associated modelling carried 

out as part of the study showed reductions in significant wave height of 3%, with a relatively small 

impact zone (typically to background levels within of 2‐3 turbine spacings), and the majority of wave 

changes occurring within the licence boundary of the windfarm. 

This research was specific to monopile foundations, and Cefas (2005) noted that different 

foundation types may produce different impacts. Cefas (2005) also indicated, however, that while 

CGBFs generally have more total cross‐sectional area than a monopile much of this is at the seabed, 

and the cross‐sectional areas at the sea surface are similar in both cases. Cefas (2005) therefore 

concluded that as wave orbital motions are largest at the surface, CGBFs will tend to have similar 

impacts on wave energy to monopiles, if the cross sectional areas at the sea surface are similar. 

Empirical evidence for the effects of CGBFs on wave climate is currently poor, however initial 

monitoring results from the six CGBFs at the Thornton Bank Offshore Windfarm are available 

(Degraer and Brabant, 2009; Degraer et al., 2010).  These data appear to indicate no significant 

alteration to the hydrodynamics in the first two years of monitoring.  No monitoring results from the 

jacket foundations at the Beatrice Demonstration Site and Ormonde Offshore Windfarm are 

available, but the Environmental Statements for these developments indicate little impact of these 

structures on the hydrodynamics (Eclipse Energy Company Limited, 2005; Talisman Energy, 2005). 

In addition Lambkin et al. (2009) indicate that since Round 3 sites will tend towards intermediate or 

deeper water depths where wave action will reach the seabed less frequently and have a less 

dominant effect. Lambkin et al. (2009) does also indicate, however, that some examples of deep but 

wave‐dominated sites do exist, e.g. the Celtic Sea, where observed bedforms are aligned to the 

dominant storm fetch, rather than the tidal axis; and therefore gravity base structures in Round 3 

environments might have the potential to cause wave diffraction effects. 

All foundation types, including CGBFs, will have a negligible effect on wave climate during 

construction, with these effects relating principally to the legs of jack‐ups used to install the 

monopiles, or anchoring of installation vessels. Waves will be affected by sheltering, diffraction and 

refraction around the turbine foundations during the operational phase for all foundation types. 

Decommissioning of CGBFs, suction caisson and possibly floating platforms involves complete 

removal of the structure and following decommissioning there will be no further impacts of the 

foundation structure (NB: it is currently unknown if complete removal of anchor piles used with 

large‐scale floating platforms is achievable). The removal of monopiles, steel jackets and tripods may 

leave some part of the structure above the seabed, and whilst the majority of wave action will not 

Page 56: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

40  

reach the seabed there may be potential for these structures to have a low level of impact on wave 

climate following decommissioning. 

ChangesinTidalCurrentsTidal currents are an important control on sediment transport in many coastal and offshore areas 

around the UK, and tidal characteristics are summarised in the Atlas of UK Marine Renewable Energy 

Resource (BERR, 2008).  Lambkin et al. (2009) indicate that if turbine foundations significantly affect 

the magnitude or direction of tidal currents exiting the offshore windfarm site, then there is the 

potential for an indirect impact on sensitive receptors e.g. sediment transport onto sandbank 

systems (Section 6.2.3) and the coastline (Section 6.2.3); or where sediment changes affect 

organisms adapted to a particular sediment types (Section 7.2.2). 

Previous research (ETSU, 2002; ABPmer, 2005; reported in Lambkin et al., 2009) has shown that the 

effect of monopiles on tidal currents is likely to be minimal. The effect of the monopile on the tidal 

flow is to generate a wake around each pile. The piles cause a bifurcation of flow, with flows 

accelerating around the edge of each pile, and a reduction in flow velocity directly in the lee of each 

pile. Other than in the immediate vicinity of the monopiles modification of tidal currents does not 

occur (Cooper, 2010). 

Empirical evidence for the effects of CGBFs on tidal currents is currently poor, due to the small 

number of CGBFs currently deployed in offshore windfarm sites.  Initial monitoring results from the 

six CGBFs at the Thornton Bank Offshore Windfarm are available (Degraer and Brabant, 2009; 

Degraer et al., 2010) and these indicate no significant alteration to the hydrodynamics in the first 

two years of monitoring.  These reports do, however, acknowledge that uncertainties still exist on 

the possible effects on the hydrodynamics and morphodynamics in the area, and further monitoring 

is required. 

All foundation types will have a negligible effect on tidal currents during construction, with effects 

relating principally to the legs of jack‐ups used to install the monopiles, or anchoring of installation 

vessels. Tidal currents may be affected by the turbine foundations during the operational phase of 

all foundation types including CGBFs. Decommissioning of CGBFs, suction caisson and possibly 

floating platforms involves complete removal of the structure and following decommissioning there 

will be no further impacts on tidal currents (NB: it is currently unknown if complete removal of 

anchor piles used with large scale floating platforms is achievable). The removal of monopiles, steel 

jackets and tripods may leave some part of the structure above the seabed, and in this case there 

may be ongoing potential for these structures to have an impact on tidal flows following 

decommissioning. 

ModellingWaterColumnEffectsCooper and Beiboer (2002) highlight the potential blockage effects on flows and waves and with 

particular attention given to the monopile case anticipated for Round 1.  Where slender pile theory 

remains applicable then drag and inertia forces can be considered as the primary means of scaling 

blockage effects on oscillating flows and through the use of expressions such as Morison’s Equation 

(this expression assumes the forces apply equally around the slender pile and so diffraction forces 

which might vary around a larger structure are not considered).  This calculation remains an 

Page 57: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

41  

important step in parameterising the near‐field term which can then be included in a larger scale 

coastal process models to investigate both near and far‐field issues. 

Coastal process models do not explicitly allow for the effects of small structures or of complex 

shapes and neither do they resolve ambient turbulence or the additional turbulence that might be 

contained in any wake formed in the lee of a structure.  Rather, these models resolve the changes in 

the mean flow or phase averaged wave, and often in 2D, by parameterising (up‐scaling) at a sub‐grid 

level the ‘effects’ of structures.  Typically, the parameterisation simply adds additional friction in the 

correct proportions. 

Here, the resolution of the model needs to be considered with care as sub‐grid parameterisation 

infers the scale of effect is minor in relation to the process being affected over the resolution of the 

model at this point.  It is also the case that a coarse scale model will diffuse the effect more rapidly 

than might occur in practice. 

Given these simplifications the application of coastal process models is still considered acceptable 

when the objective of the models is to quantify the overall effect of the windfarm array which may 

extend beyond the site boundary and across the wider area (far‐field).   

Where the consenting process has needed to manage an uncertainty in the assessment of effects, 

such as those based on models applied in this way, then monitoring has previously been applied as a 

licence condition to help validate the EIA.  There are now examples which demonstrate the sub‐grid 

parameterisation is sufficient to describe the scale of reductions in the mean flow in the lee of 

monopile foundations.  As yet this evidence has not extended to gravity base cases. 

For very large or complex structures the limits of slender pile theory might be exceeded and 

variations of flow will occur around a structure and waves may become diffracted.   At this scale the 

structure should ideally be resolved in the model or alternate near‐field parameterisation 

considered based on detailed computational fluid dynamics (CFD) type models.  

At the array scale, the combination of frictional effects can be anticipated to slow mean current 

speeds within and behind (downstream of) the array in conjunction with a marginal increase in 

speed around the sides of the array.  The magnitude of these effects is typically found to be largely 

indistinguishable in the field and not practical to measure. 

Wave interaction with a structure is more complex and depends on the scale and shape of the 

structure (which may vary over depth) and relative to the incident wave length.  Wave interactions 

with an individual structure include reflection, scattering and diffraction effects, and the waves 

which are in contact with the structure are also affected by frictional drag forces.  For very long 

period waves, the gap between structures can also become relevant to diffraction.  Ultimately, these 

interactions at the array scale can lead to losses in wave energy in the lee of the windfarm and most 

often by affecting shorter period waves.  These losses also tend to dissipate quickly such that 

patterns of wave energy at the coast are not measurably affected.  The research project A1227 

(Cefas, 2005) attempted to monitor the change in wave behaviour in the lee of the Scroby Sands 

offshore windfarm (comprising 30 monopiles placed on the sandbank) with a wave radar, but results 

were inconclusive and did not reveal any noticeable features that were attributed to the windfarm.  

Rather, it was the sandbank of the same name which dominated the local wave behaviour. 

Page 58: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

42  

Coastal process models may include a variety of approaches to simulate wave climate and 

behaviour.  A phase‐average wave model is typically used for EIA in order to cover the large areas 

involved; extending from offshore boundaries, across the array and up to the coast with a sufficient 

extent to capture different effects from different wave directions.  However, these types of wave 

model are not appropriate for examining near‐field wave modifications around individual foundation 

units, especially where diffraction effects are considered to be important.  In this case a more 

detailed local phase resolving model is likely to be needed, but these types of model are also limited 

to small areas.  Good practice is to use the local scale model for near‐field considerations and up‐

scale these effects to the larger scale coastal models which can then investigate the far‐field effects.  

Considering the distances for some of the Round 3 zones from the coast then coastal impact studies 

are expected to yield negligible to low effects. However, for the reasons described above, there will 

be a requirement to conduct these studies as part of the project‐specific EIA considering the lack of 

data available to date for design‐specific models; especially at a cumulative array scale. 

6.2.2 Sub‐seabedGeologyThe sub‐seabed geology of an offshore windfarm site is controlled by the conditions that previously 

existed within the site, often over millions of years. Typically in offshore windfarm Environmental 

Statements the sub‐seabed geology is described in terms of the Quaternary deposits (i.e. those laid 

down during the Quaternary period – approximately 2.588 million years ago to the present); and the 

pre‐Quaternary bedrock.  The Quaternary period was characterised by repeated glaciations and 

major sea level transgressions and regressions; and also represents the period when early human 

first appeared. Quaternary deposits therefore have a potential archaeological value, and impacts on 

these units may have an effect on cultural heritage which will be discussed further in Section 8.6 of 

this report.   

Purely from a physical receptor standpoint different rock types will have different geotechnical 

properties and may require different engineering solutions.  Of particular importance for this report 

is the scale of the direct effects on sub‐seabed geology associated with the CGBF when compared 

with alternative solutions such as a suction caisson, steel jackets, tripods and monopiles.  

The most commonly used foundation type for offshore windfarms in Europe and the UK is currently 

the steel monopile, and is generally engineered for use in water depths of 30m or less, and to date 

only fitted with maximum 3.6MW turbines. Monopiles do not generally require any seabed 

preparation, such as levelling or excavation.  The monopile typically penetrates the seabed by up to 

50m, and installation is usually undertaken by using a hydraulic hammer to drive the piles into place. 

Seabed drilling may be used as an alternative; however this is dependent on local ground conditions. 

Installation of a monopile therefore has a direct effect on the sub‐seabed geology to a maximum 

depth of approximately 50m below the seabed surface. Assuming a monopile shaft diameter of 5‐8m 

and seabed penetration of 50 m, an estimated volume of approximately 980‐2,513 m3 of sub‐seabed 

geology will be directly affected by a single monopile. Piles associated with steel jackets and tripods 

(and floating platforms) have 3 or 4 piles of smaller diameters (approximately 3 m) and penetrate to 

depths greater than 50 m (60 m cited in RPS Energy and RWE NPower Renewable (2011)). 

CGBFs may require some seabed preparation prior to installation, involving dredging or grab 

excavation of the seabed to reach the required load bearing strata; and also to provide a level 

surface for the CGBF. Estimates of the volumes of material removed can be made using information 

Page 59: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

43  

provided in Table 6.1, which suggests that the footprint of a CGBF at the seabed might vary between 

approximately 1,150 m2 and 1,386 m2.  Assuming the material being levelled to a depth of two 

metres to accommodate the gravity base structure, and assuming that the levelling removes sub‐

seabed material only (i.e. no seabed sediments), then estimated volumes of 2,300‐2,772 m3 of sub‐

seabed geology will be directly affected by a single CGBF.  The exact volumes and excavation depths, 

however, will depend entirely on each turbine’s location and the depth of load bearing strata, as 

with any large building or structure constructed either onshore or offshore. 

These impacts to the sub‐seabed geology occur at construction for all foundations types to varying 

degrees with the possible exception of floating platforms if surface anchors rather than piles are 

used, and no further sub‐seabed effects would be expected during maintenance and 

decommissioning. The receptor will not recover following decommissioning, and the effects are 

therefore permanent. It should be noted, however, that the sub‐seabed geology is not a sensitive 

receptor and the impacts are likely to have a negligible significance, unless that geological sequence 

has an additional cultural value or geological rarity (Section 8.6). 

6.2.3 SedimentRegimeSeabed sediments can be affected directly by the placement of structures on the seabed, and 

indirectly by changes to sediment transport as a result of hydrodynamic alteration.  Offshore wind 

developments may include installation of foundation units at multiple locations, and a large project 

comprising hundreds of turbines may produce effects on the sediment regime over many years.   

The environmental risks associated with changes to the sediment regime depend on the proximity 

and sensitivity of marine receptors and these risks may be heightened where there are 

contaminants contained in the disturbed sediments. 

DirectEffectsonSeabedSedimentsMonopiles, steel jackets, tripods and floating platforms do not generally require any seabed 

preparation, such as levelling or excavation, prior to piling, therefore their direct effect on the 

seabed sediment is restricted to footprint of each pile itself – typically 5‐8m in diameter for a 

monopile and 2.5‐4m for each pile used with a steel jacket or tripod foundation (NB: the total 

cumulative value for an individual steel jacket foundation will be 3‐4 times the value of each pile per 

‘foot’; and for a tripod it will be 3 times the value of each pile per foot). 

In addition, this direct impact zone for foundations is extended, in those areas where scour 

protection is put in place.  Scour is the progressive lowering of the seabed around a structure, in 

response to changing hydrodynamics driven by the presence of the installation (Whitehouse, 1998). 

Scour pits can jeopardise the integrity of a structure and increase sediment transport (DECC, 2008) 

and scour protection is often put in place to resist the locally enhanced flow and turbulence around 

the structure (Whitehouse et al., 2011b). 

Scour protection types include rock armour placed on the seabed around the foundation; 

sandbags/geotextile bags placed on the seabed around the foundation; concrete mattresses placed 

on the seabed around the foundation; or frond mats placed on top of concrete mattresses or 

anchored directly to the seabed around the foundation (DECC, 2008). Scour protection typically, 

therefore, changes the seabed sediments from easily erodible sediments (e.g. fine grained sand) to 

Page 60: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

44  

rock substrate.  The scour protection in place around monopiles and CGBFs is therefore a direct 

impact on the seabed sediment type.   

The Triton Knoll ES has presented indicative scour protection parameters for various foundation 

solutions at their site and the data is presented in Table 6.1 below.  

Table 6.1: Indicative scour protection parameters for individual turbine locations (excluding foundation area take) (adapted from RPS Energy and RWE NPower Renewable, 2011). 

Concept  3.6MW  5MW  8MW 

  Area of seabed cover per location (excluding foundation area) in m2

Steel monopile  1,636  1,791  1,791 

CGBF  1,414  1,571  1,723 

Steel jacket (piled)     274     274     431 

Tripod (piled)     771     771  1,341 

Suction caisson  1,100     943  1,495 

 These data show that greater amounts of scour protection were suggested as necessary for 

monopile foundations compared with a CGBF, however these values exclude the foundation area 

itself.  

RPS Energy and RWE NPower Renewable (2011) indicate that for the 5MW turbine the steel 

monopile would be 8.5m in diameter, while the 5MW CGBF would require a 40m diameter 

foundation and a 5MW suction caisson would be 22m.  The values in Table 6.1 can therefore be 

adjusted, to calculate the total area of direct impact of seabed sediment, of combined footprint and 

scour protection for monopiles and CGBFs (Table 6.2). 

Table 6.2: Total seabed area directly lost to a combination of foundation and scour protection required for a 5MW turbine (adapted from RPS Energy and RWE NPower Renewable, 2011). 

Concept  5MW 

  Foundation footprint (m2) 

Scour protection (m2)  Total area (m2) 

Steel monopile       57  1,791  1,848 

CGBF  1,257  1,571  2,828 

Steel Jacket (piled)       57     274     331 

Tripod (piled)     305     771  1,076 

Suction caisson     380     943  1,323 

 

Armoured scour protection has also been installed around the CGBFs of the Thornton Bank OWF, 

Belgium. The maximum diameter of the scour protection layer is reported as 62.5m, which equates 

to a seabed area affected of 3,068m2 (Peire et al., 2009). 

These direct impacts on the seabed sediment of the placement of foundations and, potentially, 

scour protection would occur at construction for all foundation types with the possible exception of 

floating platforms, and would persist during the operation of the OWF.  Following decommissioning 

the foundation and scour protection could be removed (indeed this may be a requirement of the 

consent for the project) and there is potential to return the seabed sediment to its pre‐installation 

Page 61: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

45  

state. However, the efficacy of removing scour material from the seabed has yet to be proven for 

offshore windfarm developments (MMO, pers. comm.). 

IndirectEffectsonSedimentTransportThe indirect effects on seabed sediments will be those which occur as a result of hydrodynamic 

changes set up as a result of the presence of a structure in the water column, or because of other 

alterations to the seabed causing a far‐field effect, namely: 

Scour; 

Sediment plumes; and  

Alteration of sediment transport pathways. 

If these effects overlap with sensitive features, such as subtidal sandbanks or the coastline, then 

impacts on these features may occur. 

ScourScouring results from the interaction between ambient flows and waves and a blockage posed by 

structures at the seabed.  These interactions generate flow accelerations and turbulence which can 

lead to locally enhanced sediment transport and local erosion around the base of a foundation, i.e. 

scour. Scouring initiates as soon as the foundation is in place and continues until an equilibrium 

profile is achieved (Whitehouse et al., 2011b). 

Where the seabed is comprised of stiff clay or bedrock, or there is a superficial layer of sediment 

overlying clay or bedrock; or where the wave and current conditions are not generally strong enough 

to cause the seabed sediment to be naturally mobile, scour will be slow or limited.  In environments 

where scour is likely to occur, however, (i.e. areas of mobile sediment or easily erodible sub‐seabed 

geology), scour is likely to occur if no protection is included in the scheme design.  

Scour has the potential effect of changing the seabed sediment type at the point of scour, as well as 

creating a local source of sediment.  It is therefore common that the issue is discussed as part of the 

sediment disturbance effects related to the construction phase.  Whilst scouring might be allowed 

for in the case of a monopile design (i.e. no scour protection is offered in some cases), it remains 

unlikely that any gravity base, steel jacket, tripod or suction caisson can be considered on a live bed 

without the use of scour protection. Indeed guidance published by DNV (2007) states that gravity 

base foundations will “for all locations require some form of scour protection, the extent of which is 

to be determined during detailed design.” 

The dimensions and rate of scouring depend on the scale and shape of the structure and the 

properties of the soil (Whitehouse et al., 2011b).  Scour pits may be significant morphological 

features and laboratory derived predictive formulae exist for estimating the depth of scour around 

cylindrical features (e.g. monopiles). These suggest that the current induced scour depth S, relative 

to the cylinder diameter D, varies between S/D = 1.3 (DNV, 2004) and S/D = 1.75 (den Boon et al., 

2004).  A review of data from monopiles at five offshore windfarm sites (DECC, 2008) indicated a 

maximum depth of scour observed to be S/D = 1.38, at the Scroby Sands OWF, UK. Whitehouse et al. 

(2011b) reports that it is usually assumed that a reduction in relative scour depth occurs when the 

water depth falls below three to five times the pile diameter. 

Page 62: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

46  

Monitoring of the scour pit evolution at Scroby Sands has shown the pits to reach 5m in depth and 

100m in diameter (OSPAR Commission, 2006). Scour pits of this diameter affect approximately 

7,854m2 of sea bed.  This is significantly greater than the values indicated in Table 6.2 for a CGBF 

with scour protection (if used). 

There is also some evidence for development of secondary scouring effects away from the 

foundation unit (e.g. observed scour tails at Scroby Sands OWF, Cooper et al. (2008)).  The 

mechanisms creating these effects are not well understood and were not predicted by the EIA.   

Scouring around slender piles tends to be fairly symmetrical in form, whereas scour around gravity 

bases may tend to occur at discrete locations around the base, especially if the gravity base has a 

complex shape or abrupt corners. Whitehouse (2004) reports the results of laboratory‐based testing 

which indicated that a conical structure produced deeper scour than a flat topped structure, for the 

same forcing conditions. 

SedimentPlumesSediment plumes are generated when sediment is introduced into the water column and 

subsequently transported by the local and regional hydrodynamics. 

Sediment plumes may be generated during the construction phase of OWFs by: 

Resuspension of bed sediment through bed preparation (dredging) if required;  

Interaction with the seabed of construction equipment;  

Piling/drilling for monopiles;  

Emplacement of foundations;  

Backfill and ballasting of CGBFs (if required); and  

Emplacement of scour protection (if used).  

Further sediment resuspension may be generated during the operational phase by alteration of 

hydrodynamics – particularly if scour of the seabed occurs. Finally, further sediment plumes will be 

generated during the decommissioning process, as infrastructure is removed from the seabed. 

Any interactions between equipment, OWF infrastructure, or scour protection material (if deployed) 

with the seabed will result in local resuspension of sediment. Any sediment released into the water 

column will be dispersed laterally and vertically by waves, tides and gravitational settling, and 

transported by tidal currents as a sediment plume. The extent of the plume is largely controlled by 

the amount of sediment re‐suspended, the grain size of the released sediment, and the local 

hydrodynamic regime. Large particles will settle quickly to the seabed, with finer particles potentially 

travelling further. When particles settle back to the seabed they have the potential to change the 

local baseline seabed sediment composition. 

The processes by which sediment is introduced into the water column during marine dredging 

operations are well understood, and described in detail in Appendix E of this report.  In summary, 

however, sediment is released by dredging into the water column via the following routes (Tillin et 

al., 2010):  

The physical disturbance of seabed sediments by the drag head;  

Page 63: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

47  

From the dredger overflow, whilst the vessel is loading; and  

Deliberate screening of the dredged material, although this mechanism is unlikely during 

seabed preparation works, and where screening is not used, the plume effects may be 

confined to the dredge area (Newell et al., 2004; Tillin et al., 2010).  

Significant dredging for bed preparation would not be expected for monopile wind turbines, 

however CGBFs will often require some measure of bed preparation before deployment to ensure a 

stable and level installation and include a prepared seabed of gravel beds and filter layers to spread 

the load evenly and to protect the structure from scour.  Some soils may also be unsuitable for 

gravity base solutions (e.g. clays which may deform unevenly under load).   

Where a large diameter base is considered and the area for scour protection may also need to be 

prepared, then levelling may be required over a more extensive area of the seabed.  As an example 

(which may not be appropriate at all sites); extensive seabed dredging occurred as part of the 

Thornton Bank OWF deployment, where six foundation pits were dredged and involved levelling 

over an area of 50m by 80m and to a depth of 7m below the normal seabed level.  Peire et al. (2009) 

reported that, on average, approximately 90,000m3 of sediment was dredged for each site, noting 

that the actual volume of material removed from each turbine location also varied as a function of 

local sand waves.  

If required, the dredging for ground preparation for CGBFs differs from standard marine aggregate 

dredging in that the sediments dredged as part of the ground preparation may be retained within 

the development area or on barges and later reused as fill and/or ballast material.  The Thornton 

Bank development provides an example of this, where the dredged sediments were deposited 

within the footprint of the OWF area and later re‐dredged to supply ballast material for the CGBFs 

and backfill material to restore the foundation pits to reference seabed levels (Peire et al., 2009). 

Each of these activities will generate a sediment plume, extending the impact footprint of the 

ground preparation, and increasing the potential to affect the baseline seabed sediment type 

through settling of plume sediments along the local and regional transport paths.  

Comparison can be made with sediment plumes generated by monopile installation techniques, 

which typically involve pile driving or drilling.  During piling monopiles are driven into the seabed 

from a jack‐up barge using a hydraulic hammer, and this method is preferred where the seabed is 

sufficiently soft to allow pile penetration, as it is quicker and more efficient (Centrica Energy Ltd, 

2010). Drilling is used where the rock or soil is hard, and piling is not feasible.  Drilled piles create 

arisings which might potentially be equivalent to the full depth of the pile, which for large monopiles 

could be in excess of 50m soil depth and diameters greater than 7m.  The type of sediment may vary 

over depth with soil stratigraphy and drilling methods.   

Preliminary information for the Triton Knoll EIA (RPS Energy and RWE NPower Renewable, 2011) 

indicates that for a single steel monopile a volume of sediment of between 1,925 and 2,838m3 

would be generated as a result of installation.  

Piles used to situate steel jackets and tripods may also conceivably need drilling if the sub‐surface 

geology necessitates this. It is expected that the drill arisings will be smaller in volumes per ‘foot’ 

due to the smaller diameter of the pile. However, consideration to the total volume of such arisings 

is needed when considering the cumulative effect of 3‐4 arisings per foundation structure. RPS 

Page 64: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

48  

Energy and RWE NPower Renewable (2011) predicted total spoil arisings (for a 5MW turbine 

scenario) per foundation as 1,166m3for a tripod and 1,697m3 for a steel jacket. The figure for a 

concrete gravity base was cited as 7,389m3 and 2,268m3 for a suction caisson foundation. 

Management of the drill arisings may include direct discharge onto the seabed or collecting the 

material in a barge before agreed disposal elsewhere at sea (usually a licensed disposal site).  

Arisings as a result of drilling of chalk have tended to be a focus of interest for nature conservation 

bodies and are discussed further in Section 7.7. 

AlterationofSedimentTransportPathwaysIt may be necessary, as part of an EIA, to demonstrate that any natural sediment transport that 

occurs through the OWF area is not disrupted as a result of the development, particularly if 

sediment transport pathways feed offshore sandbanks or the coastline. 

A large number of studies have been conducted during the past decades investigating sediment 

transport around the UK shelf.  These range from site‐specific studies undertaken to investigate the 

results of marine aggregate dredging to larger scale regional sediment transport mapping (e.g. 

Kenyon and Stride, 1970, HR Wallingford et al., 2002).  

In UK Round 3 sites CGBFs are likely to be deployed in water depths greater than 30m, where bed 

sediments are unlikely to be mobile except under extreme wave and tidal conditions.  There is 

therefore a reduced possibility that CGBFs, suction caissons, steel jackets and tripods will interfere 

with natural sediment transport pathways when compared with structures placed in shallower 

water.  In addition, as the UK Round 3 sites are located further offshore than Round 1 and 2 sites, 

the possibility of effects generated by Round 3 sites interacting with the coastline is much less likely. 

ModellingSedimentRegimeEffectsCoastal process models can help understand the fate of disturbed sediments and appraise the likely 

temporary and localised increases to suspended sediment concentrations through the water column 

(e.g. to inform risk of interference to pelagic or benthic receptors) and identify the locations and 

levels for any subsequent deposition (e.g. to inform risk of smothering of benthic receptors).  The 

construction details required to quantify sediment inputs is defined by the PDS and the 

environmental data from the baseline surveys (e.g. geophysical and benthic surveys, in particular).  

Nevertheless, certain assumptions will always be necessary when defining some model inputs and in 

the fundamental design of the models themselves which may, in turn, introduce additional 

uncertainties.  These uncertainties can be managed by a combination of sensitivity analysis and 

retaining a conservative approach. 

The scouring process is not described in a coastal process model directly; rather standard empirical 

tools are used to define the likely degree of scour at equilibrium and these estimates are then 

applied to the model as potential source terms for any sediment disturbance issues if scour 

protection is not offered in the design. 

Blockage effects also have the potential to alter a sediment transport pathway due to modifications 

to wave and tidal processes which drive the transport process along the pathway.  Consequently, the 

greater the scale of change to waves and currents the greater there is a potential to modify a 

sediment pathway affected by these changes.  It may be the case that a highly modified pathway is 

Page 65: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

49  

not sensitive to such changes if no sediment is available to move along the path; similarly, a small 

change to an active pathway onto a designated feature (e.g. sub‐tidal sandbank) may be a greater 

concern over time if the sediment budget is affected.  Coastal process models can be used to help 

predict the potential transport rates for various sediment grades and determine changes to these 

rates to help inform the consideration of the long‐term effects but the levels of uncertainty at this 

stage of assessment remain relatively high. 

6.2.4 SummaryA comparison of the relative magnitude of effects, between a single CGBF and alternative foundation 

types, is presented considering the evidence reviewed in this section. Note that the effects of a large 

number of small foundations, compared with a smaller number of larger foundations, is not yet well 

understood. Also note that this table makes no estimation of the significance of an effect. 

 

Key 

I  Installation (including any ground preparation and remedial works required) O Operation (including any settlement) D  Decommissioning 

 

Receptor  Sub‐receptor

Description Phase effect detected

Relative effect 

Scale  Significance

Physical Waves  Structure blocks the normal passage of waves 

O  CGBF similar to or greater than other Round 3 solutions in most cases  

Likely to be low given distances offshore 

Tidal current  Structure blocks the normal passage of tidal currents 

O  CGBF similar to or greater than other Round 3 solutions in most cases  

Likely to be low given distances offshore 

Sub‐seabed geology 

Removal of sub‐seabed geology by piling/drilling or seabed preparation (If required) 

I  CGBF similar to other Round 3 solutions 

Likely to be low due to limited area of impact  

Seabed sediments 

Direct impact on the sediment of placement of foundation only 

I / O  CGBF similar to or greater than other Round 3 solutions in most cases  

Likely to be low due to limited area of impact 

Page 66: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

50  

  Direct impact on the sediment of placement of foundation plus scour protection (if required) 

I / O  CGBF similar to or greater than other Round 3 solutions in most cases 

Likely to be low due to limited area of impact 

Sediment transport  

Scour around base of structure due to changes in local hydrodynamics caused by the structure 

I / O  CGBF similar to or less than other round 3 solutions in most cases  

Likely to be low due to limited area of impact 

      "  Generation of sediment plumes by ground preparation for CGBF  (if required), monopile drilling and removal 

I / D  CGBF similar to or greater than other Round 3 solutions in most cases  

Likely to be low due to limited area of impact 

      "  Alteration of sediment transport pathways 

O  CGBF similar to other round 3 solutions 

Likely to be low due to limited area of impact 

 

 

 

Page 67: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

51  

7 BiologicalReceptors

7.1 IntroductionAimsandScopeThe near‐future market for the use of CGBF will be associated with Round 3 offshore windfarm 

development areas. These zones are generally located on areas of seabed dominated by sediment 

habitats and can be considered more distant from the coastal and nearshore environments 

associated with existing, and proposed, Round 1 and 2 arrays. These offshore environments contain 

a wide variety of benthic habitats and communities and can support diverse ecosystems utilised by 

fish species, seabirds and marine mammals. For these reasons some of these areas are also the 

current focus for designation of a series of marine protected areas (MPAs).  

This section will describe the various effect pathways (ways that effects can interact with receptors)  

and likely impacts associated with each stage of CGBF deployment, lifespan and decommissioning as 

described in Section 5.2 (detailed in the flow diagrams, Figure 5.1‐Figure 5.6). Particular focus will be 

given to the scale of effects likely from a single CGBF and consideration given to these effects in 

relation to other foundation solutions. 

Available information, focussed where possible on recent use of CGBFs in OWFs has been brought 

together in this report to identify: 

The likely sensitivity to and possible adverse effects on marine species and benthic biotopes, 

mobile megafauna, birds and fish fauna as a result of CGBFs; 

The considerations required for existing and proposed designated nature conservation sites 

(MPAs) and for which measures should be taken to ensure they are not adversely affected 

by CGBFs; and 

Possible positive effects associated with CGBFs and their interaction with biological 

receptors. 

Identification of discrete biological receptor groups has been ascribed from those that are routinely 

considered within production of an EIA. Information regarding the assessment of sensitivity is drawn 

from general accepted EIA toolkits including MarLIN (2012) and the Genus Trait Handbook (MES, 

2008) etc. Receptor‐specific sensitivity thresholds will be sign‐posted rather than listed individually 

within this guidance as these will be presented and considered at a project‐specific EIA level. 

Of particular importance is the scale of effects that may be associated with a CGBF when compared 

to alternative solutions such as steel jackets, tripods and monopiles and specifically any use of scour 

protection and generation of underwater energy (noise and pressure waves) (for any foundation 

considered). Direct effects (such as habitat removal) upon face value may appear to be greater for 

CGBF solutions when compared with alternative foundation solutions. However, consideration of 

steel jacket and tripod foundations shows that CGBFs have a comparable seabed footprint when 

accounting for ‘shadowing’ and reef effects. Indirect effects such as those related to an absence of 

noise disturbance and creation of refugia for fish species, due to the engineering and installation 

techniques associated with a CGBF, may result in positive effects (when compared with current 

foundation solutions). These issues are discussed in the receptor‐specific sub‐sections below. 

Page 68: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

52  

7.2 BenthicResourcesThis section is intended to provide an overview of benthic habitats and fauna likely to interact with 

CGBFs in UK waters and likely effects and associated impacts. Detailed information on distribution of 

biotopes and sensitivity information can be drawn from several sources at a regional and sub‐

regional seas scale; along with project‐specific information derived from site‐specific 

characterisation and baseline surveys conducted to support EIA and Environmental Statements.  

Section 5.2 has identified Benthos as a receptor to activities and effects associated with each phase 

of the lifespan of a CGBF considered in this report. Benthos consists of many sub‐receptors that can 

be described in various ways. This section will consider the benthic sub‐receptors under several 

broad descriptors dependent upon life strategies and biological traits. Ostensibly the sub‐receptors 

can be identified as those living within the seabed sediment habitats – infauna; those living attached 

to the seabed coarse sediments and rock – sessile epifauna; and mobile or errant species able to 

move across the seabed. Each of these broad sub‐receptor groups may have different sensitivities to 

impacts from a CGBF and are considered below. 

In the case of Round 3 offshore windfarm developments, the most likely benthic habitats and 

biotopes to be present are those associated with surficial sediments such as sands and gravels. The 

distribution and location of Round 3 areas predominately occupy sediment habitat types (Figure 

7.1), although there are localised areas of bedrock, and bedrock with sediment veneers, in some of 

the regions and associated areas (especially along the South Coast and Bristol Channel). The range of 

communities and biotopes are generally represented by burrowing infauna associated with mobile 

sediments such as sands and gravelly sands.  More stable sediments consisting of larger particle sizes 

such as sandy gravels, gravels, pebbles and cobbles tend to support epifaunal communities growing 

on the sediment surface with some infauna associated with any pockets of finer particle size. In 

undisturbed conditions these epifauna can actually consolidate to form ‘bio‐mattresses’ which may 

further stabilise the coarse and mixed sediment habitat. Biogenic reef habitat created by species 

such as the bivalve molluscs Modiolus modiolus or Mytilus edulis and the polychaete worm 

Sabellaria spinulosa can exist across a suite of sediment habitat types. 

   

Page 69: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

53  

Figure 7.1:  Benthic Habitats and Round 3 Offshore Windfarm Zones (Source: JNCC, 2010a; The Crown Estate data).  

 

   

   

  

Page 70: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

54  

7.2.1 NotableBenthicReceptorGroupsHiscock et al. (2002) presents a comprehensive list and description of biotopes expected to be 

distributed within areas associated with Round 1 and 2 offshore windfarm developments. These are 

likely to be representative of biotopes expected to occur further offshore and interact with the 

intended use of CGBFs. Further reference to the various mapping data associated with Round 3 

zones will identify the full suite of benthic habitats and biotopes likely to interact with the proposed 

arrays. 

The general descriptions and statements for the broad benthic receptor groups (detailed below) are 

drawn from various literature including: Hiscock (1998); Hiscock et al. (2002); Connor et al. (2004); 

Thorson (1971); and Nybakken and Bertness (2004). 

InfaunalSpeciesandCommunities/BiotopesSediment biotopes tend to consist predominantly of species which burrow beneath the surface of 

the sediment. The species typically represented are burrowing and tube‐building polychaete worms; 

burrowing bivalve molluscs; tube‐dwelling and burrowing crustaceans; and echinoderms such as 

brittlestars and burrowing urchins.  

Energy exposure (related to water depth, wave climate, tidal streams and nearbed sediment 

transport) and sediment particle size are two physical environmental factors that greatly influence 

the cohesion and consolidation of surficial sediment habitats (see Section 6). These natural physical 

pressures exert a great environmental force on the biology associated with the sediment habitat 

resulting in different communities and biotopes in similar sediment particle sizes dependent upon 

energy exposure.  

Medium‐fine sands in high energy environments (such as the crests of subtidal sandbanks) tend to 

be mobile and non‐cohesive. As a result the infaunal biotopes are dominated by species which are 

able to rapidly re‐burrow themselves and move through the mobile upper layers of sand. These 

species tend to be motile and do not construct permanent burrow structures. They are represented 

by mobile polychaete worms, small bivalve molluscs and burrowing amphipod crustaceans. 

Muddy sands can exist in moderate‐low energy‐exposed seabed types. Species associated with these 

habitats tend to be represented by medium‐large size bivalve molluscs, burrowing urchins, 

brittlestars, and polychaete worms. As the sediment habitat is relatively stable then burrows can be 

built and occupied. 

Subtidal muds are found in low energy environments such as deeper waters distant from tidal 

streams. These habitats are stable and cohesive and are colonised by tube‐builders and dwellers 

such as burrowing megafauna (such as burrowing shrimp), large bivalve molluscs and echinoderms 

and seapens. 

Gravels and coarse sands in high energy habitats such as tide‐swept sandbank troughs, tend to 

support robust medium‐large sized infauna such as large bivalve molluscs, burrowing anemones, and 

polychaete worms. These infaunal biotopes may have low species diversity but a moderate‐high 

biomass due to the large size of the few different species. 

Page 71: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

55  

Subtidal mixed sediments consist of gravels, sands and muds and can exists under a range of energy 

exposures. The variable matrix of sediment particle sizes tends to stable habitats with a range of 

ecological niches available to infauna. These habitats support a wide range of burrowing fauna such 

as polychaete worms and tube‐dwelling species such as: Sabellaria spinulosa and Lanice conchilega; 

small‐medium sized bivalve molluscs; burrowing anemones; echinoderms including ophiuroids 

(brittlestars); and holothurians (sea cucumbers).  

EpifaunalCommunities/BiotopesBenthic habitats composed of the larger particle sized sediments and geogenic structures such as 

gravels, pebbles and cobbles, along with bedrocks and boulders, support species which attach to the 

outside of these habitats. The epifauna consists of a wide and varied diversity of phyla which have 

evolved to take advantage of the numerous ecological niches associated with hard substrata.  

Subtidal coarse (gravels) and mixed sediments (gravels, sands and muds) can support a high diversity 

of species. Most of these epifauna form complex mosaics of biotopes and grow as encrustations and 

turfs across the supporting hard habitat. In undisturbed situations, with plentiful recruitment and 

abundant food supply, these biotope mosaics can ‘mesh’ together, consolidating the coarse 

sediments that support them to further increase the stability of the substrata. This ‘bio‐armouring’ 

effect may increase the overall sensitivity of the biotope matrices to certain removal and abrasion 

impacts; as recovery to pre‐impact status may take considerable time (>8 years) or never be 

achieved. 

Species associated with coarse and mixed sediment biotopes are represented by: encrusting and 

tube‐building polychaete worms such as Sabellaria spinulosa and Pomatoceros spp.; barnacles, 

colonial ascidians (sea squirts); anemones; ophiuroids (brittlestars); encrusting and erect sponges; 

encrusting and erect bryozoans (sea mats) and erect hydroids (sea firs). The mats and turfs created 

by these communities add to the physical complexity of the habitat creating ecological niches and 

allowing small‐medium sized mobile species refugia. These niches are utilised by predators such as 

crustaceans (squat lobsters, prawns and crabs), gastropod molluscs (snails), starfish and small fish 

species.  

These biotopes / biotope complexes can have a high biodiversity which may be further increased for 

areas of mixed sediments which can also support high numbers of infaunal species. 

Biogenic reef habitats are generally associated with coarse and mixed sediment habitats and can 

support epifaunal communities due the alteration of the local habitat through additional structural 

complexity. They are known to support communities of encrusting polychaetes; ascidians, erect 

sponges, bryozoans and hydroids; brittlestars; and predators such as squat lobsters, prawns, shrimp 

and crabs. Geogenic reefs associated with the mussel species Modiolus modiolus and Mytilus edulis 

along with the polychaete worm Sabellaria spinulosa are those most likely to interact with CGBFs 

associated with Round 3 projects. Due to the life‐strategies of the reef‐building species then the 

sensitivity to various impacts from CGBFs may be different e.g. M. modiolus reef may be more 

sensitive to smothering impact than S. spinulosa reef (Holt et al., 1998; Last et al., 2011; Pearce et 

al., 2011).  

Geogenic reef habitats such as pebbles and cobble (stony) reefs, boulders and bedrock generally 

support high diversity communities and biotopes in areas that are not influenced by near seabed 

Page 72: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

56  

sediment transportation resulting in scouring effects (Connor et al., 2004). The biotopes supported 

by these hard substrata habitats range from algal dominated in the upper water column photic 

zones to those dominated by epifauna in the aphotic circalittoral zone. Most CGBF locations are 

likely to interact with the circalittoral, animal‐dominated communities. Again, as with sediment 

biotopes, differences in geogenic biotopes are dependent upon energy exposure. The higher energy 

habitats (tidal streams, high wave exposure) support erect and branching forms of life such as large 

sponges, octocorals (sea fans and dead man’s fingers), bryozoans (sea mats) and hydroids (sea firs) 

with carpets of anemones and colonial ascidians (sea squirts). 

Lower energy systems tend to more silty conditions and support diverse turfs of encrusting sponges, 

bryozoans, hydroids, ascidians with anemones. 

Certain of the geogenic biotopes consist of long‐lived, slow‐growing, low recruitment species and are 

susceptible (sensitive) to many anthropogenic impacts. 

Mobile/ErrantSpeciesMobile benthic species tend to be predators and scavengers derived from phyla such as crustaceans, 

molluscs (gastropod snails), echinoderms (sunstars and starfish) and pisceans (fish). Species from 

these phyla prey upon the infauna and epifauna and use the ecological niches, associated with the 

more structurally complex coarse and mixed sediment and geogenic habitats and associated 

epifaunal communities, for refugia. Whilst sensitive to direct impacts such as habitat removal these 

species are generally less sensitive to indirect effects due to their mobility. This allows them to 

relocate to less / unimpacted areas avoiding or recovering from impacts more easily than sessile 

organisms.  

Brittlestars are generally suspension feeders with a limited mobility and are thus sensitive to both 

direct and indirect impacts likely from CGBFs. 

7.2.2 SomeKeyAspectsofBenthicHabitatandCommunityResponsestoCGBFs

EffectsofaCGBFonBenthicHabitatsandCommunitiesBenthic community sensitivity (to the effects discussed in this section) is very much determined by 

the habitats that support them. As a general rule, high energy‐exposed sediments are more mobile 

and thus support infaunal species evolved to opportunistically respond to disturbance events – the 

species are mobile, fast‐growing, short‐lived and able to reproduce rapidly ‐ r‐selected or 

opportunistic species (Nybakken and Bertness, 2004).  Species associated with more stable habitats 

such as low energy‐exposed, stable mixed or coarse sediment (gravels and pebbles) are generally 

less tolerant to disturbance – the species are sessile, slow‐growing, long‐lived with a slower 

reproductive rate (than opportunistic species) – K‐selected or equilibrium species (Nybakken and 

Bertness, 2004). Therefore pathways associated with physical environment effects are of paramount 

importance for the biological environment. Effects from changes to bathymetry affecting tidal 

currents, sediment transport and wave climate; removal / alteration of habitat; resuspension / 

deposition of sediments; and noise and pressure will result in direct and indirect effects and possible 

impacts on benthos. 

The tolerance, adaptability and recoverability (sensitivity) of species to the natural processes they 

are adapted to have a relationship to the sensitivity to those anthropogenic activities resulting in 

Page 73: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

57  

similar pressures. For example higher energy systems exert greater disturbance / turbation forces on 

the species living in them, than do low energy systems, and this can reflect their sensitivity to 

anthropogenic pressures resulting in disturbance. 

Impacts resulting in physical loss and damage to benthic biotopes are associated with all phases and 

activities of CGBFs considered in this report as detailed in Section 5.2. These interactions and 

possible impacts are described below. 

PhysicalLossofHabitatIf required, the seabed / ground preparation through dredging (see Appendix E for detailed 

consideration of this activity) will directly remove the surface layer of the seabed, which has a direct 

impact on the benthic communities within the dredging area, including the removal of infauna and 

epifauna. Physical loss of habitat during extraction operations could also result from the settlement 

of suspended particles mobilised during dredging i.e. smothering. The deposition of these fine 

sediments can locally change the nature of the surface substratum, making it finer and potentially 

altering the benthic communities where these changes occur. Also, fine sediments settling onto the 

seabed can (subject to prevailing environmental conditions) be transported on or near the seabed 

further away from the dredging area by tidal currents and waves, extending the potential area of 

seabed / community changes and potential smothering of sessile benthic communities beyond the 

boundaries of a dredging area.  

The in situ lifespan of the CGBF can have two levels of direct impact (seabed surface layer removal) 

dependent upon whether seabed / ground preparation is required, or not. If the particular solution 

means that no ground preparation is required then the initial direct removal of the seabed surface 

layer will relate to the direct footprint extent of the CGBF structure itself (plus any scour protection 

if needed). Where ground preparation is required then the initial extent of seabed removed will be 

related to the excavation footprint. It is expected that the dredge or grab area will recover to pre‐

excavation conditions within the in situ lifespan of the CGBF (so long as infill fines are of same 

particle size distribution as pre‐excavation), but the area beneath the concrete structure will 

effectively be removed from the sediment habitat system; until after the CGBF has been 

decommissioned and removed from the seabed.  

Most infaunal species occupy the top 0.5m of the sediment habitat (Thorson, 1971; Hiscock et al., 

2002; EMU Ltd, 2010a). Therefore any activities which remove this biologically critical habitat 

resource are likely to result in impacts to the communities / biotopes. Research (Hill et al., 2011) has 

shown that high energy environments with medium‐fine sediment biotopes can be expected to 

recover within a period of 6‐24 months. Coarse and mixed sediment biotopes may not show 

recovery within a period less than 8 years and >15 years in some cases (Cooper et al.; 2011; Hill et 

al., 2011). Therefore the habitat type, duration of habitat removal / alteration and potential 

recovery periods are important when considering the magnitude of effects and different activities 

will result in varying levels of impact. It can be summarised that benthic assemblages in regions of 

high natural disturbance and low gravel content appear to be less sensitive to changes in particle 

size distribution (Cooper et al., 2011). The longest biological recovery times occur within less 

dynamic and energetic environments, such as gravels and coarse sediments associated with low 

wave exposure and tidal streams (Hill et al., 2011). 

Page 74: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

58  

From the two scenarios presented above it is evident that so long as the CGBF is expected to remain 

in situ for longer than 10 years the main consideration of habitat loss should be the direct footprint 

of the CGBF structure (including any scour protection if used) and not necessarily the full extent 

ground preparation footprint (if this is also required) e.g. dredging associated with ground 

preparation will result in loss of an area of biotopes, but it would be expected that these biotopes 

may recover to pre‐dredge conditions during the lifespan of the windfarm; so long as similar 

sediment particle size is used to back fill the dredge pit. However seabed habitat lost beneath the 

base of the foundation itself will effectively be removed from the environment for the duration of 

the windfarm operation (and for a recovery period following decommissioning and removal). Seabed 

habitat ‘over‐shadowed’ by a steel jacket or tripod structure (but not directly beneath the ‘feet’ and 

any scour protection) can also be in an altered state due to localised changes in water flow, 

sediment transport, shading and nutrification. These factors affecting an indirect physical loss of 

habitat are described in more detail later in this section. These can result in equivalent footprints to 

CGBF direct habitat loss and are effective for the in situ lifespan of the structure on the seabed. 

It is also necessary to consider the nature of the foundation base‐layer upon which the CGBF rests. In 

most cases the foundation‐layer consists of gravel or crushed rock (Piere et al., 2009) which may be 

a very different particle size compared with the naturally‐occurring sediments. As discussed in the 

previous sub‐sections, particle size and sediment type has a great effect upon the communities able 

to colonise the habitat. Also, as the biological zone tends to penetrate to a depth generally not 

exceeding 0.5m from seabed surface (EMU Ltd, 2010a; Thorson, 1971; Hiscock ed., 1998), then the 

burial depth of the foundation layer is important. Figure 7.3:  presents a diagrammatic cross‐section 

of a CGBF base at Thornton Bank OWF, Belgium. This shows that foundation layer resides at 

approximately 4m below reference seabed level.  There is no pathway for biological zone alteration 

due to the foundation layer being deeper than 0.5m below seabed level. It is proposed that so long 

as the foundation layer or the load‐bearing layer is always deeper than a precautionary depth of 1m 

below reference seabed level, and that backfill is used of the same grain size (as pre‐excavation), 

then impacts associated with removal of benthic habitat will be mitigated (so long as scour material 

is not deposited on the sediment surface).  

Figure 7.2: Diagrammatic Cross‐Section of CGBF base, Foundation Layers and Scour Protection from Thornton Bank OWF, Belgian waters (From Peire et al., 2009). 

 

Page 75: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

59  

Physical loss of benthic habitats and shifts in macrobenthic communities can also result from effects 

associated with changes to hydrography (Hiscock et al., 2002; Coates et al., 2010; Zucco et al., 2006). 

The alteration of the physical environment can lead to scour pit evolution which may require 

mitigation through the addition of scour protection solutions. Impacts on benthic biotopes can 

manifest due to changes in sediment particle size within scour pits (Whitehouse et al., 2011a, 2011b; 

Hiscock et al., 2002; Coates et al., 2010; Zucco et al., 2006). Different infaunal species and 

communities are evolved to occupy different sediment types and a coarsening of the sediment 

(through winnowing of fines) will effectively remove pre‐installation habitat. Therefore 

consideration of scouring, based upon project‐specific models (see Sections 5.3, 6.2.1. and 6.2.3), is 

a very important factor of any site‐specific EIA. Similarly, the addition of scour protection (if 

deployed) will result in: a loss of sediment habitat below the protection footprint; and also in 

colonisation by epifaunal communities naturally associated with rocky / geogenic reefs. This will 

result in potential alterations to the ecosystem and these are discussed later in this sub‐section. The 

important factor is that both scour pits and mitigation solutions will likely alter the naturally 

occurring distribution of sediment biotopes present at the pre‐installation baseline by replacing 

sediment habitat with hard habitat. 

As presented in Table 1.1 the worst case scenario footprint of CGBF structure at seabed surface level 

is 36.2m diameter equivalent to an area of 1,029m2 (5MW turbine at 50m below chart datum on 

sand) (based on data provided by the Gravity Foundation Interest Group members). Where scour 

protection is required, then the area of seabed habitat loss (the removal of pre‐installation habitat), 

increases from 1,029 m2 to 2,324 m2 (worst case). Monitoring of scour pit evolution from monopile 

foundations at Scroby Sands OWF, UK, has been recorded to 5m depth and 100m diameter (OSPAR 

Commission, 2006; Rees, 2005). Therefore the largest scour pits were demonstrated to effect 

approximately 7,850 m2 of sea bed, an area considerably greater than the worst case scenario 

seabed area take for CGBF. Steel jacket and tripod foundations have a relatively large seabed 

footprint which increases to comparable or greater area than CGBFs when considering the structure 

footprint on the seabed as a whole (see Table 3.2). The construction surface area is will result in pre‐

installation habitat loss due to a combination of ‘over‐shadowing’ or ‘shading’ effects and ‘reef 

effects’ (discussed in detail later below). The ‘shading’ effects are likely arise due to sediment 

particle size alteration from scouring and changes to beneath foundation water flow. ‘Reef effects’ 

will interact with the sediment communities within the construction area due to changes to organic 

nutrification and likely predation events from mobile predators attracted to the artificial structure 

(Zucco et al., 2006; Hiscock et al., 2002).  

Suction caisson foundations can have a direct footprint of up to 2,000 m2 which will result in some 

cases to comparable seabed habitat loss to CGBFs (but greater than some CGBF design solutions) 

(DECC, 2011a). Table 3.2 cites a slightly lower seabed footprint, including scour protection, of 

1,323 m2 (RPS Energy and RWE NPower Renewable, 2011). 

The UK Round 2 Triton Knoll OWF Environmental Statement (RPS Energy and RWE NPower 

Renewable, 2011) presents a modelling study examining the potential introduction of scour resulting 

from turbine foundations. The study concluded that the maximum adverse environmental scenario 

concerning scour of sand and finer sediments would be found in the surficial sediment layer of 

approximately 1m depth and up to a 23m radius from the foundation for monopile foundations. For 

CGBF scour pits were modelled as 5‐10m additional radius around the foundation base. Estimated 

Page 76: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

60  

maximum volumes of material that might be released by scour were approximately 1100m3 per 

gravity base foundation compared with approximately 92m3 for monopile foundations. For either 

solution the model showed that “scour material would be dispersed away in the same way that 

material released during construction is predicted to be dispersed.” 

The Triton Knoll ES presented indicative scour protection parameters for various foundation 

solutions. These data are presented in Table 6.1 and Table 6.2. It is evident from these data that 

greater amounts of scour protection were indicated necessary for monopile foundations than for a 

CGBF solution. It should be noted that Table 6.1 presents the values for scour material alone, whilst 

Table 6.2 presents the cumulative extent of scour material and the foundation area take. For a 5MW 

turbine scenario then an 8.5m diameter monopile is predicted necessary with a seabed footprint of 

57m2. These values for the same scenario for CGBF were determined as 40m diameter with 1,257m2 

seabed area take. Therefore adjusted total seabed area take per solution, with scour protection is: 

Monopile:  1,848m2 

CGBF    2,828m2 

From the scenarios presented above it is evident that CGBFs may not always have a greater seabed 

habitat loss footprint than monopile foundations. This is contrary to widely held preconceptions that 

CGBFs, due to the larger diameter than monopiles, steel jackets and tripods, will always have a 

larger seabed footprint. 

ArtificialReefEffectandHabitatandCommunityLoss/AlterationNot only is there direct habitat loss below the foundation and any scour protection (if required), but 

there may also be indirect effects associated with the introduction of artificial geogenic / rocky 

habitats into sediment ecosystems. Introduction of these artificial habitats can result in the so‐called 

“reef effect” which can result in the greatest impact at the ecosystem level (Cripps and Aabel, 2002; 

Hiscock et al., 2002; Zucco et al., 2006). The “reef effect” is expected to be confined to the close 

vicinity of the CGBF structure and any scour protection that may be required. ‘Fringe’ or ‘halo’ 

effects can manifest due to organic nutrient enrichment from biotopes that establish on the 

foundation structure and scour protection material if required (Zucco et al., 2006 and references 

cited therein; Coates et al., 2010 and references cited therein). Coates et al. (2010) state that: 

“The presence of hard substrate epifauna produces a depositional flow of faeces, (pseudofaeces) and 

other organic material which could create organic enriched sediments and therefore alter the soft‐

sediment macrobenthic communities.” 

Not only are there possible nutrient enrichment pathways but also mobile fauna attracted to the 

artificial reef‐like structures can exert pressures on the surrounding sediment biotopes and benthos. 

Predatory organisms such as crustaceans (shrimps, prawns, crabs and lobsters) and fish may not only 

live and hunt on the hard substrata communities but show wider foraging ranges across nearby 

sediment communities (Page et al., 1999; Bremner et al., 2006). Posey and Ambrose (1994) 

conducted a study on a rocky reef off the North Carolina coast of the USA. Their research suggested 

a trophic link between the reef and the surrounding sediment communities. The result of their study 

indicated potentially important indirect effects of predator‐prey interaction among the reef‐

associated predators and the sediment habitat prey species. However, changes of surrounding 

Page 77: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

61  

infaunal communities appear to be limited to a small area around reefs or structures, generally no 

more than tens of metres distant (Zucco et al., 2006). 

Fish predators are more mobile, or able to forage wider distances and return to the artificial reef 

refugia more rapidly, than invertebrate predators. There are records of these predators foraging out 

from the ‘reefs’ on some cases up to 200m away (references cited in Zucco et al., 2010; Bremner et 

al., 2006). 

Monitoring of the post‐installation of CGBFs at the Thornton Bank OWF in Belgian waters has shown 

that changes to infaunal communities have occurred in association with the introduction of CGBF 

structures into the marine environment (Coates et al., 2010; Coates and Vincx, 2010; Derweduwen 

et al., 2010). Noticeable differences in the soft‐sediment macrobenthic communities were observed 

with respect to distance from the CGBFs studied. Gradients existed with a strong relationship to the 

tidal and cross‐tidal axes within the array area. The main observations recorded were: 

In close vicinity to the foundation structure certain hard substrate species were found in 

high densities in the soft sediment; and 

A decrease in median grain size coincided with an increase in polychaete densities (such as 

Lanice conchilega and Spiophanes bombyx) at short distance from the CGBF. 

It was concluded that along tide the changes in hydrodynamics (from the concrete foundation) due 

to decreased current speeds may have altered the median grain size of the sediment along with the 

creation of some ‘stable’ sand pits as a relic of ground preparation dredging activities. This probably 

caused the accumulation of organic matter and enhanced larval settlement. The cross‐tidal gradient 

showed lower organic material concentrations and a slightly higher median grain size and a 

dominance of the tube building amphipod Monocorophium acherusicum not observed at baseline 

conditions. Though limited in scale and repetition this small‐scale study suggests that the 

introduction of the hard substrate turbine induced a local shift in the soft‐sediment macrobenthic 

community. The baseline homogenous sandy biotopes of the Thornton sandbank have undergone a 

change to a slightly higher heterogeneity at a very local scale.  

However, it is unclear what factor(s) alone or combined has resulted in the community / biotope 

changes. The authors proposed that the community shift is likely linked to: 

Changing hydrodynamics; 

Organic enrichment; 

Altered particle size distribution; and / or 

Dredge pits not remediated to reference seabed levels.  

An intensive monitoring programme was conducted in association with two Danish offshore 

windfarms, Horns Rev and Nysted (DONG Energy et al., 2006). The monitoring demonstrated that 

the main effect from establishing the windfarms was associated with the introduction of hard 

bottom structures onto sandy sediment seabeds.  The result was increased habitat heterogeneity 

that changed the benthic communities at the foundation sites from infaunal biotopes to epifaunal 

biotopes. Abundance and biomass of the benthic communities increased at the foundations 

(including scour protection used) compared with the pre‐installation baselines: an increase in 

biomass by 50‐150 times was recorded within the arrays i.e. at a local scale. It was hypothesised that 

Page 78: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

62  

much of this increased biomass may be available as food for fish and seabirds. However, monitoring 

data suggest that fish abundances and biomass have not increased significantly beyond baselines 

and seabirds are generally exhibiting avoidance behaviour (due to above water effects) (DONG 

Energy et al., 2006).  

The artificial reef effect can also manifest in direct habitat removal at the base of the foundation 

and / or scour protection (if utilised) through the biological detritus associated with the epifaunal 

reef communities. Dead blue mussel Mytilus edulis shells fallen from reef communities on the 

artificial hard substrate may accumulate around the base of the foundation structure and alter / 

coarsen the sediment habitat (Hiscock et al., 2002). This will result in a loss of pre‐installation / 

baseline habitat and will be most relevant for CGBFs with no scour protection. Whilst not restricted 

to CGBFs alone, it is possible that the larger surface area of submerged structure (c.f. monopile and 

floating platform) may result in a larger footprint of shell mulch, due to the fact that attachment 

space for mussels in accordingly greater.  

Table 1.1 shows that the submerged surface area of concrete available for colonisation is 3,338m2 

(worst case scenario – 50m BCD). The similar area associated with a 7m diameter monopile is 

1,924m2. There is considerable more habitat space for epifauna associated with CGBF than with 

monopile installations. Zucco et al., (2006) proposed that steel jacket foundations may provide a 

comparable hard habitat resource to CGBFs. The intricate nature of the lattice structure may provide 

a more complex niche and crevice habitat that may result in increased biodiversity when compared 

with flat surfaces. However this is expert opinion and not currently supported by data or evidence 

from the field. 

PhysicalDamagePhysical damage can manifest itself in many ways and is generally associated with indirect or 

secondary effects. In association with ground preparation operations (where required) the main 

pressures are abrasion (from the draghead) and changes (increases) to suspended sediment loads 

(concentrations) (Tillin et al., 2011). High (increased) suspended sediment loads would be unlikely to 

affect many of the communities found at locations using CGBFs as they are evolved to exist in high 

turbidity waters. However, sediment plumes can elevate suspended sediment concentrations (SSC) 

above natural background loads, especially those associated with calm weather periods. Also the 

temporal scale of dredging or grabbing may have an additive effect e.g. SSC increase may only be in 

order of tens mg/l elevation above background levels but if this occurs every week then effectively 

the operation is mimicking a significant increase in effects similar to storm events. Therefore care is 

needed when assessing plume effects as whilst SSC increase may be minimal, the ‘scale’ of 

(cumulative) effect may reach an ecological tipping point i.e. communities may be adapted to 

periodic storm events but repetitive exposure over a short period of time may have a detrimental 

effect as recovery periods are reduced. 

The specific effects associated with the potential ground preparation are not considered in detail in 

this section as they are considered analogous to those associated with marine aggregate dredging 

operations. Appendix E provides specific details regarding marine aggregate operations in the 

context of ground preparation should it be required. The benthic receptors are likely to be the same 

as, or similar to, those exposed to effects from marine aggregate operations. It is suggested that any 

Page 79: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

63  

project‐specific EIA will address these issues using the wealth of marine aggregate extraction 

environmental research identified in Appendix E.  

However, there is a foreseeable pathway associated with CGBF‐specific ground preparation that will 

require extra consideration for EIA if it is required; beyond that currently assigned to marine 

aggregate operations or offshore renewables projects using monopiles. This is associated with the 

possible fate of fines dredged from the ground preparation area. The Thornton Bank OWF, Belgium, 

used trailer suction hopper dredgers to remove the surficial layers of the foundation pits (Peire et 

al., 2009). This component of ground preparation (where required) would realise the same types of 

environmental effects as for commercial marine aggregate extraction activity. Piere et al. (2009) 

describe how the dredged fines were then ‘temporarily’ disposed of (stored) within the footprint of 

the OWF area. The ‘temporarily’ disposed fines were then re‐dredged, following emplacement of a 

CGBF in the foundation pit, to supply ballast material for the CGBFs. The re‐dredged fines were also 

used as backfill material to restore the foundation pits to reference seabed levels.  

This twin‐phase dredge increased the extent of the environmental effect footprint of the project. 

Additional to impacts associated with seabed removal at the foundation pit, including impacts from 

the sediment plume, there was cumulative seabed loss where the dredge fines were disposed. 

During the deposition of the fines it is expected that a sediment plume would propagate. 

Consideration of the secondary (indirect) effects associated with this second sediment plume will 

have to be considered in any project‐specific EIA where this activity may be required.  

It is assumed that any area of seabed habitats and communities receiving the ‘temporary’ deposition 

of fines will be identified as having a high recovery rate / high tolerance to smothering impacts. 

Assuming this factor and the temporary nature of the deposition / ‘storage’ then the magnitude of 

effects are possibly low. Therefore the impact may have a low overall significant effect, but it is still 

an impact greater than usually associated with monopile, steel jacket, tripod or suction caisson 

installations. The exception will be where monopiles, steel jackets and tripods require drive‐drill‐

drive operations for installation; in English waters this is usually associated with specific chalk sub‐

seabed bedrock layers (Ian Reach, pers. comm.; Centrica Energy Ltd, 2008, 2010). But here the 

footprint of disposition is likely to be much smaller than that associated with foundation pit dredge 

fine deposition / storage (Centrica Energy Ltd, 2008, 2010; Piere et al., 2009). Suction caisson 

foundations may require a degree of seabed levelling to ensure a negative pressure ‘seal’ at the 

seabed surface. However, the footprint of any fines removed as part of the seabed preparation is 

likely to be much smaller than those associated with CGBF foundation pits (where these are 

required).  

During the re‐dredging operation another sediment plume is likely to be generated, though it is 

possible this may be more limited in volume and extent (than the initial dredge and deposition 

plumes) due to active sorting and screening of fines from the previous dredge and deposition 

events. Regardless, this component of operations is novel to the use of CGBFs and will require clear 

consideration within any EIA. 

The effects associated with deposition and re‐dredging of excavation fines will be mitigated if a 

barge is used to hold / store the fines until use as ballast or back‐fill, or removal to a licensed dredge 

disposal site. 

Page 80: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

64  

Habitat damage will occur in association with construction vessels attendant at the array site. The 

benthic impact pathways are derived from the spud cans (weight spreading “feet”) and anchors used 

by jack‐up barges and other construction vessels and tenders. These impacts would manifest as 

abrasion effects and would be a short‐term in nature associated with the positioning of legs from the 

jack‐up barge onto the substrate for the duration of the engineering works. An indirect impact 

pathway will be associated with the depression areas from the spuds and anchors. Observations 

suggest that in certain benthic habitats and environments then depressions from spuds and anchors 

can remain for up to 18 months (Centrica Energy Ltd., 2009; EMU Ltd, 2009). Recovery through in‐

filling from natural processes such as tide, current and sediment transportation will restore the 

seabed to its natural state so long as active transport systems exist. In areas of very low energy then 

these effects may persist for years (Cooper et al., 2011; Hill et al., 2011). Assessment of total area of 

seabed impacted by placement of the installation vessels will be assessed at the EIA stage. 

It is important to note that benthic effects directly associated with installation vessels and tenders 

for CGBF is not expected to be any greater than those associated with installation of alternative 

foundations. RPS Energy and RWE NPower Renewable (2011) report that an average seabed 

footprint associated with a jack‐up barge is approximately 416m2 per jack‐up (including leg profile 

area, additional spud can and an additional 10% margin). Where spud can depressions may be less 

due to fewer jack‐up barges used, foundation laying / spreader barges will require anchoring to the 

seabed. The spreader barge, the Thornton 1, used at the Thornton Bank OWF required six 7‐12 

tonne flipper delta anchors to maintain position whilst deploying infill and ballast materials 

(Figure 7.3). 

Figure 7.3: Multi‐purpose barge Thornton 1 depicted in backfill and infill mode (From Peire et al., 2009). 

 

Elevated sediment loads may result due to altered near‐bed transportation associated with the base 

of the foundation (see Section 6). In most cases these would be expected to be at lower levels than 

those derived from seabed preparation / dredging activities if used. Increased suspended sediment 

concentrations (SSC) and scouring were implied as a possible source for suppressing blue mussel 

Page 81: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

65  

Mytilus edulis colonisation at seabed level on the Nysted OWF scour protection (DONG Energy et al., 

2006). However, there was no detection of effects due to increased SSC to the local infaunal 

communities within the array. 

InvasiveNon‐NativeSpeciesInvasive non‐native species are a threat to native fauna and flora due to the rapid colonisation and 

displacement effects that can ensue. A lack of environmental checks and balances (from the absence 

of their natural predators) means that invasive non‐native species can effectively remove native 

species from several environmental niches. Artificial hard substrata can allow the colonisation by 

invasive epiphytes and epifaunal species that would not normally (in the absence of such structures) 

have access to certain areas of seas, due to the prevalence of sediment habitats and lack of naturally 

occurring bedrock and boulder reefs. 

The monitoring programme at the Thornton Bank OWF reported the presence of non‐native 

barnacle species Balanus perforatus and Megabalanus coccopoma in the barnacle zone (Degraer et 

al., 2010). This illustrates points cited by Brabant and Jacques (2010) and Linley et al. (2007) about 

the colonisation opportunity offered by artificial hard substrata to non‐native invasive species 

spreading into new regional seas such as the North Sea. The ‘stepping stone’ effect of artificial hard 

substrata (Hiscock et al., 2002), such as large wind turbine foundations may be even more critical for 

species that have no dispersive planktonic larval stage.  

It is critical that monitoring programmes for offshore windfarms are detailed enough to detect the 

spread of any invasive species. However this is not a CGBF‐specific requirement, rather generic 

across the sector for all foundation types. 

 

7.3 FishFaunaandAssemblagesThis section is intended to provide an overview of the fish fauna likely to interact with CGBFs and 

how the effect pathways and impacts may interact with the ecology. Information on the distribution 

and representativity of fish species and assemblages present within the Round 3 zones can be drawn 

from several sources at a regional and sub‐regional seas scale; along with project‐specific 

information derived from site‐specific characterisation and baseline surveys conducted to support 

EIA and Environmental Statements.  

Section 5.2 has identified Benthos as a receptor to activities and effects associated with each phase 

of the lifespan of a CGBF considered in this report. Benthos consists of many sub‐receptors that can 

be described in various ways and for the purposes of this report fish species and community are 

considered as part of the benthos. This section will consider the fish receptors under several broad 

descriptors dependent upon life strategies and biological traits. Ostensibly fish receptors can be 

identified as those living on or dependent upon seabed sediment habitats – sandeels, flatfish etc.; 

those associated with reefs; and those species generally pelagic, but with key life stages associated 

with sediment or rocky reef habitats. Each of these broad sub‐receptor groups may have different 

sensitivities to impacts from a CGBF and are considered below. 

In the case of Round 3 offshore windfarm developments, the most likely benthic habitats and fish 

assemblages present are those associated with surficial sediments such as sands and gravels. The 

Page 82: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

66  

distribution and location of Round 3 areas predominately occupy sediment habitat types (Figure 

7.1), although there are localised areas of bedrock, and bedrock with sediment veneers, in some of 

the regions and associated areas (especially along the South Coast, Southwest Approaches and 

Bristol Channel). The range of species and assemblages are generally represented by burrowing fish 

such as sandeels, weaver fish and flatfish associated with mobile sediments such as sands and 

gravelly sands.  More stable sediments consisting of larger particle sizes such as sandy gravels, 

gravels, pebbles and cobbles may support more diverse fish assemblages though there is still a 

representation of flatfish species. Rocky / geogenic reefs can act as a natural fish aggregating device 

(FAD). The FAD and ‘reef effect’ can result from the introduction of artificial hard substrata into the 

marine environment such as foundation structures and scour protection (if used). 

7.3.1 ImportantFishResources

SandyorMobileSedimentHabitatSandy sediment habitats attract a variety of fish species which are generally adapted to being able to 

burrow into the top few centimetres of sand. In UK waters demersal (bottom‐living) fish species are 

commonly represented by sandeels, weaver fish, flatfish, skates and rays (Wootton, 1992). These 

fish are predators, preying upon infauna associated with the sediment habitats or predating 

planktonic or free‐swimming prey close to the seabed surface (Nybakken and Bertness, 2004). 

Nybakken and Bertness (2004) report that demersal fish assemblages associated with sediment 

communities can have a forcing effect upon community size and structure due to predation 

pressure. They are adapted to the mobile nature of the sandy sediments and are relatively tolerant 

of high turbidity and elevated suspended sediments (MarLIN, 2012). Their key sensitivity is related to 

habitat loss and / or impacts upon prey species. 

Coarse/MixedSedimentandRockyHabitatsConsolidated coarse and mixed sediment habitats (gravels, pebbles and sandy muddy gravels) may 

not be very mobile with a clast matrix and structure that excludes burrowing by fish species. These 

habitats (as described in Section 7.2), along with hard substrata, tend to support complex and 

possibly diverse epifaunal communities. The abundance of prey items and the structural 

heterogeneity of these habitats attract many fish species (Wootten, 1992). Representatives of 

demersal species such as flatfish, gobies, wrasses, dragonets, pipefish, sea scorpions, butterfish, 

gurnards, skates and rays are commonly associated with epifaunal communities of mixed and coarse 

sediment habitats (Pinnegar et al., 2010; Reiss et al., 2010).  

PelagicSpeciesThere are many pelagic species associated with the water column and surface waters of the sea that 

may interact with offshore windfarm installations. Some species, such as herring Clupea harengus, 

use coarse sediments (gravel) as spawning habitat; laying their eggs onto seabed surface. Other 

species, such as mackerel Scomber scombrus, may have annual migration routes which traverse 

windfarm zones. 

Reef features standing proud of the surrounding seabed add a level of structural complexity and 

heterogeneity to the benthic environment. In effect they act as oases, attracting fish species which 

come to forage and predate the epifaunal communities and other mobile species similarly attracted 

to the reef (Nybakken and Bertness, 2004; Wootten, 1992). Some species seek refuge provided by 

Page 83: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

67  

the reef whilst others may use the feature as a breeding site, shelter from prevailing physical 

conditions and predator avoidance (Reubens et al., 2010). This attraction to the habitat is known as 

the ‘reef effect’ and artificial structures act in a similar manner, either demonstrating artificial reef 

effects or acting as a fish attraction device (FAD) (Linley et al., 2007).  

Pelagic species known to exhibit response to FADs and / or recorded from OWF monitoring 

programmes (DONG Energy, 2006; Zucco et al., 2006; Derweduwen et al., 2010; OSPAR Commission, 

2006) are numerous but include: mackerel, cod, saithe whiting, pouting, pollack, bib, sprat, mullet, 

sea bass and herring. 

7.3.2 ImportantInteractionsbetweenFishSpeciesandAssemblageswithCGBFsSeveral possible interactions between offshore wind turbine foundations (including CGBFs) and fish 

species have been identified (Linley et al., 2007; Zucco et al., 2006; DONG Energy et al., 2006; 

Scottish Executive, 2007). These are listed in Section 5 of this report and described in this section 

below.  

None of the effects listed above are solely specific to CGBF solutions but scale of effects may be 

different compared with other engineering solutions.  

Impacts associated with electro‐magnetic frequency (EMF) emissions from power cables are not 

considered within in this report as these effects are not a direct result of foundation superstructure 

itself. 

DirectImpactsandPhysicalLossofHabitatThe monitoring programmes at Horns Rev and Nysted OWFS (DONG Energy et al., 2006) have not 

documented major changes in the fish fauna with regard to overall abundance or species 

composition following the construction and operation of the windfarms. However, it is important to 

note that at the time of publication of the monitoring programmes (DONG Energy et al., 2006) of the 

results that colonisation of the foundations by epifauna was relatively new. Therefore it is 

hypothesised that successional colonisation would continue to develop and a stable climax fish 

fauna is yet to appear. Data indicate that many of the species mentioned in Section 7.3.1 have 

colonised the foundations and scour protection. These include: pipefish, wrasse, gurnards, flatfish, 

cod, whiting, saithe, gobies, dragonets and sea scorpions. Diversity was found to be greater at the 

Horns Rev array in comparison with the Nysted farm. It is suggested that this may be an artefact of 

the differences in epifaunal community composition. Nysted artificial substrata (CGBFs and scour 

protection) are dominated by a near mono‐culture of blue mussel Mytilus edulis. This relative 

homogeneity may be mitigating the favourable reef effects (due to diverse and heterogeneous 

epifauna) that attract a diverse reef fish fauna (DONG Energy et al., 2006).  

The sandy habitats studied at Horns Rev support an abundant sandeel population (DONG Energy et 

al., 2006). Sandeels are an important component of the ecosystem acting as a food source for larger 

fish and apex predators such as marine mammals and birds (Pinnegar et al., 2010). As cited above, 

alteration and removal of the sediment habitats within an array may have negative impacts on fish 

assemblages. If these impacts result in adverse effects to ecological keystone species such as 

sandeels the effects can cascade through food webs (Frederiksen et al., 2006). Therefore specific 

investigations into the possible effects of sediment habitat loss and sandeel population were 

conducted. The results do not suggest that sediment habitat and community composition has been 

Page 84: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

68  

affected and sandeel populations are consistent relative to baseline. It is noted that sandeel 

abundance in the array itself may have increased due to links between organic nutrient enrichment 

(as a result of the epifaunal communities on the foundations) and successful sandeel recruitment.  

The monitoring concludes that short‐term, near‐field effects on the fish abundance and composition 

in the windfarm areas are few and not easily separated from larger scale changes in the fish 

communities. 

DONG Energy et al. (2006) postulate that the conclusions of the monitoring may apply to both the 

North Sea and the Baltic Sea studies, the colonisation of the new artificial hard substrata habitats 

may be more rapid and more pronounced in other regional seas areas where natural reef structures 

in the vicinity of the windfarm area may enhance the supply of fish e.g.in the case of the UK; the 

English South Coast, Southwest Approaches, Bristol Channel, the North Welsh coast and North 

Scotland. 

ArtificialReefandFishAggregationEffectsReubens et al. (2010) specifically investigated the reef effects of the Thornton Bank CGBFs, Belgium. 

Fish Aggregation Device (FAD) effects result from several mechanisms affecting fish behaviour: 

increased foraging / predation efficiency; predator avoidance / refuge; recruitment / nursery 

location; and shelter from prevailing physical environmental factors (waves, currents etc.) (Reubens 

et al., 2010 and references cited therein).  

It is important to note that the FAD qualities of CGBFs may not mean a direct increase in the 

numbers of individual fish species within a region. The nature of the FAD or ‘reef effect’ is such that 

the artificial structures attract and concentrate fish from other areas, near‐field and possibly far‐field 

too (Reubens et al., 2010). A possible ecological positive impact is that this aggregation of fish 

species may be afforded protection if fisheries exclusion zones are in place within the array footprint 

(Linley et al., 2007). If no protection measures exist then overfishing may result due to increased 

catch per unit effort (CPUE) (Reubens et al., 2010; Linley et al., 2007). 

Reubens et al. (2010) observed that several species recorded from shipwrecks in the Belgian North 

Sea appeared to take up residence at the Thornton Bank OWF CGBFs. These included pollack, cod, 

pouting, and horse mackerel and mackerel in the warmer summer and early autumn months. 

Flatfish are noted to be attracted to scour protection taking advantage of increased prey species 

abundance (Zucco et al., 2006). 

The mackerel species data (obtained in the Thornton Bank study) implied that larger mature 

individuals were attracted to the CGBFs compared to individuals associated with the surrounding 

sediment habitats. This same observation was made for pouting. Cod attracted to the foundation 

were predominantly juveniles which may benefit more than adults from the artificial refugia habitat 

provided by the CGBFs, though this is only conjecture. 

Compared to the natural sediment habitat surrounding the CGBFs the density of cod, pouting and 

horse mackerel was statistically significantly higher; supporting the hypothesis that the CGBFs are 

acting as FADs. Stomach content analysis of sampled pouting indicated a diet consisting of the 

crustaceans Jassa herdmani and Pisidia longicornis. These epifaunal crustaceans are high density 

Page 85: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

69  

colonisers of the CGBFs at Thornton Bank. Reubens et al. (2010) hypothesise that the CGBFs area is a 

positive attractant (FAD) due to the density of prey species not found in the surrounding sediment. 

Unfortunately there are no directly comparable monopile, steel jacket or tripod versus CGBF 

artificial reef effect studies. The comparison between Horns Rev (monopile) and Nysted (CGBF) 

OWFs is skewed due to the influence of the dominating blue mussel community and the brackish 

water conditions (of the Baltic Sea) for the Nysted OWF compared with the diverse epifaunal 

communities and full marine environment at Horns Rev. It is unclear if there is a direct relationship 

between increased surface area colonised, increased refuge habitat space and a parallel increase in 

fish population density. However, Zucco et al. (2006) state that the greater the physical complexity 

of foundation then the higher the likelihood of larger reef effect manifesting. This is based in part on 

monitoring of oil and gas platforms. Therefore it is possible that CGBFs hold the potential for 

increased reef effects when compared with monopiles and that steel jackets may provide the most 

complex and attractive artificial habitat; due to the complexity of the lattice structure, being similar 

to oil and gas platform foundations. Research conducted primarily in the U.S.A. and in small part in 

the North Sea, UK, demonstrates that oil and gas platforms have large reef effects and are well 

documented FADs (Minerals Management Service, 2000 and references cited therein; Cripps and 

Aabel, 2002; Kolian and Sammarco, 2008; BoEMRE, 2012) and this is thought to be in part due to the 

complexity of the structures. 

The attractant or impact range of an artificial reef is in the order of 200‐300m for pelagic species and 

1‐100m for demersal species (Zucco et al., 2006 and references cited therein). Flatfish species have 

been recorded moving between reefs >900m apart and significant abundances of reef‐dwelling fish 

species observed where inter‐reef distances are <400m apart (Zucco et al., 2006 and references 

cited therein). Therefore intra‐array turbine spacing may become a factor in determining the inter‐

connection of artificial reef effects in OWFs. As turbines increase in size (rotor sweep diameter) the 

greater the inter‐turbine (and thus foundation) spacing will be required to mitigate turbulence 

contamination between neighbouring turbines. Moving toward 5MW turbines will result in 

approximately 800m or greater intervals and these may isolate each foundation to act as a single 

reef with some interactions restricted to flatfish species (Zucco et al., 2006). 

PhysicalDamageIncreases in suspended sediment concentrations (SSC) and turbidity and resultant deposition 

(smothering) resulting from seabed preparation (if required) may affect spawning grounds for 

demersal spawners e.g. herring and sandeel. Zucco et al. (2206) suggest that some small demersal 

fish species with limited swimming ranges may also be sensitive to smothering impacts. EIA practices 

adopted for marine aggregate extraction operations are applicable when considering smothering 

effects. Regional‐scale habitat mapping (such as Strategic Environmental Assessment (SEA), marine 

aggregate REC and REA), resource identification from ICES and Cefas spawning data records etc. will 

assist identification of any sensitive areas. The Scottish Executive’s offshore renewables SEA (Linley 

et al., 2007) advises that: 

“Potential effect significance (for smothering) is considered to be moderate for demersal fish species 

which are sensitive to smothering and major for demersal spawning species (herring and sandeel). A 

smothering episode on a herring gravel bank, for example, could potentially impact an entire year 

Page 86: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

70  

class in the locality. Avoidance of sensitive sites and periods could be expected to reduce residual 

effects to minor.” 

Impacts upon benthic habitats and biotopes can also result in indirect effects to demersal fish 

species. Reduced biotope quality through habitat removal or smothering events (described in 

Section 7.2 above) will have direct effects on prey availability for fishes that forage in these habitats. 

Zucco et al. (2006) details research that has shown a decline in flatfish populations and related 

reproductive success linked to large‐scale removal of high infaunal abundance sand habitat. 

Research from marine aggregate licence area off the Humber coast, UK, has suggested that between 

40% and 90% of species diversity, population density and biomass may be lost as a result of direct 

dredging effects (Newell et al., 1998). It is likely that suppression of prey species within the 

foundation pits (where used) will have effects on foraging efficiency of demersal fish fauna. The 

scale of these impacts will be dependent upon similar unimpacted communities accessible in 

foraging range of the fish. Dependent upon sediment habitat type removed by seabed preparation 

operations (if undertaken) and assuming that backfill material is of the same particle size as baseline 

then recovery to pre‐dredge communities can be expected to take 6 months to 8 years dependent 

upon sediment habitat type (Hill et al. 2011; Cooper et al., 2011; see Section 7.2.2). 

Impacts from any foundation pit dredging required are specific to CGBF solutions (compared with 

alternative solutions which do not require this seabed preparation). 

NoiseCertain fish species are sensitive to noise and pressure impacts. These fish species and identification 

of sound and pressure frequencies likely to cause death or damage are known to some degree in the 

context of offshore windfarm construction (Hiscock et al., 2002; Zucco et al., 2006; DONG Energy et 

al., 2006; Scottish Executive, 2007; OSPAR Commission, 2006). Modelling sound generation, 

propagation and attenuation is a standard component of OWF EIA. Source recording and monitoring 

is conducted and the understanding of impacts is being increased. 

The major source of noise impacts associated with OWF construction and operation, likely to affect 

fish fauna receptors, is associated with the installation of monopiles by pile driving using hydraulic 

hammers. The repeated ‘hammering’ of the monopile foundation into the seabed results in sound 

and pressure waves that impinge upon fish. 

In contrast to the installation of monopile, steel jacket, tripod and possibly floating platforms, CGBFs 

and suction caissons are placed onto the seabed. There is no requirement for pile driving or drill‐

drive‐drill techniques. This means that installation and emplacement works for CGBF (and suction 

caisson) solutions have a significantly reduced impact pathway for noise impacts (in comparison with 

monopile foundations). Due to a lack of percussive piling operations CGBFs are unlikely to source 

damaging or behaviour changing levels of noise. Noise will be associated with emplacement but at 

levels difficult to distinguish from background vessel generated levels (Haelters et al., 2009). 

Noise effects of CGBFs on sensitive receptor groups are specifically discussed in Section 7.6 below. 

 

Page 87: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

71  

7.4 MegafaunaResources‐MarineMammals,TurtlesandBaskingSharksThis section is intended to provide an overview of the interactions likely to occur between CGBFs 

and their induced effects and impact pathways with marine megafauna (large‐very large animals). 

Information on the distribution and representativity of marine megafauna present in UK waters and 

associated with the Round 3 zones can be drawn from several sources at a national, regional and 

sub‐regional seas scale; along with project‐specific information derived from site‐specific 

characterisation and baseline surveys conducted to support EIA and Environmental Statements.  

Section 5.2 has identified ‘Marine Mammals’ as a receptor to activities and effects associated with 

each phase of the lifespan of a CGBF considered in this report. For the purposes of this report the 

receptor group ‘Marine Mammals’ should also be assumed to include pelagic sharks and sea turtles 

as well as whales, dolphins, porpoises and seals. This section will consider the ‘Marine Mammal’ 

receptors under several broad descriptors dependent upon life strategies and biological traits of 

marine megafauna. Each of the sub‐receptor groups may have different sensitivities to impacts from 

a CGBF and these are considered below. 

In the case of Round 3 offshore windfarm developments, the most likely megafaunal assemblages 

present will vary dependent upon regional seas and distance from the coast. Some receptor species 

such as Harbour porpoise Phocoena phocoena are relatively ubiquitous throughout UK waters, whilst 

Basking sharks Cetorhinus maximus have a distribution generally restricted to the Southwest 

Approaches and the Irish and Celtic Seas. Harbour seals Phoca vitulina tend to be coastally 

distributed compared with Grey seals Halichoerus grypus which have a wider offshore foraging 

range. 

7.4.1 ImportantMegafaunalResourcesMarine megafauna in UK waters are typically represented by pelagic Elasmobranchs (sharks), 

Pinnipeds (seals) and Cetaceans (whales, dolphins and porpoises) which are regularly recorded in all 

UK regional seas (UKBAP, 1999).  

Sea turtles also constitute a component of the UK marine megafauna but these are considered 

transient or migratory visitors and are not resident species, being occasionally recorded mostly along 

the western coasts of England, Wales and Ireland (UKBAP, 1999). 

PelagicSharksThere are many species of medium‐large sized pelagic sharks that frequent UK waters. Some are 

resident and others demonstrate migration across large distances. All the large species of sharks are 

carnivorous with most having a diet consisting of fish and squid and carrion (Shark trust, 2010; 

Compagno et al., 2005). The notable exception is the planktivorous Basking shark Cetorhinus 

maximus which feeds primarily on zooplankton. The large sharks encountered within the UK belong 

to the group Galeomorphii and include species such as: Basking shark Cetorhinus maximus; 

Porbeagle Lamna nasus; Longfin Mako Isurus paucus; Shortfin mako Isurus oxyrhincus; Thresher 

shark Alopias vulpinus; and Blue shark Prionace glauca. 

Coastal species such as the Porbeagle and Basking shark are mostly likely to have the highest rates of 

interaction with Round 3 zones (Bloomfield and Solandt, 2008), whilst pelagic species such as Blue, 

Thresher and the Mako tend to be more restricted in distribution, associated with deeper waters 

along the UK western offshore and nearshore (Compagno et al, 2005). 

Page 88: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

72  

SeaTurtlesAs previously mentioned, marine turtles in UK waters are considered migratory visitors with only the 

large Leatherback turtle Dermochelys coriacea considered part of the native British fauna (JNCC, 

2007).  

The majority of records from recent years are distributed along the Southwest Approaches and 

through the Irish Sea with the Leatherback the most common species recorded (TURTLE, 2012; MCS, 

2012; UKBAP, 1999). 

MarineMammalsMarine mammals in UK waters are represented by seals (Pinnipeds) and whales, dolphins and 

porpoise (Cetaceans) with numerous species from a range of families and genera. 2 species of seal 

are considered native to Britain, these are: the Harbour seal Phoca vitulina; and the Grey seal 

Halichoerus grypus. Colonies of Harbour seals are strongly distributed within the North Sea and 

Scottish waters with approximately 90% of the European population in British waters (Scottish 

Executive, 2007). Britain holds about 39% of the world’s population of Grey seals with 90% of these 

located in Scottish waters (Scottish Executive, 2007; JNCC 1995). 

There are 15 species of cetacean (whales, dolphins and porpoise) known to inhabit UK waters 

(http://www.seawatchfoundation.org.uk/speciesid.php); of these 10 have been recorded regularly 

along the coasts or nearshore waters (within 60 km of the coast) since 1980 (JNCC, 1995; Reid et al., 

2003). 

During June 2008 The National Whale and Dolphin Watch conducted a week of dedicated surveys 

across the UK. The findings from these surveys indicated that maximum counts were recorded in 

West Wales ‐ 83; and the minimum was southern England and Bristol Channel, both with 1 sighting; 

N = 372. The survey only provides a snap shot of sightings but does highlight important regions for 

cetaceans around the UK coast. The southwest coasts and through the Irish and Celtic seas to 

Scottish waters maintaining the most diverse assemblages of cetaceans (Scottish Executive, 2007; 

Reid et al., 2003). 

7.4.2 ImportantInteractionsbetweenMarineMammalsandBaskingSharkswithCGBFsSeveral possible interactions between offshore wind turbine foundations (including CGBFs) and 

marine mammals have been identified (Linley et al., 2007; Zucco et al., 2006; DONG Energy et al., 

2006; Scottish Executive, 2007). These are listed in Section 5.2 of this report and described in this 

section below and for the purposes of this report are assumed to also be applicable to Basking 

sharks and sea turtles.  

Sensitivities for elasmobranchs (sharks) with windfarms are generally associated with 

electromagnetic fields produced by electric current passing through the inter‐array and landfall 

power cables (Zucco et al., 2006). This effect pathway is predominantly associated with demersal 

elasmobranchs such as catfish, angel sharks, skates and rays and not necessarily galeomorphs. As 

this impact pathway is not sourced directly from the foundation structure itself (not associated with 

CGBF structures), then it is not considered within this report. 

Page 89: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

73  

CollisionRiskCollision risk with vessels associated with ground preparation (if used), CGBF installation and 

servicing is one of the main pressure pathways for marine megafauna. For sea turtles this is deemed 

negligible considering the very low abundance of turtles and general lack of exposure pathway. The 

risk to turtles from CGBF installation and emplacement is assumed to be less than that for collisions 

with other vessels in UK waters. This is due to the fact that transit to site with CGBF structures is low 

speed (Peire et al., 2009) and during emplacement installation plant is relatively static (Scottish 

Executive, 2007).  

Marine mammals are most susceptible to collision where vessels display erratic behaviour and/or 

operate at high speeds >14 knots. The expected typical speed of a dredger preparing a foundation 

pit (if this is required and dredgers are used rather than grabs) will be no more than 2‐3 knots and 

the vessel will transit along a predetermined route within defined seabed preparation areas. Both 

factors are likely to mitigate against any potential collision risks. No recorded collision incidents 

between aggregate dredgers and marine megafauna (including sea turtles) have been recorded in 

UK waters during 50+ years of operation (Mark Russell, BMAPA, pers. comm.). In the context of 

foundation pit excavation it is important to note that the areas will be much smaller (50 m by 80 m) 

than marine aggregate areas and associated dredging lanes (Peire et al., 2009). This will further 

mitigate collision due to the small area of dredging operations. Basking sharks show avoidance 

behaviour to slow moving vessels (Ian Reach, pers. obs.) and can be expected to avoid CGBF‐related 

vessel movements. 

All species of marine mammals, turtles and Basking sharks are mobile species that can avoid areas of 

active dredging and emplacement works and the resulting effects from vessel displacement, noise 

and vibration, and suspended sediment plumes. They are able to return to the area once dredging 

has ceased.  

PhysicalDisturbance,DisplacementandHabitatExclusionSeals and Harbour porpoise have been observed to avoid construction zones for OWFs (Scottish 

Executive, 2007; Zucco et al., 2006; DONG Energy et al., 2006) with noise described as the key factor 

along with physical presence of vessels. Hauled out seals appear to be the most sensitive with a 

‘flight reaction’ threshold of 900m in response to vessels reported by the Scottish Executive (2007).  

Vessel presence is by no means CGBF‐specific and will be considered as part of any project‐specific 

EIA. The industry forecast and this report assumes that the immediate UK market for CGBFs is 

intended to be the Round 3 offshore windfarm installations (Lynch and Fulcher, 2012). Round 3 

zones are generally located in the offshore marine environment with significant distances from 

coastlines and nearshore banks that act as seal haul out areas. Therefore the lack of potential 

exposure of vessel disturbance effects during the installation of CGBFs results in negligible effects. 

This determination appears to be supported by monitoring conducted at Nysted OWF during 

construction in 2003 (DONG Energy et al., 2006). Nysted foundations are CGBF so no piling 

associated with foundation installation was anticipated. The distance between a Harbour and Grey 

seal colony at Rødsand is greater than the 900m radius flight response threshold, as the Nysted 

Windfarm is 4 km away from the seal sanctuary. No displacement or flight response was observed in 

hauled out seals due to construction vessel traffic (DONG Energy et al., 2006). However there was a 

Page 90: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

74  

clear link to construction activities seen during sheet piling operations that were conducted out at a 

single foundation located approximately 10 km distant from the haul out area. The operation 

comprised piling of several individual sheet piles over a 3 month period. A significant decrease in the 

number of seals hauled out during pile driving was seen. These observations support the position 

that emplacement of CGBFs does not cause displacement to hauled out Harbour and Grey seals, or 

affect their access and use of these habitats, so long as disturbance zones are not encroached. 

Introduction of percussive sound into the marine environment however, does cause disturbance and 

displacement impacts. 

Satellite tracking of seals from the Rødsand colony has shown that there is no change in habitat use 

or foraging behaviour post‐construction. Present studies do not suggest that operation at the either 

Horns Rev or Nysted has resulted in negative impacts to the seal populations. 

There are no known records of displacement of basking sharks due to windfarm construction or in 

situ foundations and arrays.  

Monitoring at the Nysted and Horns Rev OWFs has shown some interesting habitat use responses 

from harbour porpoise Phocoena phocoena. Aside from effects associated with noise impacts 

(discussed below and in Section 7.6) the behavioural responses to the physical presence of the 

arrays have been studied. Strong negative impacts resulting in displacement of porpoise from the 

Horns Rev site during construction (due to pile driving operations) was observed with a subsequent 

return post‐construction (DONG Energy et al., 2006). The operation and presence of the array does 

not appear to have displaced the porpoises. At Nysted the small population of Harbour porpoises did 

not return to the array post‐construction (first 2 years of operation monitoring). Nysted used CGBFs 

but there was a sheet piling construction phase for one foundation that caused noise displacement. 

However, the porpoises appear to have remained displaced. The authors hypothesise that the 

difference in displacement response may be associated with the quality of the habitat at baseline 

conditions. Nysted had a small population and may not have been key (prime) habitat for that 

population. In contrast Horn Rev occupies a high density population area and the habitat appears to 

be important. Implications on populations cannot be estimated but are thought unlikely to be very 

large (DONG Energy et al., 2006). 

SmotheringofPreySpeciesSection 7.3.2 describes the effects of smothering on benthic habitats and communities and sensitive 

(low mobility) fish fauna. Smothering impacts resulting in direct impacts to megafauna are unlikely 

but there may be complex indirect effects due to cascades through trophic / food webs (Frederiksen 

et al., 2006). Alteration of benthic productivity may affect fish predator populations which may 

affect secondary predator condition or mortality; these effects may then knock‐on (cascade) to apex 

predators such as cetaceans and seals (Nybakken and Bertness, 2004; Frederiksen et al., 2006). 

However due to the large foraging ranges of marine mammals, and using Harbour seals as the 

benchmark due to smallest range at 60 km (Tappin et al., 2011), then the significance of removal of 

benthic communities and fish through smothering is deemed to have a negligible effect on marine 

mammal condition (Scottish Executive, 2007). 

Page 91: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

75  

IncreasedTurbidityandChangesinSuspendedSedimentConcentrationsThe Scottish Executive’s Renewables SEA (2007) identifies that increased turbidity can have effects 

on foraging, social and predator/prey interactions for marine mammals. Project‐specific variables 

will have to be considered through the EIA process with the highest loadings associated with any 

seabed preparation dredging operations where these are required. However considering the 

location of the Round 3 zones and information presented in Section 6 it is likely the small amounts of 

sediment released into the water column during CGBF emplacement will have a negligible impact on 

background suspended sediment and turbidity levels. Grey and harbour seals have been identified 

as having a high sensitivity to reductions in visibility, whilst the cetaceans in the study area have a 

moderate sensitivity to this impact (Scottish Executive, 2007). Evidence from marine aggregate 

Regional Environmental Assessments suggest that impacts from increased sediments and elevated 

SSC are not significant at a regional scale (EMU Ltd, 2010b, 2011; ERM 2011) for marine mammals. 

As these assess much larger scale dredging campaigns then any ground preparations works that may 

be associated with CGBF installation then it is reasonable to assume that impacts from this activity 

will be negligible in comparison. 

IncreasedForagingOpportunitiesAs discussed in Section 7.3.2 CGBFs will likely function as artificial reefs or fish aggregating devices. 

As a product of this habitat change they have the potential to alter the distribution of certain marine 

mammal fauna through enhanced foraging opportunities (Scottish Executive, 2006). Harbour 

porpoise, Harbour seals and Grey seals are the species most likely to interact / be attracted to the 

proposed arrays. There is also video footage available on the social medium YouTube that shows 

Porbeagle sharks recorded by remote operated video systems at North Sea submerged 

superstructures (Ian Reach, pers. obs.). Whether the artificial reef effect present opportunities that 

would enhance the foraging prospects for such species for the better is not yet clear. 

NoiseMarine mammals along with certain fish species are sensitive receptors to sound and pressure wave 

impacts. These species and identification of sound and pressure frequencies likely to cause death or 

damage are known to some degree in the context of offshore windfarm construction (Hiscock et al., 

2002; Zucco et al., 2006; DONG Energy et al., 2006; Scottish Executive, 2007; OSPAR Commission, 

2006). Modelling sound generation, propagation and attenuation is a standard component of OWF 

EIA. Source recording and monitoring is conducted and the understanding of impacts is being 

increased. 

The major source of noise impacts associated with OWF construction and operation, likely to affect 

megafauna receptors, is associated with the installation of monopiles, steel jackets and tripods by 

pile driving. The repeated ‘hammering’ of the monopile foundation into the seabed results in sound 

and pressure waves that interact with the receptor species. Currently all Round 1 and 2 OWF 

foundations have been steel monopiles with very limited use of steel jackets (with small suction 

caisson restricted to meteorological masts) incorporating piling or drive‐drill‐drive installation 

techniques used.  

In contrast to the installation of monopile, steel jacket and tripod foundations, CGBFs are placed 

onto the seabed. There is no requirement for pile driving or drive‐drill‐drive techniques. This means 

that installation and emplacement works for CGBF solutions have a significantly reduced impact 

Page 92: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

76  

pathway for noise impacts (in comparison with monopile, tripod and steel jacket foundations). Due 

to a lack of percussive piling operations CGBFs are unlikely to source damaging or behaviour 

changing levels of underwater noise and pressure waves. Noise will be associated with emplacement 

but at levels difficult to distinguish from background vessel generated levels (Haelters et al., 2009). 

Noise effects of CGBFs on sensitive receptor groups are specifically discussed in a Section 7.6 below. 

 

7.5 Avifauna‐BirdsThis section is intended to provide an overview of the interactions likely to occur between CGBFs 

and their induced effects and impact pathways with ornithological receptors (avifauna – birds) 

present at UK coasts and waters. Information on the distribution and representativity of marine 

megafauna present in UK waters and associated with the Round 3 zones can be drawn from several 

sources at a national, regional and sub‐regional seas scale; along with project‐specific information 

derived from site‐specific characterisation and baseline surveys conducted to support EIA and 

Environmental Statements.  

Section 3.2.7 and 5.2 has identified birds as a receptor to activities and effects associated with each 

phase of the lifespan of a CGBF considered in this report. In the context of this report it is important 

to note that effects associated with engineering and structures above the sea surface are not 

considered. The focus of identifying any effect and impacts on avifauna will be primary effects / 

pressures from CGBF structures related to: 

Water quality (changes in turbidity) interfering with predation; 

Alteration of habitat supporting birds species (roosting, nesting, loafing, prey species); 

and / or  

Disturbance / displacement. 

The bird receptors can be categorised under several broad descriptors dependent upon life 

strategies and biological traits. Ostensibly bird receptors can be identified as those passing through a 

windfarm array as part of foraging behaviour – foragers; those passing through an array as part of 

migration transits – passage migrants; and those species using the habitat for social behaviour e.g. 

loafing – rafters. Of these groups foragers may be attracted to different benthic habitat types 

dependent upon geomorphological features or prey habitat preference, or displaced if favoured 

habitats are removed. Similarly if CGBFs result in changes to benthic habitats or geomorphology that 

alters habitats then social behaviour may be impacted. The passage migrant receptor group are not 

investigated in this report further as any impacts are not directly related to CGBF presence / 

absence. The exposure pathways exist due to the proposed location of the OWF array and would be 

present even if alternative foundation solutions (to CGBFs) were used. 

7.5.1 ImportantBirdResourcesSeabirds including divers, grebes, seaducks, auks, gannets, gulls, terns, petrels and shearwaters are 

numerous in UK waters with internationally important populations of many species recognised by 

various designated nature conservation sites around the coastline and offshore.  

Page 93: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

77  

In the context of monitoring environmental effect associated with OWFs all seabird species should 

be considered of significant importance as most will have some form of conservation status. 

7.5.2 ImportantInteractionsbetweenBirdsAndCGBFsThe three main effects possibly affecting seabirds are: habitat loss due to disturbance, barrier 

effects, and fatal collisions (Zucco et al., 2006). Of these the first effect group, habitat loss due to 

disturbance (and /or alteration), accords with the analysis of critical effects in this report. Additional 

are water quality impacts on prey availability and predation success. Barrier effects and collisions are 

both related to above water pressures. 

HabitatLossAccording to recent studies reviewed in Zucco et al. (2006):  

“six out of the 35 seabird species regularly living in German waters strongly avoid offshore windfarms 

(Red‐throated Diver, Black‐throated Diver, Gannet, Common Scoter, Guillemot, Razorbill), and one 

other species (Long‐tailed Duck) was recorded which showed much lower numbers in windfarm areas 

after construction than before. Seven species occur within windfarms which do not show any obvious 

effects, and three gull species even increased in numbers compared to the preconstruction period. 

For 18 seabird species, it is not known how and whether the windfarms affect their habitat use.” 

It is also important to note that species which avoid the array areas are exposed to greater extent of 

habitat loss than just the windfarm area itself, due to avoidance distances from the turbines 

themselves (Scottish Executive, 2007; DONG Energy et al., 2006). DONG Energy et al. (2006) state 

that behavioural avoidance of the vicinity of turbines could also potentially displace feeding birds 

from windfarms. This would result in “effective” habitat loss as stated above. So, even if the habitat 

and food resource remain intact, they are lost to the birds because of their reticence to approach 

the turbines. However this habitat removal is predominantly associated with the visual presence of 

the turbines and is not believed to be associated directly with the foundation structures.  

Zucco et al. (2006) go on to say that physical habitat loss due to the introduction of a hard bottom 

fauna on foundations and scour protections seems to be of minor importance. The overall 

consideration should be judged on the net change of habitat i.e. baseline habitat loss considering 

new habitat created. A key question still unanswered is to what extent, if at all, seabirds make use of 

any new food supply associated with artificial hard substrata or if fish fauna attracted by reef effect 

will be exploited.  

To some degree any positive effects of additional food supply may be masked if the avoidance 

behaviour due to turbine presence means that this resource is effectively beyond reach. Also if bird 

fauna is attracted to new feeding habitat will this increase the possibility of collision with the 

turbines / rotors resulting in a higher mortality rate? 

DisturbanceandDisplacementDisplacement and disturbance during any ground preparation required and emplacement are 

impacts that may manifest for CGBFs. Pathways exists due to the presence of dredgers, removal of 

habitat and effects associated with the sediment plumes. Installation plant and vessels may displace 

birds from areas of use.  

Page 94: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

78  

Research has been conducted through the Marine Aggregate Levy Sustainability Fund (MALSF) to 

investigate potential impacts on seabirds from commercial marine aggregate activities. Cook and 

Burton (2010) considered all the impacts and potential impact pathways associated with marine 

aggregate operations by reviewing the existing research and the current state of knowledge up to 

2010. Various receptor species and their sensitivities to habitat removal, sediment plume effects 

including increases in turbidity and elevated suspended sediment concentrations and vessel 

displacement effects are considered. Foraging ranges from coastal colonies are also presented per 

species reviewed. 

Cook and Burton (2010) determined, considering the scale of dredging areas in the context of overall 

habitat availability, that habitat removal was likely to not be significant. Considering the scale of 

marine aggregate dredging then it is reasonable to propose that habitat loss to any CGBF ground 

preparation work required will have minimal effects on seabirds. However, this determination will 

have to be made through project‐specific EIA to ensure that local conditions and environment, 

including any ‘hot‐spots’ of local bird populations or aggregations, are accounted for. 

Cook and Burton (2010) also determined displacement of seabirds due to dredger presence was 

unlikely considering vessel traffic in English waters. For Round 3 projects specific navigation and 

vessel traffic studies will have to be commissioned. These will inform EIA regarding displacement 

effects. Critical to the assessment of vessel‐associated displacement impacts will be the density of 

vessels already using the habitat where CGBFs will be installed. If these areas are outside of existing 

navigation routes then additional displacement effects from any ground preparation required and 

emplacement vessels may occur. These effects may manifest both onsite and also whilst vessels are 

in transit to and from the site. Whilst these effects are not completely CGBF‐specific consideration of 

any differences in payload and carrying capacity between various foundation solutions may equate 

to variations in number of transits required. This may then result in different potential levels of 

disturbance. 

ChangesinWaterQualityCook and Burton (2010) determined that in association with marine aggregate operations that 

changes to water clarity resulting from the re‐suspension of sediments would negatively affect the 

foraging capabilities of some species. They report that in the case of the Sandwich tern, this has 

resulted in negative impacts on populations elsewhere. However, the impact of increases in turbidity 

is likely to be dependent (both in scale and spatial extent) on initial suspended sediment background 

levels. 

Considering any ground preparation activities that may be required for CGBFs in spatial and 

temporal terms, in relation to existing and proposed marine aggregate extraction in English waters, 

and considering the magnitude of these effects it is unlikely that the construction of OWFs using 

CGBFs will have significant effects on overall seabird populations. However local and site‐specific 

environmental conditions have to be considered and cumulative effects assessed. Loss of a foraging 

for a small period of time may not be significant alone, but if other foraging areas area also receiving 

plume impacts at the same time then this may have impacts on foraging efficiency. These 

considerations will be made at an EIA‐level.  

 

Page 95: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

79  

7.6 NoiseThis section is intended to present an overview of CGBF‐source noise effect pathways and associated 

impacts to biological receptors. Detailed information concerning noise frequencies, propagation and 

attenuation and attendant pressure wave effects can be drawn from technical papers, peer‐

reviewed papers and guidance notes generated over the last decade or so and are beyond the scope 

of this report to provide in detail. Information held by Subacoustech Ltd 

(http://www.subacoustech.com/index.shtml) and that generated by COWRIE 

(http://data.offshorewind.co.uk/) is particularly useful in setting the context and current knowledge 

base for noise‐related impacts from OWFs. It is expected that this information will be drawn upon 

and presented in any project‐specific EIA and Environmental Statement.  

The Marine Strategy Framework Directive (EC Directive 2008/56) is a European Union Directive 

which commits European Union member states to achieve ‘Good Environmental Status’ (GES) by 

2020 across Europe’s marine environment. Good Environmental Status (GES) involves protecting the 

marine environment, preventing its deterioration and restoring it where practical, while using 

marine resources sustainably. This aligns with the UK Government’s and Devolved Administrations 

vision of ‘clean, healthy, safe, productive and biologically diverse oceans and seas’. 

The Directive sets out 11 high‐level Descriptors of Good Environmental Status which cover all the 

key aspects of the marine ecosystem and all the main human pressures on them. Of significance for 

the offshore windfarm sector are the qualitative descriptors for determining good environmental 

status with particular reference to descriptor number 11: 

Introduction of energy including underwater noise is at levels that do not adversely affect the marine environment.

HM Government is currently conducting a public consultation on the descriptors for GES and various 

scenarios proposed to meet targets that may be set to achieve GES (HM Government, 2012). For 

‘impulsive noise’, which includes hammer piling generated noise, one of the proposed targets is to: 

“…establish and maintain a ‘noise registry’ which would record in space and time activities 

generating noise… (allowing a determination of)…whether they may potentially compromise the 

achievement of GES.” 

Issues surrounding considerations of Habitats Directive Annex IV European protected species (EPS) 

and compliance with Regulation 41(1)(b) of the Habitats Regulations and Regulation 39(1)(b) of the 

Offshore Habitats Regulations are considered in Section 7.7 below. 

Any compliance with legislation governing the production of underwater energy, including noise, 

may have time and cost repercussions for Round 3 developments. Any foundation solution that will 

not generate underwater noise at levels deemed to be significant may bring an advantage to the 

pre‐application and application process for any Round 3 project using them.  

As discussed within this review, and specifically within this section, it is apparent that CGBFs present 

a notable positive effect considering the lack of significant underwater noise emissions during 

emplacement. Alternative deeper water foundation solutions such as steel jackets and tripods will 

require piling operations. Whilst the piles are generally smaller (2.5‐4m) in diameter than monopiles, 

Page 96: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

80  

the fact that 3‐4 piles per foundation are required, may negate any reduced noise emissions due to 

possible smaller forces and durations of hammering required per pile i.e. the total period for 

installation of a single foundation structure may be similar to that associated with a monopile. 

Section 5.2 has identified noise as an effect with pathways associated with benthos (including 

sensitive fish species) and marine mammals (pinnipeds and cetaceans). Noise impacts are identified 

with various phases of the lifespan of a CGBF considered in this report. These are notably: ground 

preparation (if required), emplacement of a CGBF, remedial activities (placement of scour materials 

if deemed appropriate) and decommissioning.  

Propagation of noise during operation is not considered within this report as the source of emissions 

is not associated with the CGBF structure. 

The context of noise emissions will focus on the known greatest point source of underwater noise 

impacts; namely those associated with pile driving operations during installation of monopile, steel 

jacket and tripod (and possibly floating platform) structures. This is considered appropriate as there 

is a large evidence base for these effects (specifically monopiles and steel jackets) and all existing 

Round 1 and 2 projects have used monopiles or to a much smaller degree steel jackets. This is also 

significant given the lack of piling driving techniques required for the emplacement of CGBF 

structures (and suction caisson) on the seafloor. Whilst hammer piling‐sourced noise impacts are not 

derived from CGBF installation it is important to note that an additional noise source may be 

associated with the use of CGBFs: this is noise associated with dredgers or grabs and excavation 

operations as part of any ground preparation activities should they be required. 

7.6.1 SensitiveNoiseReceptorsAs mentioned above there are several receptors that are considered sensitive to artificial 

underwater noise emissions. Primarily these are: 

Benthic invertebrates; 

Certain fish species including larval stages; and 

Marine mammals ‐ Pinnipeds (Seals) and Cetaceans. 

The different receptor groups display different sensitivities and are likely to receive different 

exposures dependent upon the activities considered e.g. dredging of foundation pits, scour 

protection installation etc. if used, and their life strategies. A very brief overview of the various 

sensitivities is presented below.  

BenthicInvertebratesThere is a very weak evidence base considering noise impacts upon benthic invertebrates. The 

literature review conducted by Zucco et al. (2006) cites a few examples of species‐specific 

investigations that have been conducted. Research on effects of noise on growth and reproduction 

in the brown shrimp Crangon crangon is cited. Reduction in growth and the reproduction rate, 

increased aggression (cannibalism) and mortality rate, and decrease in food intake were observed in 

the laboratory. It is postulated that responses in the wild may manifest as avoidance behaviour 

resulting in displacement: it was not reported if this displacement was considered likely to be 

temporary or permanent.  

Page 97: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

81  

It is apparent that vibration associated with noise propagation underwater and operation of offshore 

windfarms may be more significant than the noise impacts alone (Zucco et al., 2006). The brittle star 

Ophiura ophiura can detect both near‐field vibrations down to a few Hertz and far‐field pressure 

waves (Moore and Cobb, 1986 cited in Zucco et al., 2006).  

It is interesting to note that due to recorded colonisation of existing wind turbine towers and 

foundations the effects of vibration is taken as an indication that noise and vibration have no 

detrimental effects on the attached epifauna (Hiscock et al., 2002; Zucco et al., 2006; OSPAR 

Commission, 2006). The Scottish Marine Renewables SEA did not even consider noise and vibration 

as a valid pressure group for benthic ecology receptors (Scottish Executive, 2007). 

Further studies are required to significantly add knowledge of the effects of noise and vibration on 

marine invertebrates. Especially in the range of those effects associated with foundation installation 

and operation of wind turbines. 

FishSpeciesThe Scottish Marine Renewables SEA (Scottish Executive, 2007) reports that marine fish can produce 

and hear noise which may be associated with alarm calls and social behaviour.  

Hiscock et al. (2002) reviewed in detail considerations of fish fauna sensitivity to underwater noise. 

In summary the sensitivity of fish species depends on their hearing thresholds, which have only been 

studied in a few species such as cod, salmon, haddock, plaice, pollock and dab. Swim bladders may 

resonate at low frequencies so that fish with swim bladders may be more sensitive to low frequency 

sound than fish without swim bladders, e.g. flatfish, sharks and rays. Similarly, larger fish with larger 

swim bladders may be more sensitive to noise impacts e.g. larger cod avoided areas subject to 

seismic surveys more than small cod (references cited in Hiscock et al., 2002). Further it is suggested 

that fish in which the swim bladder is physically coupled to the ear would be more sensitive still. 

The current state of knowledge implies that fish responses to noise, pressure and vibration impacts 

are not dissimilar for those recorded for marine mammals (see below). Primarily these are: 

Alteration of schooling and social behaviour; 

Avoidance resulting in displacement; and 

Death or physical damage resulting from pressure wave damage to air spaces (swim 

bladders). 

Adverse effects are also possible to fish eggs and larvae / fry and primarily those that are demersal 

(bottom) spawners (Hiscock et al., 2002; Perrow et al., 2011).  

MarineMammals–PinnipedsandCetaceansIn overview marine mammals are considered highly sensitive to artificial underwater noise 

generation and propagation. This is due in part to the ecology and life strategies that these fauna 

have evolved and the way that they use sound to interact with the marine environment (Thomsen et 

al., 2011). Cetaceans, in‐particular toothed whales (Odontocetes), use sound in nearly every aspect 

of the lives including communication, socialisation, navigation and hunting (by echo‐location) (Evans, 

1987). The baleen whales (Mysticetes) use sound to communicate and socialise over long distances, 

and possibly for navigation (Evans, 1987).  

Page 98: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

82  

Pinnipeds (true seals) use sound to communicate and socialise and recent research work has 

suggested that detection of sound or pressure changes may play an important role in assisting seals 

to sense their environment and to hunt efficiently (Royal Haskoning, 2005 cited in Scottish Executive, 

2007). Seals are also sensitive to noise impacts close to haul out sites which may cause displacement 

effects (Skeate et al., 2011). 

Within the zones listed by Hiscock et al. (Section 7.7.2 below) impacts on marine mammals can 

manifest in several ways but can generally be grouped as: 

Death – caused by damaging pressure waves disrupting internal organs and tissues; 

Injury – causing auditory impairment; 

o Permanent damage to hearing – Permanent Threshold Shift (PTS); 

o Temporary hearing loss – Temporary Threshold Shift (TTS); 

Displacement – causing receptor to vacate an area of sea; 

o Temporary ‐ until noise effects is removed / ceases; 

o Permanent – receptor does not return to area receiving the noise impact; and 

Masking – noise is such that it interferes with ecology of receptor e.g. prevents successful 

hunting. 

Observed effects of noise on marine mammals include: changes in vocalizations, respiration, swim 

speed, diving, and foraging behaviour; displacement, avoidance, shifts in migration path, stress, 

hearing damage, and strandings (Thomsen et al., 2011). Responses of marine mammals to noise can 

often be subtle and barely detectable, and there are many documented cases of apparent tolerance 

of noise (Weilgart, 2007). 

 

7.6.2 ImportantInteractionsbetweenNoiseSensitiveReceptorsandCGBFsHiscock et al. (2002) list the areas of noise effect on receptor species as: 

Zone of audibility ‐ the widest area in which an organism can perceive or hear the noise; 

Zone of responsiveness ‐ the area in which the organism reacts behaviourally or 

physiologically; 

Zone of masking ‐ the area in which the noise is intense (loud) enough to interfere with 

communication; 

Zone of physiological effect ‐ the area in which the sound level is great enough to cause 

physiological; and  

Damage such as hearing loss or injury to internal organs. 

As such a hierarchy of impacts is likely to occur with noise from offshore windfarm construction and 

operation, with minor effects such as masking of natural sounds at great distance to more serious 

effects of avoidance and displacement to injury or fatality close to the noise source. 

Different receptor species from the groups identified in Section 7.7.1 will have different sensitivities 

to noise impacts as a product of the thresholds at which they are intolerant and the exposure to the 

source of the noise – dependent upon complex physical environmental factors including; water 

depth, bathymetry, haloclines, distance and strength (and sound wave range) of the emission.  

Page 99: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

83  

Modelling of noise impacts conducted as part of routine EIA for offshore windfarm projects but 

currently there is little in‐field validation of these models conducted (Bailey et al., 2010).  

Therefore it is important that consideration of noise impacts receives a suitable level of monitoring 

and validation moving into the future. Especially as Round 3 zones are located in deeper water, are 

more distant from coastal and inshore geomorphologically complex features and with possible 

greater interaction with some sensitive receptors e.g. pelagic and less coastal species. 

For CGBF projects the notable phases of activity likely to source noise impacts are: 

Ground preparation (if required); 

Emplacement of a CGBF; 

Remedial activities (placement of scour materials if deemed necessary); and  

Decommissioning (if required). 

NoisefromDredgingFoundationPits(whererequired)Recent research has been conducted by Robinson et al. (2011) regarding noise generated by marine 

aggregate dredgers, funded through the Marine Aggregate Levy Sustainability Fund. The sources of 

noise associated with marine aggregate dredging are derived from: the vessel itself (propeller 

cavitation etc.), noise associated with machinery and specifically the centrifugal pump and the intake 

pipe, and possibly the draghead on the seabed. Noise emissions are also associated with grab bucket 

dredging, which is an alternative method to trailer suction hopper dredging that could be used for 

ground preparation on some projects. 

It is likely that fish are able to avoid sites of intermittent noise (Tillin et al., 2011), but that they 

habituate to regular noise of the frequency and level likely to be encountered close to shipping 

activity (Hiscock et al., 2002; Zucco et al., 2006; Scottish Executive, 2007; OSPAR Commission, 2006). 

This observation appears to be supported by the fact that commercially important inshore fisheries 

resource areas are located in close proximity to major vessel transit and marine aggregate licence 

areas.  

The research undertaken by Robinson et al. (2011) determines that hearing damage is unlikely to 

occur at the sound frequencies and intensities associated with aggregate dredging and that the main 

effect that could be expected in the affected zone would be avoidance by mobile animals. Dredging 

of sand cargoes was less noisy than dredging for gravel cargoes and it is proposed that this is due to 

variations in mechanical noise in the uptake pipe and pump due to the difference in particle size of 

the sediments. Therefore, if required, ground preparation of sandy seabeds will generate less noise 

than for areas of mixed and coarse sediments. 

Based on the Robinson et al. (2011) report, even though noise associated with any foundation pit 

preparation required is likely to be heard some distance away (as it is analogous to marine aggregate 

dredging with effects detected at distances of less than a kilometre), the effect of noise disturbance 

on fish is likely to be negligible. At present there is insufficient scientific evidence to support firm 

conclusions relating to the impacts of dredge‐related noise on fish communities particularly 

regarding recovery from any displacement that occurs. However, the fact that successful commercial 

fisheries coincide with marine aggregate licence areas implies that fish either acclimate to dredger 

noise, or rapidly return areas from which they may be displaced.  

Page 100: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

84  

CEDA (2011) states that noise generated from the operation of grab buckets dredging is generally 

relatively low frequency and these are not expected to elevate above background levels associated 

with coastal vessel transits. 

PilingOperationsAs previously stated the single largest source of anthropogenic‐sourced underwater noise is 

recorded from pecussive piling activity associated with foundation installation (Hiscock et al., 2002; 

Zucco et al., 2006; Scottish Executive, 2007; DONG Energy et al., 2006; OSPAR Commission, 2006; 

Perrow et al., 2011a, 2012; Bailey et al., 2010; Thomsen et al., 2011). Pile driving generates very high 

sound pressure levels that are relatively broad‐band (20 Hz ‐ > 20 kHz) and these interact with 

auditory ranges of the sensitive receptors. 

The construction monitoring programme at the Danish OWFs, Horns Rev and Nysted, observed the 

effects of piling operation on sensitive receptors. In‐particular Harbour and Grey seals and Harbour 

porpoise were monitored to look for any impacts or adverse effects associated with piling 

operations (DONG Energy et al., 2006). A good comparison between piled and non‐piled installation 

should have been achieved given that Nysted uses CGBFs and Horns Rev is built with monopiles. 

However, the requirement for sheet metal piling at one of the foundations at Nysted negated this 

comparison (DONG Energy et al., 2006; Zucco et al., 2006).  

In overview the monitoring of Harbour porpoise at Horns Rev showed a statistically significant 

displacement of Harbour porpoise from the location and vicinity of the installation site (DONG 

Energy et al., 2006). This displacement was strong and occurred during the entirety of the 

construction period but relatively short‐lived, as the population returned to the area in pre‐

construction numbers within the first 2 years post‐construction.  

The data collected from Nysted was also useful in the context of piling noise impacts. During the 3 

months that intermittent sheet metal piling occurred did there was a strong negative reaction with 

total avoidance of the area at a population scale. Further, there is a prolonged effect as during the 

first 2 years post‐construction the porpoise did not returned to the area. Some of the hypotheses for 

this prolonged displacement are presented in Section 7.6.2 above. However this does highlight the 

fact that site‐specific considerations are extremely important when determining project‐specific 

impact scenarios. 

For the Harbour and Grey seal populations in the vicinity of Horns Rev and Nysted no statistically 

significant variations in population numbers or usage of the areas were observed, except for the 

haul out site as Rødsand during the pile driving operations, when reduced numbers of seals were 

observed hauled out. These numbers recovered to pre‐construction levels following cessation of 

piling. 

The noise monitoring recorded by Haelter et al. (2009) at the Thornton Bank OWF, Belgium, is 

interesting because this assessed the emplacement of large CGBF structures into the southern North 

Sea. The marine environment of the Thornton Bank may be similar to some Round 3 zones and 

specifically noise effects during emplacement where recorded. The levels measured were 5 to 25 dB 

higher than the background noise levels making them similar to increases caused by local ship traffic.  

Page 101: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

85  

To set the emplacement of the CGBFs in context, during this first phase of piling activity at the Bligh 

Bank (Belwind) OWF, Belgium, the noise from pile driving was recorded at a maximum peak of 

196dB re 1μPa at a distance of 520m, with a piling blow energy of 990kJ (Norro et al, 2010). 

The monitoring studies conducted at the Belwind OWF, confirmed that the underwater noise level 

associated with piling should be of concern, particularly for Harbour porpoise (Norro et al., 2010). 

The authors further stated that it is very difficult to quantify and qualify the effects of the increased 

underwater noise level on other components of the ecosystem and that further research is required 

to model noise propagation in the bathymetrically complex southern North Sea region.  

Skeate et al. (2011) observed that there was a significant displacement of Harbour seals from the 

haul out sites at the Scroby Sands bank, UK, during the construction of the Scroby Sands OWF. This 

appeared to be linked to the piling construction period. Similar to the case of Harbour porpoise at 

Nysted, the seals did not return during the post‐construction period. Grey seals at the site appeared 

less sensitive and have subsequently returned to the area. The continued absence of pre‐

construction population of Harbour seals may be related to inter‐specific competition between Grey 

and Harbour seals with similar shifts in inter‐species populations observed at other East Anglian 

coast colonies (Skeate et al., 2012). However it is suggested that the noise impacts may have 

precipitated this population change at Scroby Sands. 

Previous reported research at Scroby Sands may also help explain the decline in the Harbour seal 

population there. This also is linked to piling impacts, but related to herring Clupea harengus egg 

mortality due to noise, pressure and vibration induced impacts (Perrow et al., 2012). Herring are 

important prey species for apex predators such as Harbour seals and Little tern Sternula albifrons. 

Perrow et al. suggest that a significant reduction in herring abundance from 2004 (construction year) 

onwards could not be explained by environmental factors. Intensely noisy monopile installation 

during the winter spawning period was suggested to be responsible. Reduced prey abundance 

corresponded with a significant decline in Little tern foraging success and also decline of the local 

Harbour seal population (linked to displacement effect). 

Bailey et al. (2010) conducted recording studies during the piling of two steel jacket foundations to 

support 5 MW turbines offshore from the Moray Firth, Scotland. Each steel jacket required four piles 

to secure the structure to the seabed at water depths of 42 m (BCD). Pile‐driving operations took 

two hours per pile resulting in a total duration of 16 hours for both foundations. Hammer blow 

forces of 200‐500 kJ per strike were measured and a mean average of just over 6000 blows was 

required per pile. Strike rate was just under one minute per blow. Noise emissions at damaging 

levels to bottlenose dolphin were recorded at a distance of 100 metres from the steel jacket. 

However noise at levels likely to cause displacement ot otherwise interfere with normal behaviour 

were detected at a distance of 50 km away. Noise levels above ambient were detectable at 70 km 

but no longer distinguishable at a distance of 80 km.  

Whilst there are locality specific issues regarding seabed topography it is clear that there are 

significant effects associated with the installation of steel jacket (and likely tripod) structures, much 

the same as for steel monopiles. Also a further likely significant factor is the number of piles per 

foundation structure for steel jackets (3‐4) and tripods (3). Piling duration may be less per pile than a 

Page 102: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

86  

5‐6 m diameter monopile, but Bailey et al. (2010) have shown that damaging noise emissions are 

associated with installation of these foundations.  

It is important to recognise the fact that for CGBFs piling is not required to emplace the structures 

onto the seabed. Without the piling operations there is no effect / pressure pathway associated with 

sensitive receptors. As such the adverse effects from piling do not exist. Perrow et al. (2011) suggest 

that a precautionary approach may translate into greater restriction of the timing and duration of 

pile‐driving activities or the adoption of alternative means of turbine installation. This view may also 

align with the ‘noise register’ approach considered to deliver GES under the MSFD. Skeate et al. 

(2012) go further to recommend that effective means of protecting marine mammals (seals) is to use 

alternatives to pile‐driven monopiles such as gravity‐base designs (along with the development of 

more effective means of mitigating noise).  

A consortium of developers, sponsored by the German Federal Environment Ministry, as part of the 

Evaluation of Pile Driving Noise Mitigation Systems (ESRa) program, has just published a report (July, 

2012) detailing field trials in the German Baltic Sea to assess the use of piling noise mitigation 

systems (ESRa, 2012). Protecting Harbour porpoises from harmful noises during pile driving 

operations has undergone close scrutiny by the German authorities. During construction of the 

Alpha Ventus and BARD Offshore 1 windfarms the noise emission limit of 160 dB at 750 m from the 

source was often exceeded by 10 dB (a factor of 10). Five noise protection systems were compared: 

a pipe with an internal bubble curtain; the fire hose method; a small, staged bubble curtain; noise 

reduction shells with two bubble curtains and a Hydro Sound Damper (ESRa, 2012; Wilke et al., 

2012). 

The pile‐driving operations were evaluated by the Institute for Technical and Applied Physics of 

Oldenburg. It was found that within a 750 m radius from the sound source, and in the highest energy 

range of 100‐300 Hertz, the sound damping effect was found to be between 0 and 10 dB (Wilke et 

al., 2012). Wilke et al. (2012) also found that at the range up to around 5000 Hertz, to which sea 

mammals are particularly sensitive, the highest reduction effect was 25 dB. 

The authors of the study conclude that further research to improve the understanding of the factors 

influencing sound during pile‐driving operations for offshore wind turbine foundations are required. 

Also the cost of employing such mitigation, both in terms of capital and time, is still currently a 

limiting factor in effectively deploying these mitigation systems (ESRa, 2012). 

7.6.3 SummaryPossibly the single most important consideration for the use of CGBFs in the marine environment is 

the fact that piling is not required to emplace the structures onto the seabed.  

Monopiles, steel jackets and tripods (and possibly floating platforms) all require hammer piling to 

secure them to the seabed. Steel jacket and tripod foundations can each have 3‐4 piles with piling 

times of approximately 2 hours per pile. Cumulatively these noise emissions are very likely to be 

significant. In the absence of piling operations associated with CGBF emplacement there is no high 

impact noise pressure pathway linking CGBFs with noise sensitive receptors. As such the adverse 

effects do not exist.  

Page 103: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

87  

There is an increase in legislative requirements to demonstrate no impulsive noise‐related impacts 

on sensitive and designated nature conservation species. The use of CGBFs can streamline Round 3 

pre‐application and application phases when considering noise impacts – specifically as use of CGBFs 

may not require the need to be added to a ‘noise register’ and should be secure under Regulation 

41(1)(b) of the Habitats Regulations and Regulation 39(1)(b) of the Offshore Habitats Regulations (as 

considered in Section 7.7 below).  

 

   

Page 104: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

88  

7.7 DesignatedSitesandotherNatureConservationInterestsThis section presents an overview of the current and proposed Marine Protected Areas (MPA) 

network in UK waters. Detailed information can be drawn from several sources including: site 

assessment dossiers; department briefings; (Habitats) Regulation 33(2) and 35(3) packages and 

(Regulatory) Impact Assessments.  

Section 5.2 has identified nature conservation habitats and species as a receptor to activities and 

effects associated with each phase of the lifespan of a CGBF considered in this report. Many of the 

considerations of sensitivity of conservation habitats and species have been described in the 

preceding sub‐sections of Section 7 of this report. Benthic habitat and species, fish species, bird 

fauna and megafauna all have representatives that are considered to be of conservation importance. 

An overview of international and national marine nature conservation legislation is provided in 

Appendix A. Lists of international and national marine habitats and species of conservation 

significance and likely to interact with CGBFs are presented in Appendix F. 

It is important to note that impacts associated with development of construction yards in terrestrial, 

coastal and estuarine habitats are beyond the scope of the report; including any designated nature 

conservation features restricted to association with these operations and not also found offshore. 

Nature conservation sites at the coast may need to be considered by a project using CGBFs, though 

for Round 3 developments it is believed unlikely that environmental effects will manifest at the coast 

(see Sections 5.3, 6.2.1 and 6.2.3). 

Projects that may use CGBFs are most likely to have to consider impacts upon:  

Special Areas of Conservation (SAC) designated under the Habitats Directive;  

Special Protection Areas (SPA) designated under the Birds Directive; and  

Marine Conservation Zones (MCZ) to be designated under the Marine and Coastal Access Act 

2009 (at the time of drafting this report MCZs are recommended to Defra, who are 

reviewing them before designation). 

7.7.1 NatureConservationFeaturesLists of habitats and species of significance at a Northeast Atlantic bio‐geographic regional scale are 

presented in Appendix F. These include Annex I habitats, Annex II species and Annex IV European 

protected species of the Habitats Directive and Annex I bird species listed under the Birds Directive. 

Also included are broadscale habitats, habitat features of conservation interest and species of 

conservation interest listed under the Marine and Coastal Access Act (2009). Links to other lists of 

marine habitats and species of conservation importance, such UK biodiversity Action Plans and 

OSPAR Convention lists, are also presented in Appendix F. 

The focus of conserving marine habitats and species was derived from protecting rare, scarce and 

threatened species. A shift in recent years has brought a focus onto areas of sea that are 

representative of the range of marine wildlife in UK waters thus building resilience into the MPA 

network. 

As described below the focus for CGBFs should be consideration of the location of Round 3 zones, 

the extent of likely direct and indirect impact footprints from the foundations and spatial or 

Page 105: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

89  

temporal overlap with designated features within designated or recommended nature conservation 

sites.  

The main focus of assessing interactions of effects from CGBFs with nature conservation features will 

be set by the conservation objectives for a site. These objectives detail the designated features and 

parameters used to ensure that features are maintained or restored to favourable condition; 

allowing contribution to overall favourable conservation status for that habitat or species at a 

network scale. 

MPA site‐specific information is provided (from the statutory nature conservation agencies) to 

advise management of activities that interact, or may foreseeably interact, with each MPA. This 

information e.g. Regulation 35(3) packages for SACs, will indicate: the boundary of the site; location 

and extent of designated features; important biological components and attributes (with 

thresholds); and sensitivities to effects. These allow assessment of impacts and judgement about 

feature condition to be determined. 

Assessing the impacts on any features from CGBF derived impacts will usually be conducted through 

a Habitats Regulations Assessment within the EIA. If the statutory nature conservation agencies 

(SNCAs) cannot determine that there will be no likely significant effects then an appropriate 

assessment will be required. The most common mechanism for assessment is through the Habitats 

Regulations or Offshore Habitats Regulations The appropriate assessment process is analogous to a 

detailed, focussed EIA and must allow a determination of no adverse effect on site integrity, or not, 

to be made. 

Assessment of noise impacts from OWF installation and construction has recently received intense 

scrutiny from the SNCAs. Case Law from the European Court of Justice has tightened the 

considerations of deliberate disturbance of fauna listed under Annex IV ‐ European Protected Species 

‐ of the Habitats Directive. It is now an offence (under Regulation 41(1)(b) of the Habitats 

Regulations and Regulation 39(1)(b) of the Offshore Habitats Regulations) to deliberately disturb 

wild animals of a European Protected Species: 

“…in such a way as to be likely significantly to affect:  

a) the ability of any significant group of animals of that species to survive, breed, or rear or 

nurture their young; or  

b) the local distribution or abundance of that species.” 

The installation of driven piles in the marine environment without mitigation is likely to produce 

noise levels capable of causing injury and disturbance to marine mammals. Such effects, although 

incidental to consented activities, have the potential to conflict with the legislative provisions of The 

Habitats and Offshore Habitats Regulations. 

JNCC, NE and CCW have produced guidance on ‘the protection of marine European protected species 

from injury and disturbance’ (JNCC, NE and CCW, 2010). The JNCC has also produced a specific ‘piling 

protocol’ which forms part of that more general guidance and the recommendations should be 

considered as ‘best practice’ for piling operations (JNCC, 2010b). The implications of this statutory 

assessment are discussed in the section below. 

Page 106: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

90  

The Marine Strategy Framework Directive (MSFD) commits European Union member states to 

achieve ‘Good Environmental Status’ (GES) by 2020 across Europe’s marine environment. Good 

Environmental Status (GES) involves protecting the marine environment, preventing its deterioration 

and restoring it where practical, while using marine resources sustainably.  

The Directive sets out 11 high‐level Descriptors of Good Environmental Status which cover all the 

key aspects of the marine ecosystem and all the main human pressures on them. Of significance for 

the offshore windfarm sector are the qualitative descriptors for determining good environmental 

status with particular reference to descriptor number 11: 

Introduction of energy including underwater noise is at levels that do not 

adversely affect the marine environment. 

The issues from MSFD Descriptor Target number 11and the benefits from the potential use of CGBFs 

in Round 3 projects are discussed above in Section 7.6. 

7.7.2 ImportantInteractionsbetweenNatureConservationFeaturesandCGBFsThe potential impacts on designated nature conservation features from CGBFs are detailed in 

Section 5.2 but may be summarised as:  

• Impacts within the boundaries of the dredged site; 

• Impacts outside the boundaries of the dredge site; 

• The rate of recovery of seabed resources following emplacement and settlement 

impacts and at decommissioning; and 

• Impacts on non‐site protected mobile species. 

As discussed in many of the sections above the extent of impacts will depend on a combination of 

factors including: the operation occurring; the sediment and habitat type; the sensitivity of the 

receptors to the impact; the physical conditions of the environment, the type of CGBF being used 

along with orientation, spacing and possibly timing of operations. Therefore only generic statements 

can be made about significant effects on nature conservation features outside of a project‐specific 

EIA. 

FeatureRemoval/LossEnvironmental effects associated with the lifespan of a CGBF on the seabed will result in physical 

effects that may interact with and influence the health, function and quality of conservation sites, 

features and species. The most significant impact from CGBFs will be the direct removal of habitats 

and species. If the CGBFs are located on designated features then this will result in direct impacts of 

physical loss of the feature. This may not exclude the co‐location of CGBFs with certain nature 

conservation features e.g. Annex I sandbanks that are submerged by seawater at all times, but a 

large amount of time and likely costs will have to be expended by the developer during the 

application process to allow a determination of no adverse effect on the integrity of the site.  

Feature removal or loss may be associated with: dredging of the foundation pits (if required); under 

the physical footprint of the CGBF; below any surficial scour protection (if used); and from possible 

reef effect halos. Consideration of any areas intended for disposal of the foundation pit fines (if 

appropriate) will also have to be assessed. 

Page 107: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

91  

Physical loss may also result from smothering effects associated with settlement of fines dredged 

from the foundation pits if undertaken. If disposal or storage of the dredged fines is proposed within 

the boundary of the site then the location of features related to the smothering footprint will have 

to be assessed. If the deposited fines are intended to be used for foundation pit backfill then further 

smothering effects may result at both the ‘storage’ area when they are re‐dredged, and also at the 

foundation pit when deposited for backfill (if needed). It is considered unlikely that any significant 

sediment plumes or smothering impacts will be associated with CGBF ballasting operations (aside 

from those mentioned previously from any re‐dredging operations). 

During decommissioning the fate of ballast will also have to be considered. If the intention is to re‐

deposit ballast originally sourced from foundation pits within the designated site then toxic 

contamination will have to be assessed for impact pathways. There will also be a smothering 

footprint involved with the deposition, though this may be mitigated if associated with particle sizes 

likely to allow fast colonisation e.g. sands. If crushed rock fines or non‐marine gravels are used for 

ballast then there may be a requirement to either dispose of these (when pumped out of the CGBF) 

at a licensed disposal site. If the developer intends to deposit these within the site and certainly onto 

any designated feature then loss through smothering will have to be assessed along with any toxic 

contamination pathways. SNCAs are likely to have a position that ballast and scour protection 

material, along with any foundation layers will have to be removed from the seabed during 

decommissioning. There is evidence to support a position that foundation layers may be left in situ 

at decommissioning so long as the material is deeper than 1 m below the seabed surface and not 

likely to be exposed through subsequent seabed bedform activity. This is supported by the use of the 

upper 1 m of sediment layers by infaunal species (EMU Ltd, 2010a; Hiscock et al., 2002). So long as 

the foundation layer is back‐filled to a depth greater than 1 m (below seabed surface) with a 

sediment of the same grain size as occurred naturally pre‐installation, then recovery to baseline 

conditions may be achievable. However this will likely require detailed project‐specific discussion 

between the developer and the relevant SNCA(s).  

FeatureDamageandDisplacementImpactsIndirect effects that overlap designated features will have to be assessed for impact. This may result 

from alterations in sediment transport pathways and sediment flux from hydrological changes due 

to CGBF structures. Changes in near seabed energy from altered wave climates and tidal streams 

may affect sediment habitats, though at the water depths considered for Round 3 zones these are 

unlikely to manifest (see Section 6.2). Impacts at the coastline are also unlikely to occur in 

association with CGBFs at Round 3 zones (see Section 6.2) so impacts on habitats at coastal sites are 

not expected.  

Sediments plumes resulting from various dredging activities associated with ground preparation (if 

required) will raise turbidity levels and increase suspended sediment concentrations. If these 

footprints overlap designated features then an assessment of significance will be required. It is 

expected that indirect impact halos for sediment plumes will be the same as those routinely 

assessed for marine aggregate extraction operations in relation to MPAs; though of smaller volumes 

and effectively time‐limited events unlike aggregate extraction (NE and JNCC, 2011).  

The introduction of hard substrata into designated sites with sediment habitat features will alter the 

habitat matrix. Reef effect halos may alter the infaunal communities. If these halos overlap the 

Page 108: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

92  

extent of designated features then interactions may need consideration. Loss or damage of infaunal 

communities may occur though this is generally restricted to predators foraging out from the ‘reefs’ 

up to no more than 200m away (reference cited in Zucco et al., 2010; Bremner et al., 2006).  

Nature conservation benefits of artificial hard substrata acting as reefs or as fish aggregating devices 

(FADs) and any increased biodiversity effects are generally not considered by the SNCAs as positive 

effects if located within a designated site (Ian Reach, pers. obs.). These are not necessarily 

considered as negative effects either, just that if the site is designated for sediment habitat features 

then introduction of reef communities does not contribute to delivering conservation objectives for 

those features and that site. This said there may be positive effects for certain fish species or apex 

predators such as seals and Harbour porpoise; through increased foraging efficiency that may 

contribute to favourable condition of a conservation species. These effects are difficult to 

demonstrate but should not be discounted. 

Displacement of sensitive species may result due to the presence of artificial structure on the 

seabed. DONG Energy et al. (2006) reported that Harbour porpoise displaced from Nysted OWF, 

Denmark, by piling operations had not returned to the habitat space up to two years post‐

construction. It is not determined if this continued displacement is due to the presence of the array 

or that other ecological factors are contributing. Regardless it is unlikely that CGBFs themselves will 

cause any greater displacement effects of mobile fauna than other foundation solutions.  

Zucco et al. (2006), Scottish Executive (2007), and DONG Energy et al. (2006) have all noted that 

habitat loss and subsequent displacement of sensitive bird fauna may become more critical under 

cumulative conditions.  For species with highly restricted marine habitats, habitat loss may have 

population level effects, because displaced birds have poorer quality or little alternative habitat to 

move to. However, it is clear that the habitat loss effect and displacement for bird fauna is related to 

physical presence of the array itself and above waterline effects of towers and turbines. The area of 

habitat loss is therefore much greater than the physical footprint of any foundation type. As turbine 

sweep diameters increase then the required inter‐foundation spacing will also increase. This may 

result in greater habitat loss for sensitive mobile species, however again this is independent of 

foundation type. 

PossiblePositiveEffectsCGBFs may provide pathways for nature conservation gains. The required consideration of 

deliberate disturbance to European Protected Species is useful in the context of the use of CGBFs. 

The fact that noise emissions from emplacement of these structures in no more noisy than that 

sourced from shipping transits (Haelters et al., 2009) means that demonstrating compliance with 

Regulation 41(1)(b) of the Habitats Regulations and Regulation 39(1)(b) of the Offshore Habitats 

Regulations, should be much less onerous than for projects involving pile driving operations (e.g. 

steel jackets and tripods). It is also possible that installation and emplacement of CGBFs may 

mitigate the requirement for a project using them to be required to enrol on a ‘noise register’; if this 

proposed legislative procedure is agreed necessary from responses to Defra’s MSFD consultation. 

The significant lack of impact pathway may transfer into significant time and cost savings during the 

application phase of a project proposing to use CGBFs.  

Page 109: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

93  

The combination of reef effect and fish aggregating device effects and the possibility of fishery 

exclusion zones around turbines mean that positive effects on local fish population may accrue. 

Post‐construction monitoring of the Thornton Bank OWF, Belgium, showed that some fish species 

attracted to the CGBFs were of conservation importance such as cod Gadus morhua (Reubens et al., 

2010). It has been proposed that the FAD effect may contribute to MPA‐like effects with safe refuge 

for certain commercial species that may then ‘spill‐over’ into fishery accessible areas. The counter‐

point is that if no fishery exclusion zones exist then catch per unit effort (CPUE) may increase 

resulting in increased population‐level pressures for certain species (Reubens et al., 2010). 

DONG Energy et al., (2006) noted that the ross worm Sabellaria spinulosa may have the potential to 

colonise the foundation structure at the Horns Rev OWF, Denmark. This species of tube‐building 

polychaete worm can form biogenic reef structures which qualify as Annex I habitat (also listed 

under the OSPAR Convention; UK BAP; and MCZ lists). It has been hypothesised that structural 

complex artificial structures in the right environmental conditions may have a high potential for 

colonisation or to have increased reef effects (Zucco et al., 2006). CGBFs certainly fall into this 

category.  

If CGBFs do act as sanctuaries for nature conservation important habitats and species it is 

noteworthy to question the consequences that decommissioning these structures may have on this 

nature conservation enhancement.  

InvasiveNon‐NativesOrganismsArtificial hard substrata may act as ‘stepping stones’ for invasive non‐native epiphytic and epifaunal 

species by providing habitat that elsewise would not be present in sediment habitats (Hiscock et al., 

2002). This may be even more critical for species that have no dispersive planktonic larval stage. 

Most MPA conservation objectives have a statement about the introduction of invasive non‐natives 

resulting in detrimental effects, possibly resulting in failure of maintaining favourable conservation 

status.  

The monitoring programme at the Thornton Bank OWF reported the presence of non‐native 

barnacle species Balanus perforatus and Megabalanus coccopoma in the barnacle zone (Degraer et 

al., 2010). Consideration of appropriate control methods may be required if invasive non‐native 

species are detected. However, there are examples of SACs being designated in favourable condition 

with a large community of invasive non‐native species present within the site e.g. The Solent 

Maritime European marine site and the American slipper limpet Crepidula fornicata. So it is unclear 

at this time of the significance that the presence of these species in relation to conservation 

objectives. 

The consideration of non‐native species colonisation is not CGBF‐specific though the increased 

surface area of these structures may facilitate a higher potential for colonisation; though this 

statement is not substantiated by evidence. 

Page 110: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

94  

7.9 SummaryofBiologicalReceptors 

A comparison of the relative magnitude of effects, between a CGBF and alternative solutions, is 

presented considering the evidence reviewed in this section. Note that the effects of a large number 

of small foundations, compared with a smaller number of larger foundations, is not yet well 

understood. Also note that this table makes no estimation of the significance of an effect. 

 

Key 

I  Installation (including any ground preparation and remedial works required) O Operation (including any settlement) D  Decommissioning 

 

Receptor  Sub‐receptors  Description  Phase effect 

detected 

Relative effect  

Scale  Significance 

Biological ‐ Benthos 

Infauna Epifauna Mobile species 

Direct loss of habitat from placement of foundation only  

I / O / D  CGBF similar to other Round 3 solutions in most cases 

May be moderately significant across a large array  

      "  Direct loss of habitat from placement of foundation plus surficial scour protection (if used)  

I /O / D  CGBF similar to or greater than other Round 3 solutions in most cases  

May be moderately significant across a large array 

      "  Alteration of the sediment habitat and communities through changes to particle size or sediment matrix due to changes in local hydrodynamic caused by the foundation  

I / O  CGBF similar to or less than other Round 3 solutions in most cases 

May be moderately significant across a large array 

      "  Habitat loss from excavation of sediment from ground preparation for CGBF (if required) and removal 

I / D  CGBF similar to or greater than other Round 3 solutions in most cases  

May be moderately significant across a large array 

      "  Smothering from sediment plumes by ground preparation for 

I / D  CGBF similar to or greater than other 

May be moderately significant 

Page 111: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

95  

CGBF (if required) or drilling of pile or removal  

Round 3 solutions where used 

across a large array 

Infauna Epifauna Mobile species 

Impact from increased turbidity or raised suspended sediment concentrations from sediment plumes by ground preparation for CGBF (if required) or drilling of pile or removal  

I / D  CGBF similar to or greater than other Round 3 solutions in most cases 

May be moderately significant across a large array 

      "  Alteration of sediment habitat from changes to sediment transport pathways  

O  CGBF similar to other Round 3 solutions in most cases  

May be moderately significant across a large array 

      "  Reef effects  

O / D  CGBF similar to or greater than other Round 3 solutions in most cases  

May be moderately significant across a large array 

      "  Foundation acting as a ‘steeping stone’ for colonisation by non‐native invasive species 

O / D  CGBF similar to other Round 3 solutions in most cases  

May be moderately significant across a large array 

      "  Noise impacts to fauna from emplacement / installation activity or removal 

I / D  CGBF less than other Round 3 solutions   

Likely to be insignificant for CGBFs 

Biological ‐ Fish 

Demersal Pelagic Reef‐dwellers 

Direct loss of habitat from placement of foundation only  

I /O / D  CGBF similar to other Round 3 solutions in most cases  

May be moderately significant across a large array 

      "  Direct loss of habitat from placement of foundation plus surficial scour protection (if used)  

I / O / D  CGBF similar to or greater than other Round 3 solutions in most cases  

May be moderately significant across a large array 

Page 112: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

96  

  Demersal Pelagic Reef‐dwellers 

Alteration of the sediment habitat supporting fish fauna and assemblages through changes to particle size or sediment matrix due to changes in local hydrodynamics caused by the foundation  

I / O  CGBF similar to or less than other Round 3 solutions in most cases 

May be moderately significant across a large array 

      "  Habitat loss from excavation of sediment from ground preparation for CGBF (if required) 

I / D  CGBF similar to or greater than other Round 3 solutions in most cases  

May be moderately significant across a large array 

      "  Smothering from sediment plumes by ground preparation for CGBF (if required) or drilling of pile or removal 

I / D  CGBF similar to or greater than other Round 3 solutions in most cases  

May be moderately significant across a large array 

      "  Impact from increased turbidity or raised suspended sediment concentrations from sediment plumes by ground preparation for CGBF (if required) or drilling of pile or removal  

I / D  CGBF similar to or greater than other Round 3 solutions in most cases 

May be of minor significance across a large array 

      "  Alteration of sediment habitat from changes to sediment transport pathways  

O  CGBF similar to other Round 3 solutions in most cases  

May be moderately significant across a large array 

      "  Fish Aggregation Device potential 

O  CGBF similar to or greater than other Round 3 solutions in most cases  

May be moderately significant across a large array 

   

Page 113: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

97  

  Demersal Pelagic Reef‐dwellers 

Potential for increased prey species and foraging halos over surrounding sediment habitats  

O  CGBF similar to other Round 3 solutions in most cases 

May be moderately significant across a large array 

      "  Displacement from existing habitat due to presence of foundations – negative fish aggregation through avoidance behaviour  

O / D  CGBF similar to other Round 3 solutions in most cases 

May be moderately significant across a large array 

      "  Noise impacts to fauna from emplacement / installation activity or removal  

I / D  CGBF less than other Round 3 solutions  

Likely to be insignificant for CGBFs 

Biological ‐ Megafauna 

Marine mammals Sea turtles Pelagic sharks incl. Basking shark 

Direct loss of habitat from placement of foundation only 

 

I / O  CGBF similar to other Round 3 solutions in most cases 

May be moderately significant across a large array 

      "  Direct loss of habitat from placement of foundation plus surficial scour 

protection (if used)  

I / O  CGBF similar to other Round 3 solutions in most cases 

May be moderately significant across a large array 

Marine mammals Pelagic sharks (Not applicable to sea turtles or Basking shark) 

Direct loss of habitat supporting prey species from 

foundation only 

O / D  CGBF similar to other Round 3 solutions in most cases 

May be moderately significant across a large array 

      "  Direct loss of habitat supporting prey species from 

foundation plus scour protection (if used) 

O / D  CGBF similar to or greater than other Round 3 solutions in most cases  

May be moderately significant across a large array 

      "  Alteration of the sediment habitat supporting prey species through 

changes to particle size or sediment 

matrix due to changes 

O  CGBF similar to or less than other Round 3 solutions in most cases 

May be low to moderately significant across a large array 

Page 114: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

98  

in local hydrodynamic caused by the foundation 

 Marine mammals Pelagic sharks (Not applicable to sea turtles or Basking shark) 

Prey species loss from excavation of 

sediment from ground preparation for CGBF 

(if required) 

I / D  CGBF similar to or greater than other Round 3 solutions in most cases  

May be moderately significant across a large array 

      "  Prey species smothering from 

sediment plumes by ground preparation for CGBF or drilling (if required) of pile or 

removal  

I / D  CGBF similar to or greater than other Round 3 solutions in most cases 

May be moderately significant across a large array 

Marine mammals Sea turtles Pelagic sharks incl. Basking shark 

Impact from increased turbidity or raised 

suspended sediment concentrations from sediment plumes by ground preparation for CGBF (if required) or drilling of pile or 

removal  

I / D  CGBF similar to or greater than other Round 3 solutions in most cases 

May be moderately significant across a large array 

Marine mammals Pelagic sharks (Not applicable to sea turtles or Basking shark)  

Alteration of sediment habitat and prey 

species from changes to sediment transport 

pathways  

O  CGBF similar to other Round 3 solutions in most cases 

May be moderately significant across a large array 

      "  Structure blocks the normal passage of 

tidal currents altering distribution of planktonic prey 

 

O  CGBF similar to other Round 3 solutions in most cases 

May be moderately significant across a large array 

Marine mammals Sea turtles Pelagic sharks incl. Basking shark  

Collision risk from presence of ground preparation and 

installation vessels should they be 

required 

I / D  CGBF similar to other Round 3 solutions in most cases 

May be moderately significant in certain areas across a large array 

   

Page 115: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

99  

  Marine mammals Pelagic sharks (Not applicable to sea turtles or Basking shark) 

Potential for increased prey species due to Fish Aggregation Device effects 

O  CGBF similar to or greater than other Round 3 solutions in most cases (Positive effect) 

May be moderately significant across a large array 

Marine mammals Sea turtles Pelagic sharks incl. Basking shark  

Displacement from existing habitat due to 

presence of foundations and 

avoidance behaviour 

O  CGBF similar to other Round 3 solutions in most cases 

May be moderately significant across a large array 

      "  Noise impacts to fauna from 

emplacement / installation activity 

 

I / D  CGBF less than other Round 3 solutions  

Likely to be insignificant for CGBFs 

Biological ‐ Birds 

Grebes, divers, Seaducks, gulls, terns, auks, gannets, petrels and shearwaters 

Direct loss of habitat from placement of foundation only 

 

I / O  CGBF similar to other Round 3 solutions in most cases 

Likely to be insignificant across a large array 

       "   

       "   

       "  

        "  

 

Direct loss of habitat from placement of foundation plus surficial scour 

protection (if used)  

I / O  CGBF similar to other Round 3 solutions in most cases 

Likely to be insignificant across a large array 

Direct loss of habitat supporting prey species from 

foundation only 

I / O  CGBF similar to other Round 3 solutions in most cases  

Likely to be insignificant across a large array 

Direct loss of habitat supporting prey species from 

foundation plus scour protection (if used) 

I / O  CGBF similar to or greater than other Round 3 solutions in most cases  

Likely to be insignificant across a large array 

Alteration of the sediment habitat supporting prey species through 

changes to particle size or sediment 

I / O  CGBF similar to or less than other Round 3 solutions in most cases 

Likely to be insignificant across a large array 

Page 116: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

100  

Grebes, divers, Seaducks, gulls, terns, auks, gannets, petrels and shearwaters       "  

        "           "            "          "          "    

matrix due to changes in local hydrodynamic 

caused by the foundation 

  

Prey species loss from excavation of 

sediment from ground preparation for CGBF 

(if required) 

I / D  CGBF similar to or greater than other Round 3 solutions in most cases  

Likely to be insignificant across a large array 

Prey species smothering from 

sediment plumes by ground preparation for CGBF (if required) or drilling of pile or 

removal  

I / D  CGBF similar to or less than other Round 3 solutions in most cases 

Likely to be insignificant across a large array 

Impact from increased turbidity or raised 

suspended sediment concentrations from sediment plumes by ground preparation for CGBF (if required) or drilling of pile or 

removal  

I / D  CGBF similar to or greater than other Round 3 solutions in most cases 

Likely to be insignificant across a large array 

Alteration of sediment habitat and prey 

species from changes to sediment transport 

pathways  

O  CGBF similar to other Round 3 solutions in most cases 

Likely to be insignificant across a large array 

Structure blocks the normal passage of 

tidal currents altering distribution of 

plankton‐fish prey trophic link 

 

O  CGBF similar to other Round 3 solutions in most cases 

Likely to be insignificant across a large array 

Displacement from presence of ground preparation (if used) 

and installation vessels 

I / D  CGBF similar to other Round 3 solutions in most cases   

Likely to be insignificant across a large array 

Page 117: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

101  

Grebes, divers, Seaducks, gulls, terns, auks, gannets, petrels and shearwaters   

      " 

Potential for increased prey species due to Fish Aggregation Device effects 

O  CGBF similar to or greater than other Round 3 solutions in most cases (Positive effect)  

Likely to be insignificant across a large array 

Noise impacts to fauna from 

emplacement / installation activity (if 

required) 

I / D  CGBF less than other Round 3 solutions  

Likely to be insignificant across a large array 

       

Biological – Nature Conservation    

Habitats and benthic species features 

Direct loss of habitat or species features from placement of foundation only 

 

I / O  CGBF similar to or greater than other Round 3 solutions in most cases  

Likely to be insignificant for CGBFs 

       "  Direct loss of habitat 

or species features from placement of foundation plus surficial scour 

protection (if used)  

I / O  CGBF similar to or greater than other Round 3 solutions in most cases 

Likely to be insignificant across a large array 

Mobile species features 

Direct loss of habitat supporting a feature’s prey from foundation 

only  

I / O  CGBF similar to or greater than other Round 3 solutions in most cases  

Likely to be insignificant across a large array 

      "  Direct loss of habitat supporting feature’s prey from foundation plus scour protection 

(if used)  

I / O  CGBF similar to or greater than other Round 3 solutions in most cases  

May be moderately significant across a large array 

Habitat and benthic species features 

Alteration of the sediment habitat through changes to particle size or 

sediment matrix due to changes in local 

hydrodynamic caused by the foundation 

O  CGBF similar to or less than other Round 3 solutions in most cases 

May be moderately significant across a large array 

Page 118: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

102  

 

Mobile species features 

Alteration of the sediment habitat supporting prey species through 

changes to particle size or sediment matrix due to changes in local 

hydrodynamic caused by the foundation 

 

O  CGBF similar to or less than other Round 3 solutions in most cases 

May be moderately significant across a large array 

Habitat and benthic species features 

Loss or removal from excavation of sediment from 

ground preparation for CGBF(if required) 

I / D  CGBF similar to or greater than other Round 3 solutions in most cases  

May be moderately significant across a large array 

Mobile species features 

Loss of feature’s prey species from excavation of sediment from 

ground preparation for CGBF (if required) 

 

I / D  CGBF similar to or greater than other Round 3 solutions in most cases 

May be moderately significant across a large array 

Habitat and benthic species features 

Smothering from sediment plumes by ground preparation for CGBF (if required) or drilling of pile or 

removal  

I / D  CGBF similar to or greater than other Round 3 solutions in most cases 

May be moderately significant across a large array 

Mobile species features 

Smothering of feature’s prey species 

from sediment plumes by ground 

preparation for CGBF (if required) or drilling of pile or removal 

 

I / D  CGBF similar to or greater than other Round 3 solutions in most cases 

May be moderately significant across a large array 

Habitat, benthic and mobile species features 

Impact from increased turbidity or raised suspended 

sediment concentrations from sediment plumes by ground preparation for CGBF (if required) or drilling of pile or 

removal 

I / D  CGBF similar to or greater than other Round 3 solutions in most cases 

May be moderately significant across a large array 

Page 119: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

103  

 Habitat, benthic and mobile species features 

Alteration of sediment habitat and prey species from 

changes to sediment transport pathways 

 

O  CGBF similar to other Round 3 solutions in most cases 

May be moderately significant across a large array 

Mobile species features 

Structure blocks the normal passage of 

tidal currents altering distribution of 

plankton‐fish prey trophic link 

 

O  CGBF similar to other Round 3 solutions in most cases 

May be moderately significant across a large array 

      "  Displacement of mobile species features from 

presence of ground preparation and 

installation vessels if used  

I / D  CGBF similar to other Round 3 solutions in most cases 

May be moderately significant across a large array 

      "  Barrier effects to migration or transits of mobile designated 

species  

O  CGBF similar to other Round 3 solutions in most cases  

May be moderately significant across a large array 

      "  Potential for increased prey 

species due to Fish Aggregation Device effects and cascade up trophic chain 

 

O  CGBF similar to or greater than other Round 3 solutions in most cases (Positive effect)  

May be moderately significant across a large array 

      "  Potential for Fish Aggregation Device resulting in increase of fish populations of 

conservation or commercial importance 

 

O  CGBF similar to or greater than other Round 3 solutions in most cases (Positive effect)  

May be moderately significant across a large array 

Habitat and benthic features 

Potential for enhancement of habitat or species 

features 

O  CGBF similar to or greater than other Round 3 solutions in 

May be moderately significant across a large array 

Page 120: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

104  

most cases (Positive effect) 

Habitats and benthic species 

Foundation acting as a ‘steeping stone’ for colonisation by non‐

native invasive species 

 

O  CGBF similar to other Round 3 solutions in most cases 

May be moderately significant across a large array 

      "  Noise impacts to fauna from 

emplacement / installation activity 

 

  CGBF less than other Round 3 solutions  

May be moderately significant across a large array 

        Likely to be insignificant for CGBFs 

 

   

Page 121: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

105  

8 HumanReceptorsThere are a number of potential interactions that could occur with CGBFs and the Human 

environment.  The majority of these issues arise from the physical presence of the CGBF on site, and 

the associated displacement activities associated with their emplacement and subsequent removal. 

In addition, there is also the potential during emplacement works to impact the pre‐history of the 

seabed and wreckage which might exist at the emplacement site. The following section therefore 

highlights the effects and issues identified within Section 5.2 but does not provide an exhaustive list 

of potential human receptors to CGBFs in the marine environment, but may highlight some of the 

more important which should be considered universally across all CGBF EIA documents. The effects 

on Archaeology are split into a separate sub‐heading as the effects are independent from all other 

human receptors. 

8.1 VesselPresenceduringEmplacement,GroundPreparation,RemediationandRemovaloftheCGBF

Vessel presence during ground preparation if undertaken, emplacement and remedial work (if used) 

will displace activities that usually occur within the region unimpeded.  The presence of the vessel 

that are utilised if ground preparation work is undertaken may prohibit activities such as fishing 

(both commercial and recreational), navigation, recreation craft transiting the area and other 

activities such as diving.  Therefore the ES should review available literature and data sources or 

commission appropriate site specific studies in order to ascertain the exact use of the site prior to 

construction. The ES should also make a judgement on the level of impact given the proposed 

construction methodology set out by the developer. 

Vessels displaced from the windfarm zone may result in increased noise in another part of the region 

which may contain receptors that are sensitive to it. Therefore the ES should identify all features 

within the vicinity of a proposed windfarm that could potentially be impacted from the displacement 

of these activities. 

The plume and turbidity generated during ground preparation, foundation and remediation 

placement on the seabed if used, visibility can be significantly reduced. This can have impacts upon 

recreational activities such as diving which may be precluded from operations as a result of the 

decreased visibility in the region. As above, the ES should consider the effects in light of the 

construction plan proposed by the developer. 

8.1.1 SecondaryEffectsIn addition to the direct effects as a result of displacement, there are also indirect effects associated 

with the displacement of activities into other areas that would not normally be targeted by the 

displaced activity. This can have knock‐on effects as a result of increased pressure on the receptors 

now being targeted by the displaced activities. This can potentially have significant effects upon 

fishing, as the resources are potentially targeted by multiple vessels putting pressure on the fish 

stocks targeted. 

The potential preparation of the ground surrounding the CGBF and remedial action if utilised can 

potentially impact infrastructure already in place in the areas affected. It is therefore important to 

map out the position of all infrastructure prior to the selection of emplacement sites to minimise the 

potential impacts upon these structures. 

Page 122: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

106  

Further secondary impacts result from the effects received on the benthos from any preparation, 

remediation, emplacement and removal activities undertaken. Changes to the benthic community 

can affect a variety of human receptors such as fishing and diving.  

Effects may also arise as a result of decommissioning of the CGBF structures is the fill and scour 

protection material (if used) is disposed of outside of the existing footprint of effects. If this is the 

case, then human receptors operating at the proposed disposal site could potentially be impacted. 

Therefore it is pertinent to check the location of the disposal site once a methodology and timetable 

have been established for decommissioning. 

8.2 CGBFPresenceduringSettlementandOperationOnce emplaced the presence of the CGBF also has a displacement effect on activities that would 

have historically had access to the site. However, in addition to this displacement, the “reef effects” 

associated with the CGBFs may attract activities such as fishing and diving to the CGBFs. This 

potential interaction could be dangerous if the fishing gear gets caught in the structure of the CGBF, 

or if vessels operating close to the CGBFs loose power and strike the CGBFs potentially causing 

damage to the CGBF or the vessel itself. 

8.2.1 SecondaryEffects

In addition to the direct effects as a result of displacement, there are also indirect effects associated 

with the displacement of activities into other areas as discussed above in Section 8.1.1.  

Furthermore, as a result of the physical effects resulting from the structures, it is possible that 

erosion resulting from hydrodynamic changes around the CGBF could potentially impact upon 

infrastructure within the scour footprint.  Therefore all infrastructure should be mapped out in 

advance to ensure that any overlap of the scour and existing infrastructure can be avoided. 

8.3 EffectsasaResultofBiologicalImpactsFurthermore, as a result of some of the other effects identified in Sections 6 and 7, the indirect 

effect of changes to the benthos could potentially affect fisheries in the region. Fisheries are 

transient and tend to be mobile and are often able to adapt to changes in the populations and 

spatial changes that may be associated with the receptors. 

In addition, effects of the CGBFs on habitats and features of conservation significance could also 

impact upon human receptors as a result of the decreased availability of benthic species – 

particularly those of commercial interest.  

8.4 FisheriesIn order to fully understand the fishing activity occurring within a given region, it is important to map 

the fishing effort from recent landings, VMS and observation data to ensure that the current status 

of the fishery is captured. Historical data can also help to analyse trends and may help to identify 

areas that are consistently fished.  Liaison with local fishermen is also advised as this can help to 

understand their concerns and current practices, as well as identifying important areas currently 

fished.  

Details of the scope and nature of such an assessment are detailed in the 2004 windfarm guidance 

note written by Cefas (2004). 

Page 123: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

107  

8.5 NavigationNavigational impacts should be fully considered within the ES. Guidance for this element has been 

written by the Maritime and Coastguard Agency (MCA) in conjunction with the Department for 

Trade and Industry (Dti) and the Department for Transport (DfT) and is available from the MCA’s 

website. This document details the potential issues, provides a methodology for assessment of 

impacts and shows the process for decision makers. 

8.6 ArchaeologyandotherHistoricalUsesoftheSeabedArchaeology has become a key concern for marine development, including for the development of 

offshore windfarms. There is express provision in wider UK policy on marine planning and licensing, 

and in EIA regulations, for considering the effects of marine development on the archaeological 

heritage (see Appendix A). These provisions are supported by commitments in international law and 

they are accompanied by measures for designating important sites, together with other legal 

requirements. Archaeology also enjoys widespread popular interest, which can enable 

archaeological work in connection with windfarm development to be disseminated as a benefit to 

the local and wider community. A good track‐record of engagement by marine developers and their 

teams with archaeological concerns on a pro‐active basis has enabled the introduction of a variety of 

‘best practice’ mechanisms, including agreed methodological standards and a Protocol for 

Archaeological Discoveries introduced by The Crown Estate across the offshore windfarm sector. 

Although there is a potentially wide range of archaeological effects arising from offshore windfarms, 

most direct effects arise from impacts on the seabed attributable to foundations. Deposits of 

archaeological interest can be found many metres below the seabed, and these deposits may be at 

risk from piled foundations. Although gravity base foundations are unlikely to have such effects on 

deeper deposits of archaeological interest, they are likely to require intentional disturbance of a 

larger area on the seabed than piled solutions. Where preparation of the seabed is required, 

dredging in advance of installation is a potentially significant concern. The full range of potential 

archaeological impacts from concrete gravity based foundations is considered below. 

TheScopeofArchaeologicalHeritageArchaeological material comprises artefacts, structural remains, the deposits in which they are 

situated, and their wider context. Artefacts found at sea sometimes prove to be ‘isolated’, that is to 

say they are no longer associated with other artefacts, structures or deposits that warrants 

examination as a ‘site’. Isolated artefacts can sometimes be very important, as they can provide new 

insights into the past simply by themselves. However, in general terms, greater significance arises 

from assemblages of artefacts, and artefacts that can be shown to be more or less in their original 

location (‘in situ’) with associated structures or deposits. 

Archaeologists commonly use the term ‘historic environment’ to encompass the totality of the 

physical remains of heritage material in the environment, underlining the need to consider the role 

and value of past human actions alongside natural processes in the development of the environment 

we experience today. The term ‘heritage asset’ is used to refer to discrete features within the 

historic environment, such as identifiable sites or monuments. In international and European 

frameworks, the terms ‘archaeological heritage’ and ‘cultural heritage’ are often used, including 

‘underwater cultural heritage’ for elements of the historic environment situated under the sea. 

Page 124: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

108  

The archaeological concerns raised by offshore windfarms generally fall into five categories, as 

follows: 

PrehistoryPrehistoric archaeology is concerned with artefacts and deposits dating from the earliest human 

inhabitation of the British Isles through to the Roman period, when sea‐level approached its current 

height. Sea‐level has fallen and risen repeatedly over the past million years so changes in sea‐level 

are of paramount importance to understanding early human activity. At times of lower sea level, 

very large areas of land that are now submerged as part of the UK Continental Shelf were available 

for humans to inhabit. The most striking recent illustration of the potential for prehistoric material 

to be present on the UKCS has been the discovery of large numbers of flint tools that were made 

over 200,000 years ago. These tools appear to be in situ and are associated with an extensive gravel 

deposit in about 30m of water off East Anglia. 

MaritimeMaritime remains comprise artefacts, structures and wrecks that have arisen from various forms of 

seafaring from the prehistoric period onwards, encompassing all manner of vessels from logboats to 

20th Century warships. Although generally small in overall extent, shipwrecks can include very dense 

concentrations of significant archaeological material. Recent examples of previously‐unknown 

wrecks discovered in the course of marine development include substantially‐intact remains of 

vessels from the Sixteenth and Seventeenth Centuries. In addition, a wide range of maritime 

material – sometimes isolated, sometimes as assemblages – has been found in the course of 

dredging in UK waters. 

AviationAircraft crash sites at sea have become a particular concern in recent years because of the frequency 

with which they have come to light as a result of marine development, and the importance of the 

material that has been uncovered. Even though aircraft were mass produced, surprisingly few 

examples of some types have survived in museums; some types and versions are effectively extinct. 

Recent examples of aircraft discoveries that have arisen from development‐led archaeology include 

substantial fragments and entire airframes of a variety of British, American and German bombers 

and fighters. Military aircraft crash sites are automatically protected under the protection of Military 

Remains Act 1986, and there are particular concerns about the presence of human remains and 

ordnance. 

CoastalThere is an enormous range of archaeological material found at the coast. Some of it was intended 

to have a coastal location, such as landing sites, ship‐building sites, fishing infrastructure, defensive 

installations and a range of industrial sites for the production of salt and pottery, for example. Some 

archaeological material just happens to be present at today’s shoreline as a result of coastal change. 

The widest range of periods may be represented, from early prehistory to the Modern period. 

Coastal archaeology ranges from important prehistoric deposits buried under beaches through to 

historic buildings and standing ruins, including designated sites such as Listed Buildings and 

Scheduled Monuments. 

Page 125: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

109  

LandscapeLandscape is a broad term for a variety of circumstances where archaeological significance arises 

from remains that are extensive or are influenced by a large area, and where part of the character of 

a place arises from the interest generated by the landscape as a whole, rather than each separate 

structure or deposit. On land, it can include ‘designed landscapes’ such as parks and gardens, but 

also historic landscapes whose character has arisen gradually from small incremental changes over 

very long periods. Landscape is also used as a term that draws together evidence of prehistoric 

inhabitation in now‐submerged areas of the UK Continental Shelf, and also to identify wider patterns 

of ship‐ or aircraft‐based activity offshore. Landscape can encompass elements of the other 

categories above, but is distinguished here as an additional category because it introduces particular 

perspectives on dealing with the historic environment at large scales. 

ImpactsandEffectsThe impacts caused by offshore windfarms can have a variety of effects on archaeological heritage. 

The choice of foundation solution, however, is only going to be of incidental relevance to the 

assessment of some archaeological effects. Specifically, the choice of concrete gravity bases is 

unlikely to have any distinct effect, as compared to other foundation solutions, on the following: 

Visual effects on historic landscapes and seascapes, as perceived by people either on shore 

or offshore. 

Effects from inter‐array and export cabling, which are not affected by choice of foundations. 

Although these impacts will have to be assessed in respect of any particular offshore windfarm 

development, they are unlikely to be altered by choosing CGBF instead of other methods. 

It is also likely that the following potential archaeological effects can be scoped out with respect to 

CGBF: 

Effects on coastal archaeology prompted by changes to wave energy reaching the shore, to 

sediment transport etc., as any such changes are likely to be minor or indiscernible in terms 

of, for example, archaeological material being newly washed out of adjacent foreshores. 

Effects attributable to smothering / plume. The effects of deposition of fine‐grained material 

over artefacts, sites and deposits are unlikely to be distinguishable from cycles of naturally‐

occurring deposition. In any case – and in general terms – deposition of fine‐grained 

material is likely to be beneficial to the future survival of archaeological material, though it 

may result in some masking to visual or geophysical survey. 

Effects attributable to off‐site dredging of sand and gravel. It is assumed that any such 

external material will be acquired from sources that are subject to archaeological 

assessment, mitigation and monitoring in the course of their own consenting processes. 

From the above it will be apparent that the effects of the use of CGBF on the categories ‘Coastal’ and 

‘Landscapes’ (above) are indistinguishable from the effects of other foundation solutions. 

Consequently, the remainder of this section will focus on impacts and effects relating to Prehistory, 

Maritime and Aviation archaeology. 

It should be noted that whilst impacts on landscapes as a whole from CGBF may be indistinguishable 

from other solutions, impacts on landscape elements – e.g. specific horizons of prehistoric 

Page 126: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

110  

archaeological interest, or individual wrecks that might be interpreted within a broader setting – 

may be greater as a consequence of the use of CGBF, steel jacket, tripods or suction caissons. Hence 

although ‘landscape’ impacts might not be relevant in choosing CGBF, this is not to suggest that they 

do not have impacts that are relevant to landscapes. These impacts can, however, be addressed in 

terms of Prehistory – Maritime – Aviation, as below. 

Archaeological material of prehistoric, maritime or aviation interest is generally fragile and non‐

renewable. Although archaeological material may have survived in its location for thousands of 

years, disturbance is likely to destroy the all‐important relationships between artefacts, structures 

and their surrounding matrix directly, or as a consequence of physical, biological and/or chemical 

processes triggered by the disturbance. In consequence, archaeological material should be regarded 

as having a low tolerance to being disturbed, low (no) adaptability to disturbance, and low (no) 

recoverability. Where disturbance is unavoidable and the site is to be extinguished, mitigation must 

focus on seeking to conserve the significance of the archaeological material and its relationships by 

investigation, recording, recovery and analysis, coupled with material conservation of artefacts and 

structures that are recovered. 

EffectsonArchaeologicalHeritageAssociatedwithCGBFThe effects where the decision to adopt CGBF is likely to significantly alter the conduct of EIA and 

associated licensing and management are set out below: 

Direct:SeabedPreparation(ifrequired)Archaeological material of prehistoric, maritime or aviation interest is most likely to occur in the 

upper few metres of seabed, especially in areas where the seabed is sufficiently consolidated to be 

suitable for CGBF. As noted above, archaeological material is highly susceptible to physical impacts. 

Consequently, the greatest potential archaeological effects arise where the seabed is subject to 

direct impacts of the sort associated with ground preparation. 

Impacts will vary according to the geology and morphology of the foundation site, the details of 

ground preparation, and the presence and character of any archaeological material present. 

If geological strata are present that predate the inhabitation of the British Isles, either at the surface 

or just below, then any archaeological material will be present at or above bed‐level, or within the 

veneer of overlying material. However, it should not be assumed that the presence of exposed rock 

will mean that no archaeological material is present. Such material can survive extraordinarily well 

even in small niches of shallow sediment or in fissures. In some cases, the highly localised 

hydrodynamic influence in the past of a structure such as a wreck can cause scouring, such that 

archaeological material can bury itself within even relatively hard seabed materials. 

If the seabed comprises recent (i.e. post‐transgression Holocene) mobile sand then there is potential 

for very substantial remains to survive buried within and beneath the sand itself. Sand may also 

overlie features that have provided a suitable niche for archaeological material, such as in‐filled 

channels. Large sandwaves, or even relatively thin mobile sand that overlies softer fine‐grained 

deposits, can hide entire shipwrecks. 

Where the seabed is comprised of generally stable gravels and sands of pre‐transgression origin, 

there is also the possibility that structures such as wrecks may bury themselves through the action of 

Page 127: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

111  

localised scouring processes. The sands and gravels also have archaeological potential too, as they 

may contain or comprise artefacts and deposits from very early prehistory. 

CGBF has the advantage over pile‐based and suction caisson approaches in that it will not have a 

direct impact on deeper horizons of archaeological interest. However, the area and depth of seabed 

preparation for CGBF is likely to be greater within the important top few metres than is typically the 

case for piled foundations. Effects will be minimised where seabed preparation can be reduced, e.g. 

by reducing the margin of over‐dredging around and below the foundation, and through the use of 

designs that require less excavation because they can adapt to non‐level ground. 

The scope for mitigating impacts will be greatest where detailed site investigations become available 

at an early stage, to help establish the presence and character of any archaeological material at the 

foundation location. Where site investigation data has been acquired in a way that optimises its 

archaeological use, such data may also provide contribute to mitigation where impacts are 

unavoidable. 

Direct impacts attributable to ground preparation are largely confined to the construction phase. 

Subsequent seabed works during operation and maintenance, and decommissioning, might be 

expected to be restricted to the horizontal and vertical extents of construction. Heritage assets do 

not recover; impacts during construction are likely to be such that impacts in subsequent phases will 

be of minor concern. The key exception to this is if groundworks in the operational phase or during 

decommissioning cut into areas that have not previously been affected, then archaeological effects 

could certainly arise. The potential for operational and/or decommissioning impacts on the 

archaeological heritage will be greatest where archaeological material is close to – or continues from 

– the footprint of the original seabed preparation. This scenario might arise, for example, where a 

CGBF has been micro‐sited to avoid a heritage asset in order that construction‐phase effects are 

minimised; but this constraint is not taken into account when managing operational activities on the 

seabed, or during decommissioning. 

Direct:ScourProtection(ifused)Scour protection will extend the seabed footprint of direct impacts on material of archaeological 

interest, especially if the installation of scour protection requires prior preparation of ground that 

has previously been undisturbed. It may be possible to install scour protection on top of buried 

archaeological material without prompting a direct impact. However, assessment will need to take 

into account secondary impacts on the underlying archaeological horizons from the imposition of 

extensive, weighty material. 

The installation of scour protection over material of archaeological interest will have the effect of 

precluding access to that material in future, either for research purposes or by the public. 

Obstructing access may be regarded as a significant effect, even if the material itself is not subject to 

direct impacts. 

As above, installation of scour protection is predominantly a construction‐phase impact. Impacts 

from scour protection during operation and decommissioning will be limited to circumstances where 

the original footprint of works relating to scour protection extend – vertically or horizontally – 

beyond the seabed that has already been affected. 

Page 128: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

112  

Direct:VesselActivityImpacts on archaeological material can arise from construction vessels where those vessels have 

contact with the seabed, either through anchoring or from jack‐up footings etc. Depending on the 

detail of anticipated vessel activities, CGBF may have a lower archaeological impact attributable to 

vessel activities than installation of pile‐based foundations. Archaeological concerns can be 

alleviated by careful management of vessel activity with respect to seabed impacts. 

Impacts from vessel activity could occur in each main phase: construction; operation; and 

decommissioning. 

Secondary:ScourScour may affect archaeological material in the same way as seabed preparation, except that the 

process is not under the immediate control of construction and environmental management 

personnel. Archaeological material of prehistoric, maritime or aviation interest may be displaced, 

disrupted, removed from its surrounding context or subjected to renewed physical, chemical or 

biological processes as a result of scour. The horizontal and vertical extents of scour, and its 

archaeological implications, will depend on the geological/ geomorphological character of the site 

and the presence and character of archaeological material. The comments above on seabed 

preparation are generally relevant to scour also. 

Impacts attributable to scour are most likely to become apparent in the later stages of the 

construction phase and in the operational phase. 

Secondary:ChangestoBedformsandSedimentFluxesAny change in the seabed attributable to hydrodynamic and sedimentological processes could have 

implications for the survival of archaeological material. The greatest concern arises where 

archaeological material that was buried becomes exposed, as it may collapse and / or suffer from 

renewed physical, chemical or biological processes that result in its decay. 

As with scour, impacts attributable to scour are most likely to become apparent in the later stages of 

the construction phase and in the operational phase. 

Secondary:AccessibilityAs noted above, any process that results in access to archaeological material being prevented or 

constrained may be regarded as an impact, because the scope to research the material or to enable 

visits by the public are curtailed, compromising the capacity to realise the material’s significance. 

Accessibility may be curtailed where archaeological material is overlain by the foundation and any 

scour protection. Insofar as CGBF and any scour protection are likely to be more extensive than pile‐

based foundations, then the possible impact from CGBF may be greater than piling. Nonetheless, it 

may be more likely that in the event that archaeological material is identified below a proposed 

CGBF and any scour protection, if required, then the impact is mitigated by avoidance (re‐siting the 

CGBF) or by investigation in advance of construction if there are concerns about the effects of 

placing a foundation above archaeological material. 

The wider impacts of offshore windfarms on archaeological material as a result of reduced 

accessibility – acting at larger scales where, for example, access for research or public appreciation is 

Page 129: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

113  

curtailed by the presence of safety zones – is unlikely to be greater for CGBF than for other forms of 

foundation. 

Accessibility may be an effect throughout the construction, operational and decommissioning 

phases. 

CumulativeEffectsCGBF are not distinguishable from other forms of foundation in terms of cumulative effects on 

archaeology, except in relation to cumulative inter‐array impacts from seabed preparation and scour 

protection / scour on horizons of prehistoric interest. Where there are horizons of prehistoric 

interest within the vertical and horizontal footprint of CGBF seabed preparation, then the overall 

extent of seabed preparation might be regarded as having a substantial cumulative effect. 

This matter is unlikely to arise in respect of material of maritime and aviation interest because such 

sites are usually not closely associated with each other at windfarm scales. 

8.7 Summary A comparison of the relative magnitude of effects, between a single monopile and single CGBF, is 

presented considering the evidence reviewed in this section. Note that the effects of a large number 

of small foundations, compared with a smaller number of larger foundations, is not yet well 

understood. Also note that this table makes no estimation of the significance of an effect. 

 

Key 

I  Installation (including any ground preparation and remedial works required) O Operation (including any settlement) D  Decommissioning 

 

Receptor  Sub‐receptor Description Effect occurrence

Relative effect 

Scale  Significance 

Human Fishing activity  Displacement of fishing activity from the vicinity of the foundation  

I / O / D  CGBF similar to or greater than other Round 3 solutions in most cases  

May be moderately significant across a large array 

Other vessel activity 

Displacement of other vessel activity from the vicinity of the foundation  

I / O / D  CGBF similar to or greater than other Round 3 solutions in most cases 

May be moderately significant across a large array 

   

Page 130: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

114  

  Navigation  Displacement of shipping from established navigation routes  

I / O / D  CGBF similar to other Round 3 solutions in most cases  

May be moderately significant across a large array 

Infrastructure  Impact on renewable energy, oil and gas, cables, pipelines, disposal sites, tourism, recreation 

I / O / D  CGBF similar to other Round 3 solutions in most cases  

May be moderately significant across a large array 

Archaeology  Potential impact on palaeo‐landscape surfaces   

I  CGBF similar to other Round 3 solutions in most cases  

May be moderately significant across a large array 

      "  Potential impact of placement and/or scour on known wrecks and aircraft remains 

I / O / D  CGBF similar to other Round 3 solutions in most cases  

May be moderately significant across a large array 

      "  Potential impact of placement and/or scour on unknown wrecks and aircraft remains 

I / O / D  CGBF similar to or greater than other Round 3 solutions in most cases 

May be moderately significant across a large array 

 

 

 

 

Page 131: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

115  

9 CumulativeandIn‐combinationEffectsThe EIA Directive (see Section 2.1) requires consideration of the direct impacts and of any indirect, 

secondary and cumulative effects of a project. 

Therefore cumulative impact assessment (CIA) forms part of the EIA process. It considers the effects 

of the construction, operation and decommissioning of the project, both intra‐array and with other 

offshore windfarm projects as well as other seabed user activities in the area that have the potential 

to impact on the same receptors. The nature of potential cumulative effects and their resulting 

impacts will depend on the density of CGBFs within a single windfarm, the proximity of other 

windfarms and the proximity and nature of other anthropogenic activities. 

Under the Habitats and Birds Directives there is also a statutory requirement to consider cumulative 

impacts as part of an appropriate assessment if it cannot be determined that a plan or project will 

not have a likely significant effect. Article 6(3) states that: 

“Any plan or project not directly connected with or necessary to the management of the site but 

likely to have a significant effect thereon, either individually or in combination with other plans or 

projects, shall be subject to appropriate assessment of its implications for the site in view of the site's 

conservation objectives.” 

It is generally accepted that in‐combination (under Article 6(3)) is interpreted to have the same 

meaning as cumulative as described in the EIA Directive (under Article 4(2)). Article 6(3) is 

transposed into national legislation under Regulation 61 of the Habitats Regulations (see 

Appendix A) and Regulation 25 of the Offshore Habitats Regulations.  

Cumulative Impacts: 

Impacts that result from incremental changes caused by other past, present or reasonably 

foreseeable actions together with the project under consideration. For example: 

Incremental habitat loss from a number of separate windfarms;

Combined effect of individual impacts from CGBFs, e.g. removal, from a single windfarm 

on a particular receptor (e.g. habitat); and / or 

Several windfarms with insignificant impacts individually but which together have a 

cumulative effect, e.g. development of an offshore windfarm may have an insignificant 

impact, but when considered with several nearby windfarms there could be a significant 

cumulative impact on local, regional or national ecology and landscape. 

Page 132: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

116  

Figure 9.1: Flow diagram for assessing cumulative impacts (adapted from Walker and Johnson, 1999). 

 

The introduction of a single CGBF structure has been identified as resulting in a series of 

environmental effects (see Sections 5, 6, 7 and 8 of this report). As described in Section 5 and 6 

there is limited real world evidence from introduction at a larger discrete spatial scale of concrete 

structures into the offshore marine environment; certainly in UK waters. The scientific 

understanding of the non‐linear interactions between the marine environment and a larger number 

of CGBFs, which are potentially also complex shapes, also remains poor for certain physical 

receptors and parameters. It is likely that differing profiles from the various CGBF engineering 

solutions will result in variations of effects, alone and combined, and therefore foundation type‐

specific modelling will be required. 

Deployment of CGBFs at a scale associated with the Round 3 programme will result in cumulative 

effects, at intra‐ and inter‐array levels and with other seabed user activities, which will need 

consideration to allow effective EIAs. However this is not restricted to the specific use of CGBFs and 

will be required for any Round 3 project, regardless of the foundation structure deployed. 

Intra‐Array(Inter‐FoundationandwithinaSingleWindfarm)CumulativeEffectsThe most obvious inter‐foundation cumulative effect will be direct habitat removal and loss of 

benthic habitat. This will impact benthic fauna and possibly fish and bird fauna, megafauna and 

nature conservation and / or archaeological features and fisheries resources. Consideration of the 

extent of the array and location of foundations and the variety of different biotopes affected will set 

the initial value of impact. This can then be related to known receptor resource at an appropriate 

scale, e.g. within a sediment plume footprint or at regional or sub‐regional sea for mobile receptors, 

and considerations of impacts from other activities on the same receptor can then be assessed.  

Considering the possibility of a positive correlation between the extent of surface area of artificial 

submerged structure and increased reef effects (see Section 7.2.2) then CGBFs (at a cumulative 

scale) may result in greater reef effects (including ‘halo’ or ‘fringe’ effects) than foundations with a 

smaller surface area. This may result in increased negative effects (damage) to the surrounding 

natural sediment habitat and associated infaunal biotopes e.g. increased predation from mobile 

macrofauna attracted to the reef habitat. This may also be increased if the inter‐foundation 

distances are less than the attractant or impact range of artificial reefs (200‐300m for pelagic fish 

Page 133: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

117  

fauna and 1‐100m for demersal fishes, Zucco et al., 2006).  However this is extremely unlikely due to 

the engineering constraints as discussed below. In effect the CGBFs will act as many isolated reefs 

with connectivity only established for more mobile species such as flatfish and marine mammals 

(Zucco et al., 2006 and references cited therein).There is also a possible cumulative positive effect 

for fish fauna from the potential for increased reef effect, if fishing exclusion zones are implemented 

i.e. the foundations act as a refuge attracting fish from areas where they may be exposed to fishery 

pressures to a location where they are protected from fishing pressures. 

Inter‐foundation distances are likely to play a critical role in the scale of cumulative effects, for 

physical, biological and human receptors. Rotor sweep diameter of a 5MW turbine will result in 

approximately 800m or greater intervals between turbines and thus foundation structures (Zucco et 

al., 2006). These distances and the number of foundations used, along with the shape of the 

structures (profile), will dictate the cumulative effects and associated footprint for physical 

environmental considerations. As described in Sections 5.3, 6.2.1 and 6.2.2, the complexities of 

these interactions will result in blockage effects that will require detailed modelling. 

The cumulative effects of the CGBF structures on the physical environment will force biological and 

certain human activity receptors to respond to indirect effects such as scouring, changes to sediment 

particle size, sediment flux etc. The scale of these physical indirect effects will influence the scale of 

biological response e.g. larger areas of scouring or changes to sediment supply will alter the 

sediment habitat resulting in habitat loss for certain infaunal species and communities. Similarly, 

alterations to tidal streams or sediment flux can result in exposure or burial of palaeolandscape 

features or wrecks. These effects will be delivered to a greater extent due to the cumulative scale 

but will still need to be considered within the context of the overall extent of any receptor at an 

appropriate spatial scale e.g. local, regional, national and international. 

Some of the displacement effects associated with the presence of multitudes of CGBFs on the 

seafloor may actually not be foundation type‐specific. The presence of anthropogenic structures 

regardless of type may prevent a displaced organism from returning to the array footprint, be it due 

to direct niche habitat removal, alteration of ecosystems resulting in unfavourable environmental 

conditions (e.g. attraction of predators due to reef effect) or behavioural responses. This may 

certainly be the case for certain seabirds which exhibit continued displacement due to the above 

sea‐surface towers and turbines (see Section 7.5.2 and associated references cited). This latter effect 

is independent of foundation type used. 

Extra‐ArrayCumulativeEffectsofCGBFswithotherWindfarmsandPlansorProjectsCumulative effects with other windfarms and seabed user activities related to the deployment of 

CGBFs at windfarm array scales may include: 

Increased area of substratum loss due to CGBF footprints – affecting benthic habitats; 

Increased risk of habitat exclusion (fish fauna, seabirds and marine mammals); 

Increased long‐term displacement of fishing grounds due to CGBFs; 

Increased changes in tidal flow and wave energy regimes; 

Increased displacement of fishing activities; and 

Increased displacement of shipping. 

Page 134: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

118  

Dredging footprint from any ground preparation activity that may be undertaken may be far‐field 

and has the potential to interact with neighbouring windfarms and plans or projects. The habitat 

removal associated with the foundation pit excavation will have to be assessed at an appropriate 

(regional) scale, including habitat loss due to dredge disposal / holding areas. 

Cumulative habitat loss and displacement effects are cited as the greatest concern for many 

biological receptors (Hiscock et al., 2002; DONG Energy et al., 2006; Zucco et al., 2006; OSPAR 

Commission, 2006; Scottish Executive, 2007). The installation of a single OWF using CGBFs may only 

result in a negligible loss of benthic habitat (at a sub‐regional scale), but if several OWFs are 

constructed on the same habitats within the sub‐region then the scale of extent increases. It may be 

foreseeable where cumulative losses of a particular habitat to a series of OWFs using CGBFs, when 

combined with loss due to marine aggregate extraction for example, may reach a significant level. 

Zucco et al. (2006), DONG Energy et al. (2006) and the OSPAR Commission all note that cumulative 

habitat loss and displacement may be the greatest impact regarding certain seabird fauna such as 

divers and seaducks and also Harbour porpoise. However it is likely that these cumulative effects are 

not CGBF‐specific i.e. it is not expected that CGBFs will result in any greater displacement effects for 

these mobile receptors than from the use of other foundation types. 

There is some research assessing the cumulative seabed footprint of anthropogenic activities in UK 

waters. Eastwood et al. (2007) conducted an assessment of direct physical pressure on the seabed in 

UK offshore waters. They concluded that the largest pressure footprint was in relation to selective 

extraction effects from demersal and benthic fishery activity; accounting for 5.4‐21.4% of the total 

seabed area. In context marine aggregate dredging‐related pressures of extraction and smothering 

(from plumes) totalled 1.3% of the UK offshore seabed area. Oil and gas infrastructure related to 

<0.1% (assuming averaged foundation footprint of 180m2) with offshore windfarm turbines (based 

on 4m diameter monopiles with average 100m diameter scour effects) also accounting for <0.1% of 

the offshore seabed area. 

More recently Foden has reviewed the Eastwood et al. (2007) data and revised the extent of 

anthropogenic pressures in UK waters (Foden, 2011; Foden et al., 2011). She estimated that 52.2% 

of the UK seabed (134,400km2) has been exposed to demersal and benthic fishery activity related to 

abrasion pressure. Using data from the period 2001‐2007 the abrasion pressure (from scouring) 

related to offshore wind turbine foundations was evaluated at <0.01% of the total UK seabed 

(assuming circular buffers of 100m diameter equalling an area of  approximately 7850 m2 per 

turbine, minus area of scour protection). Obstruction (direct habitat removal) from foundation 

footprint equated to <0.01% of the seabed area (assuming the status of Round 1 and 2 OWFs built 

up to 2007; and using a circular buffer of 30m diameter equalling an area of approximately 700m2 

per turbine). Obstruction related to submarine cables and wrecks was <0.01% each and smothering 

pressure from licensed dredge fines disposal covered 0.14% of the UK seabed. Extraction (removal) 

pressure due to marine aggregate dredging activity resulted in removal of 0.05% of the seabed area.  

Whilst these figures (at 2007) do not directly account for pressure footprints from large‐scale 

deployment of deepwater foundations, such as CGBFs or steel jackets, it can be seen that offshore 

wind turbine foundation‐related pressures sit well within or are comparable with other sector‐

related seabed pressure footprints. In this context it is worth considering that for certain CGBF 

Page 135: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

119  

solutions the foundation seabed footprint is approximately 0.7% of the total windfarm area, and can 

be 0.06% after filling and scour protection is complete (Robert Foyle, STRABAG, pers. comm.). 

Foden et al. (2011) also evaluated the cumulative footprint where more than one pressure from one 

or more activities overlapped on benthic habitats and biotopes. In 2007 only 166km2 or 0.07% of the 

UK seabed was estimated to be receiving combined pressure (from demersal trawling and marine 

aggregate extraction). Approximately 0.2%, an area of 513.4km2 was receiving a cumulative pressure 

from obstruction, extraction and smothering. Effectively >99.9% of anthropogenic pressure, based 

on spatial area of effect between the period 2001‐2007, was due to demersal and benthic fishery 

activity. 

It is important to note that the above spatial footprint analysis is only meaningful for seabed 

pressures and cannot be used to draw conclusions regarding far‐field effects such as noise‐related 

disturbance or displacement effects. Further, the work conducted by Eastwood and Foden and 

colleagues assesses the footprint at a national scale. At a regional and sub‐regional scale there will 

be areas of seabed and associated features that have a high representativity of the entire national 

resource e.g. an archaeologically important hand‐axe site or a major herring spawning site. It is for 

these reasons that project‐specific EIA are required to assess cumulative effects at a site‐scale. 

It is worth stating that considering anthropogenic noise impacts, there is a route for positive 

cumulative effects if all Round 3 projects were to use CGBFs, in place of pile‐driven foundation 

solutions. This would result in a significant reduction in high significance noise impacts associated 

with piling. Any projects that use large‐scale deployment of CGBFs should certainly not be 

considered as a significant addition to cumulative assessments of underwater noise impacts 

associated with OWF construction / installation. 

Human receptors often interact and as such are prone to cumulative and in‐combination effects. 

Displacement of activities from the proposed windfarm area can potentially result in increased 

activity elsewhere. This may occur within the same or similar sea‐space for certain activities resulting 

in a significant in‐combination effect on certain receptors. For example, navigational shipping routes 

could be transferred around the windfarm area, to a location where fishing activity has traditionally 

been high. The increased vessel movements in the region may make the area difficult to work for the 

fishermen and dangerous for shipping to transit through. Again these effects are not necessarily 

CGBF‐specific. 

In addition, if several windfarms are located in relative close proximity, the displacement effects of 

the windfarm sites could concentrate human activities / receptors into the same or similar sea areas. 

This could not only potentially increase the risk of collisions, but may also increase the pressure on 

sensitive receptors such as commercial fish.  

Displacement of fishing activity can also result in increased fishing effort elsewhere. As a result, 

increased pressure can be placed on specific receptors which could result in a significant effect 

occurring outside the boundaries of the windfarm site. While it is difficult to predict the exact 

location, nature and consequences of such displacement and increased effort, the ES should 

consider these effects in the context of existing fishing activity, landings data and historical trends. 

Page 136: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

120  

Plumes arising from other activities may also cause an in‐combination effect on Diving. For example, 

if a windfarm and aggregate extraction site are located within a single tidal extent, during the ground 

preparation (if undertaken) and emplacement stage of the CGBF, plumes could potentially be 

present over a larger area, precluding diving from some sites. 

As a result of the reef effect from the CGBFs and their remediation, it is possible that a ‘halo’ is 

produced around the foundations in an array as a result of the cumulative effect of many CGBF 

reefs. As a result, fishing activity may increase close to the boundaries of the windfarm site (due to 

‘spill‐over’ effects) where it is deemed safe to fish, but where traditionally fishing has not been a 

core use of the sea‐space. 

SignificanceIt is not possible to quantify the cumulative effects in terms of effect significance. This is due to the 

levels of uncertainty associated with project‐specific envelopes, inter‐foundation distances, 

clustering / spacing of OWFs and combined effects with other sectoral activities. In fact the latter of 

the three may currently be the easiest to consider through realistic worst case scenarios, certainly at 

the more generic pre‐application phase and with the Round 3 zones already identified. 

The potential for cumulative effects may be identified within an REA or SEA, prior to EIA. In the UK it 

is envisioned that the current round of marine (spatial) planning, by the MMO to meet the 

requirements of the Marine and Coastal Access Act 2009, may identify regional sea‐scale constraints 

from cumulative effects and partition sea use accordingly. However the efficacies of these marine 

plans are yet to be seen. 

SummaryAs identified in this report, effects on alterations to wave climate, sediment transports pathways, 

habitat removal or loss through exclusion and displacement effects will certainly need to be 

considered cumulatively for CGBFs. Also the combined effects of artificial structures resulting in reef 

effects will have to be considered and it may be that CGBFs will have a greater contribution to these 

effects (both negative and positive) than some other foundation structures e.g. monopiles. 

The profiles of some CGBF solutions mean that blockage effects are likely to be complex. When 

considered cumulatively at an array scale, then these blockage effects may reach a significant 

threshold. However until inter‐foundation distances can be confirmed and known profiles 

(dependent upon the engineering of specific CGBF solutions) input, non‐linear modelling will remain 

challenging. 

Cumulative displacement effects from CGBFs on mobile fauna such as fish, seabirds and marine 

mammals will be variable when compared with monopile foundations. It is envisaged that there may 

be a greater benthic habitat loss that associated with CGBF cumulative effects but alteration at an 

ecosystem scale e.g. reef effect may be greater and result in positive, attractant effects. The lack of 

significant noise during emplacement will result in lower cumulative effects that installation of 

foundations requiring piling. This may be significant for fish and marine mammal fauna. Considering 

bird fauna specifically, it may be the case that CGBF cumulative effects on direct habitat loss may be 

masked by greater displacement impacts associated with the above water presence of transition 

pieces (towers) and turbines. 

Page 137: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

121  

10 DecommissioningConcrete is extremely durable and does not corrode to the same extent as steel structures placed in 

the marine environment. Therefore, CGBFs will have a minimum design life of 50 years (the life 

expectancy of the wind turbine is 20‐25 years), with the foundation able to be used to re‐power for 

the next generation of 10MW wind turbines with a small amount of work (Alan Bromage, TCC, 

pers. com.).  

However, there may come a time when the CGBF needs to be removed and / or replaced. The 

methodology for undertaking these works is likely to be the opposite of those utilised during 

emplacement works. If used the fill and / or scour protection surrounding the structure may need to 

be removed to allow the CGBF to be freed from its emplacement position and removed from the 

site. The methods utilised for removing this material is not currently known and will vary from site to 

site, but it is likely to be similar methodologies utilised to place the scour protection and fill material 

during emplacement works. Once removed, the CGBF could be taken to an onshore site where the 

structure could be broken up, reinforcing metal bars could be removed and recycled, and the 

concrete itself could be recycled for use as aggregate. 

In addition, further mitigating actions may need to be undertaken to restore the seabed to its pre‐

emplacement condition. This may require the removal or burial of any ballast and / or foundation 

material and scour protection and replacement of the seabed sediments that existed prior to the 

emplacement of the structure. All materials removed will need to be disposed in a suitable location 

e.g. licensed disposal site, or reused as aggregate for other projects if the material is deemed 

appropriate. 

Alternatively, as a result of the additional habitats that may have been established during the 

lifetime of the CGBF, there may be a requirement to leave the structures in place. The increased 

biodiversity and “reef effects” associated with the structure may require the structure and any scour 

protection measures to be left in place following decommissioning of the wind turbines. In this case, 

some minor mitigation may be required to ensure that the CGBF is not a hazard to shipping and 

other users of the sea, but the structure and scour protection measures would be required to be left 

as they were when the windfarm was operational. Over time, without the maintenance required to 

keep the CGBF operational, it is likely that the structure would eventually degrade and result in a 

smaller, less prominent reef structure being present on the site. 

The potential effects of decommissioning on the marine environment have be summarised in 

Section 5.2.6, with the potential effects on the physical, biological and human environment 

described in Sections 6, 7 and 8 respectively. 

 

Page 138: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

122  

11 DiscussionOffshore wind is a rapidly developing industry which is evolving towards bigger projects, further 

offshore and in deeper and more exposed areas of the sea. In the UK the primary achievements to 

date remain in constructing smaller scale projects generally using steel monopile foundations. At this 

time, in UK waters, monitoring evidence of windfarms at construction and the initial periods of 

operation is mainly related to the monopile option only. However, evidence is available from a 

limited number of deployments in the North Sea environment, predominantly from Denmark and 

Belgium for CGBFs and also Germany for steel jacket and tripod foundations. 

Windturbinefoundations–AUKperspective,Round1and2andmovingtowardsRound3UK Round 1 and 2 offshore windfarms are predominantly restricted to nearshore waters and are 

located in water depths generally less than 20 m deep. These water depths, and the suitability of the 

substrate, has resulted in UK developers implementing near exclusive use of steel monopile 

foundations for construction of the arrays (notable exceptions are Beatrice Demonstration Site and 

Ormonde Offshore Windfarm having used steel jacket foundations). Most projects since Round 1 

have been consented with regard to understanding their potential environmental effects using a 

conservative approach often profiled around a gravity base option i.e. as part of the Rochdale 

Envelope approach. 

The next round of offshore windfarm development zones are identified primarily for deeper waters, 

with a mixture of seabed types, which are typically further offshore than the previous Round 1 and 2 

arrays (Rampion and Navitas Bay are notable exceptions at only 13km offshore). The different 

physical environment will require the consideration of alternative foundation solutions to those that 

the UK market has used to date. It is apparent that these offshore locations and the associated 

physical environments for Round 3 zones means that those involved in the consenting process will 

have to consider the different environmental impacts of these alternative designs as a standard for 

the deeper water sites. 

Water depth and seabed geology have an influence on the engineering parameters required to 

provide a stable foundation for turbines – particularly regarding turbines of a 5 MW capacity and 

above. Monopile structures are less suited to deep water depths as they can become unstable due 

to hydrodynamic stresses including susceptibility to wave action (Seidel, 2010) and the possibility of 

larger storm wave loadings means more resilient grouting at the foundation / transition / tower 

connection. Taller monopiles are also less stable when considering the effects of rotor sweep and 

transmission of rotational forces / cyclic loading through the tower and foundation making it difficult 

to meet the requirements for turbine operation. Increased water depth will require greater 

penetration depths for monopile solutions and structural resilience results in increased diameter of 

monopiles and thicker pile walls meaning more steel required to build each foundation. Given 

today’s market forces and the cost of steel, this alters the cost / benefit balance for the use of this 

solution. Should monopiles still prove financially viable, for the deeper penetration and larger 

diameter monopiles, a significantly larger hammer will be required to drive the piles into the seabed. 

Therefore, noise effects are likely to increase, and will propagate further in the deep water locations 

where the Round 3 sites are typically located.  

Page 139: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

123  

Alternative, deep water foundation solutions such as suction caisson, steel jacket, tripod and 

concrete gravity base will by necessity have to be considered part of the ‘standard toolkit’ for Round 

3 installations. 

EffectsAssociatedwithDeeperWaterFoundationsHistorically the non‐monopile solutions have been considered as providing the realistic worst case 

scenario threshold (under the Rochdale Envelope principle) regarding direct seabed habitat loss and 

interruption of hydrological and sediment transport processes – blockage effects for Round 1 and 2 

developments. Whilst these assessments are appropriate when comparisons are made with steel 

monopiles in shallow water environments, they will require a shift in emphasis for Round 3. The 

direct physical effect footprints will have to be considered by drawing comparisons between steel 

jacket, tripod, concrete gravity bases and suction caisson foundations and not necessarily monopiles. 

All these structures will be larger than has been the case in consented Round 1 and 2 projects. These 

solutions have an increased direct physical footprint but there is variation between the different 

solution types. 

The spatial footprint analysis of the foundations shows that CGBFs can have a comparable physical 

footprint for seabed habitat removal (during the life cycle at sea) when compared to steel jacket, 

tripod and suction bucket foundations. This relates to a direct loss and alteration of seabed habitats 

and associated communities, both individually per foundation and cumulatively; either within an 

array or between windfarms. This footprint also considers ‘halo’ or ‘fringe’ effects associated with 

seabed shadowing e.g. seabed located beneath the lattice of a steel jacket but not under one of the 

feet, which may also be applicable to tripods.  

It is also worth noting that CGBFs and suction caissons have a distinct advantage considering the 

complete removal of the structure at the time of decommissioning. No piles are used to secure the 

foundations to the seabed unlike steel jackets and tripods (and possibly floating platforms) where 

the complete removal of piles from the seabed at decommissioning is currently unproven. 

Alterations to, or effects on, the physical environment will be more complex to model for deeper 

water foundation types when compared to monopiles. This is in part due to the more complex 

profiles of the foundations and part due to increased water depth and the variations this brings to 

wave energy transfer to the seabed. This in turn may affect tidal currents and surface and near 

seabed sediment transport systems in different ways than for shallow water environments. The 

number of foundations used within an array and the inter‐turbine spacing will also add complexity to 

the non‐linear models. These models and scenarios have yet to be tested in a UK context, but there 

are developments in other European countries that may provide an insight into this area of EIA work. 

Test bed projects and pilot studies are envisaged in the near future in Germany and the UK. Careful 

consideration of environmental monitoring programmes associated with the deployment of these 

test‐bed studies is advised. This may enable solution‐specific data, relevant to physical and biological 

environmental issues. to be collected to better describe the likely specific environmental footprint of 

each solution type. These opportunities should be seized to assist in ‘filling’ the UK‐specific 

knowledge gap regarding large‐scale deployments of CGBFs. 

The general location of most Round 3 zones means that less of a focus may be required on coastal 

impacts studies than has been the case for Round 1 and 2 arrays. Deeper water means that an 

Page 140: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

124  

alteration to the local wave climate and subsequent wave‐induced effects are much less likely to 

impinge upon the seabed or reach the coast. Any local changes to tidal currents or surface sediment 

transport pathways are similarly less likely to interface with coastal systems. Modelling will be 

required at a project‐specific level to inform an EIA, but overall this could be of less concern than for 

Round 1 and 2 projects. It is noteworthy that Rampion and Navitas Bay sites are located only 13km 

from the South Coast and it is expected that detailed coastal impact studies will be required for 

these arrays. 

The water column profile of the deeper water foundations will be greater and more complex than 

monopile profiles. This is in part due to the size of 5 MW (and greater) turbines and partly due to the 

larger footprint required to provide a stable foundation. The profiles are likely to provide more 

complex blockage effects and localised changes to the physical environments when considered alone 

and also at an array scale. Steel jacket foundations may have a similar or greater blockage effect 

than CGBFs due to their complex structure profile and surface area. The magnitude of these effects 

has to be considered within the context of the known extent of environmental resources at a 

regional sea scale and as part of appropriate marine planning and management i.e. even though 

there may be a larger footprint per foundation (and array) this can be acceptable in suitable 

locations given the entirety of the extent of receptors within a region. 

The introduction of all foundation structures onto the seabed will result in a diversification of habitat 

type which may have several effects on the natural environment by colonisation of rocky reef 

communities on seabed areas previously unavailable to them. The ‘reef effect’ will result in local 

changes to biodiversity and possible shifts at trophic or ecosystem scales through: changes to 

sediment communities from nutrification by organic material deposited from the ‘reef’; the spread 

of some invasive non‐native species through a ‘stepping stone’ effect from habitat provision; 

predators attracted to the reef may alter sediment communities for a short distance around each 

foundation ‐ ‘halo’ or ‘fringe’ ‐ through predation effects; local fish population dynamics may change 

as the structures are likely to act as Fish Aggregation Devices (FADs), attracting fish from surrounding 

areas to safety and opportunities that a ‘reef’ provides; and some mobile predatory megafauna such 

as seals may be attracted to the relative abundance of prey species. 

Reef and Fish Aggregation Device effects, either negative or positive, are not believed to be any 

greater for CGBFs than other deeper water foundation solutions, especially when considering 

seabed ‘shadowing’ effects beneath steel jackets and tripods. 

In UK waters to date, possibly the greatest marine underwater impact associated with the 

construction of offshore windfarms is the creation of very high levels of underwater energy, noise 

and sound pressure waves, from the piling, drilling and hammering of monopile foundations into the 

seabed: which produce underwater sound and pressure waves at high enough levels to cause death, 

damage and displacement of marine mammals, sensitive fish species and some fish eggs and larvae. 

The significance of such impacts is relatively poorly understood at population or ecosystem scales 

and domestic and international legislation now reflects the serious consideration of these possible 

effects. 

Most importantly, from an environmental perspective, is the consideration of increased water depth 

and the attendant forces required to install monopiles. Thicker larger piles require longer piling 

Page 141: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

125  

periods with greater sustained hammering using heavier hammers in comparison to shallow water 

installation. There is already a level of evidence‐based concern regarding the sound and pressure 

wave impacts from the piling operations associated with UK Round 1 and 2 arrays and German 

projects and sensitive marine species. Offshore environments may also provide larger potential for 

sound wave propagation over greater distances with less potential for attenuation (than in 

nearshore environments). 

Any CGBFs that require ground preparation works will generate noise associated with the dredging 

activity. Evidence from marine aggregate extraction operations demonstrates that dredging noise 

levels are barely detected above those associated with general dredger navigation and is no noisier 

than merchant shipping vessel transits in the local area. Also the magnitude of effects from seabed 

preparation will be very much lower in comparison with marine aggregate extraction areas; due to 

the small area of seabed dredged and the time‐limited window of dredging. Not all ground 

preparation works may be conducted via trailer suction hopper dredgers, as grab dredging may also 

be employed. Noise generated by this activity again falls within the envelope of background coastal 

vessel traffic. 

Underwater noise impact pathways are still evident for some deeper water solutions such as steel 

jackets and tripods, even if monopiles are not used in Round 3 developments. Both steel jacket and 

tripod foundations require piling to secure each of the ‘feet’ to the seabed. This will result in 

multiple noise emissions per foundation. Therefore increased noise impacts are a reality that, 

moving into the future, will require closer scrutiny than previously.  

More rigorous consenting procedures are now in place due to the implementation of marine 

environmental legislation such as the Habitats Directive and the Marine Strategy Framework 

Directive. Demonstration that installation and emplacement of CGBFs is ‘noise‐neutral’ or positive 

may mean that the solution type does not have to be on any ‘noise register’, should Defra deem 

such a register is required for ‘noisy’ activities as a suitable response to implementing the MSFD. 

In this context it is likely that CGBF installation and emplacement will provide a very positive 

foundation solution for Round 3 arrays due to the fact that no piling is required. This means that one 

of the major environmental impacts associated with offshore windfarm developments can easily be 

mitigated. 

Deep water foundations also impact upon the human environment in a number of ways. The 

changes to the physical and biological environment can affect the livelihood of fishermen operating 

within the region. Reef effects may attract fish to the foundations away from ‘traditional’ habitat 

areas and fishing grounds. However, fish aggregations may also allow fisheries to develop in areas 

alongside windfarms. Archaeology is also a major consideration for the human environment. 

Archaeological receptors tend to be located within the first few metres of the geological units on the 

seabed, which may be impacted by the deep water foundation itself, or through any seabed 

preparation required, scour and secondary impacts. However these possible effects are not CGBF‐

specific in their nature. 

Overall, evidence from the examples identified to date suggests that the impacts from GCBFs are 

broadly comparable to other foundation types likely to be used throughout Round 3 developments 

in the UK. Furthermore, the significant advantage over other foundation types is the lack of 

Page 142: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

126  

significant levels of underwater noise emissions generated during installation, which many of the 

other foundation types require to secure them to the seabed. This presents a very significant 

advantage to developers should they choose to use CGBFs for Round 3 projects. 

 

 

Page 143: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

127  

12 ConclusionsGiven the environmental constraints associated with Round 3 zones it is unlikely that monopile 

foundations will be a viable solution in a large number of cases for the next generation of UK 

offshore windfarms. Of the deeper water engineering solutions steel jackets, tripods, suction 

caissons, floating platforms and concrete gravity base foundations are suitable for Round 3 

installations. 

Through review of recent offshore windfarm construction case studies and environmental 

monitoring programmes, and in the context of the known use of concrete in the marine 

environment, the report is able to make some evidence‐based statements about the use of CGBFs 

for Round 3.  

BlockageEffectsCGBFs at a generic level have similar physical blockage effects to other deeper water foundation 

solutions. The intricacy of a steel jacket structure is likely to have a greater effect on the water 

column, but this may be mitigated by the reduced surface area interacting with the water column 

when comparing effects from CGBFs. It is reasonable to expect similar levels of effects between 

CGBFs and suction caissons where design parameters are similar: the two solutions in some cases 

present similar profiles to the water column.  

As already identified by solution providers, complex non‐linear modelling will have to be conducted 

to evaluate environmental responses to each solution’s size, shape and profile. Water depth and 

exposure to storm wave events will have to be factored as part of the process. In most cases for 

Round 3 zones (notable exceptions being Rampion and Navitas Bay) it is anticipated that CGBF‐

related effects on physical receptors may be mitigated by distance from shore and water depth.  

CGBFs, at a generic level, have similar physical blockage effects to other deeper water foundation 

solutions. However, their different frontal and surface areas will result in localised effects on waves, 

tidal currents and sediment transport mechanisms that may differ from steel jacket and tripod 

foundations. 

SeabedFootprintofFoundationRound 3 projects are likely to result in greater direct seabed footprints per foundation in comparison 

with the majority of Round 1 and 2 arrays. This is related to the deeper water offshore environment 

and technical and cost constraints associated with wide‐scale use of steel monopiles in these 

offshore environments. Therefore there will be a shift to the use of alternative foundation solutions. 

The direct physical effect footprints will have to be considered by drawing comparisons between 

steel jacket, tripod, concrete gravity bases and suction caisson foundations and not monopiles.  

These solutions have an increased direct physical footprint (in comparison to shallow water 

monopiles) but there are variations between the different solution types and CGBFs can have a 

comparable seabed footprint.  

Page 144: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

128  

SeabedPreparationandScourProtectionIt is important to note that preparation of foundation pits and the deposition of foundation layers 

are not required for all CGBF designs and depends on the construction and installation methodology 

selected by each solution provider.  

Where preparation of the seabed is required then CGBFs and suction caissons are likely to result in 

larger footprints of effects than steel jackets or tripods and certainly floating platforms (though it is 

unlikely that this solution will be marketable in time for Round 3 developments). Foundation pit 

excavation will result in a temporary direct habitat loss with an associated sediment plume and 

resultant indirect effects from smothering and seabed bedform alteration. These footprints may 

significantly increase the overall impact zones, but may not result in permanent damage to benthic 

communities. However permanent effects on sub‐surface geology and archaeology may occur. The 

scale of biological impact will, to a large degree, be based upon the sediment habitats affected and 

benthic community recovery periods and tolerances to dredging impacts e.g. mobile sand habitats 

may recover within 6‐24 months to extraction and within days or weeks to smothering, whilst low 

energy environment consolidated gravel communities may take greater than 8 years to recover from 

extraction and smothering.  

Scour protection, if required, will result in direct loss of seabed habitats, biological communities and 

possibly archaeological features (if the latter are present). All foundation types may require scour 

protection so the magnitude of effect relates to the total additional area per foundation and is 

generally site‐specific. 

It is anticipated that ground preparation for suction caisson foundations will result in smaller scales 

of effect to CGBFs. Both of which, where required, will have a greater effect footprint than for Steel 

Jacket and Tripod foundations which generally do not require extensive seabed preparation. 

Where preparation of the seabed is required then CGBFs and suction caissons will initially result in 

larger footprints of effects than steel jackets or tripods, which are less likely to require sea bed 

preparation. But recovery from these effects is expected within the lifespan of the windfarm project. 

Steel jacket and tripod foundations may require scour protection which will add to the overall 

seabed footprint of the structures; similar to the cases for some monopile foundations associated 

with Round 1 and 2 installations. 

ReefEffectsReef effects due to the presence of artificial hard substrata deposited on the seabed will apply to all 

foundation types (though not anticipated to be great for floating platforms), regardless of water 

depth or distance from shore. The evidence base demonstrates that more complex shapes providing 

crevice and niche‐like spaces are likely to result in higher biodiversity of colonising rocky reef species 

than smooth or simple surface relief structures e.g. the complex structure of steel jackets may 

provide greater niche habitats for reef species and result in increased biodiversity than large 

concrete surfaces. ‘Reef halo’ predation effects are not shape related but larger structures at the 

seabed surface will have larger halos than smaller structures due to larger predator populations they 

support. Changes to sediment communities and recruitment of different species have been recorded 

in association with foundation structures. 

Page 145: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

129  

The area of seabed directly below a tripod or steel jacket structure can be expected to be altered 

due to a high incidence of reef effects. These will manifest through altered hydrodynamics, 

nutrification and predation and result in a larger area of natural habitat loss than that buried 

beneath a CGBF (when also considering direct habitat loss to tripod and steel jacket footprint). 

Artificial reefs are also known to act as Fish Aggregation Devices (FADs). FADs attract mobile species 

of fish to the structures and the size and complexity of artificial structure may bear a relationship to 

the size of fish populations attracted to and supported by a foundation structure, though the 

evidence base is inconclusive to a large degree. From the evidence reviewed it is difficult to state 

that any one foundation solution will have a greater or lesser effectiveness as a FAD.  

FAD effects can also have an effect on local fishing activity. It is possible that some fish species may 

leave areas of seabed which they have historically favoured in preference for the foundation 

structures. However the review of evidence has not shown any quantitative differences between 

foundation structure types. 

Reef effects due to the presence of artificial hard substrata deposited on the seabed will apply to all 

foundation types, regardless of water depth or distance from shore. 

Reef and Fish Aggregation Device effects, either negative or positive, are not believed to definitively 

be any greater for CGBFs than other deeper water foundation solutions, especially when considering 

‘shadowing’ effects beneath steel jackets and tripods. 

UnderwaterNoiseImpactsThe review of the current evidence base shows that CGBFs have a large positive noise‐related effect 

associated with their installation on the seabed. There are very low underwater noise emissions 

when placing the concrete foundations onto the seabed. No piling, hammering or drive‐drill‐drive is 

required for CGBFs and this mitigates one of the potentially greatest impact pathways, namely 

underwater noise and sound pressure wave impacts on sensitive marine species. 

Deeper water environments will require longer piling periods with greater sustained hammering 

using heavier hammers in comparison to previous UK monopile installation. Offshore environments 

may also provide larger potential for sound wave propagation over greater distances with less 

potential for attenuation (than in nearshore environments). Both steel jacket and tripod foundations 

require piling to secure each of the ‘feet’ to the seabed. This will result in multiple noise emissions 

per foundation.  

The concern about underwater noise‐related impacts is growing and domestic and international 

legislation now reflects the serious consideration of these possible effects.  The use of CGBFs may 

mitigate some of this legislative burden for developers. 

It is clear that the use of CGBFs and suction caissons will mitigate significant environmental impacts 

associated with noise emissions on mobile, wide‐ranging sensitive species such as marine mammals.  

As such (due to the unproven nature of suction caissons for use with large turbines – 5MW and 

greater) CGBFs are currently the only deeper water, Round 3 foundation solution that can be 

deployed that will mitigate noise impacts. 

Page 146: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

130  

Evidence shows that emplacement of CGBFs, including seabed preparation (if required) is no noisier 

than merchant shipping vessel transits in the local area. 

CGBF solutions present a large positive effect when considering near and far‐field noise impacts as 

no piling or hammering is required for installation.  

One of the major environmental impacts associated with offshore windfarm developments can 

easily be mitigated significantly by use of CGBFs. 

 

Overall, in comparison with other currently commercially viable offshore deepwater turbine foundation types, CGBFs will:  

Present similar blockage effects; 

Have a similar direct seabed footprint (when also considering shading effects and habitat alteration); 

Result in a larger, though likely temporary, impact footprint, where seabed preparation is required; 

Result in similar reef and Fish Aggregation Device effects; 

Provide no greater opportunity for spread of non‐native invasive species; 

Have the smallest decommissioning footprint; and 

Provide a major environmental and consenting advantage due to mitigation of significant underwater noise impacts associated with installation and emplacement. 

   

Page 147: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

131  

13 ObservationsandRecommendationsReview of evidence used in this report highlights areas of uncertainty regarding some interactions 

between the marine environment and CGBF structures. To provide resolution to some of these 

issues the following observations are made and recommendations suggested: 

Observations  

Non‐linear modelling of physical environmental and blockage effects is dependent upon 

foundation solution‐specific engineering design and emplacement criteria; 

o The engineering solutions have different dimensions and profiles which will result in 

variations in effects – the physical environment will react differently to each design; 

o The numbers and orientation of foundations and their spacing will affect the 

responses from the physical environment; 

The requirement for ground preparation and foundation pits will vary between solution 

types. Clarity of solution‐specific requirements will assist environmental consultants, 

regulators and their advisors to better understand impact scenarios; 

The lack of significant underwater noise impacts associated with CGBFs is a major positive 

effect from the use of this foundation type; 

At the decommissioning phase the fate of ballast material and scour protection is unclear. 

Consideration by the solution providers and developers should be provided to identify 

feasible disposal options and unacceptable ones; and  

Some environmental effects and impacts, whilst associated with CGBFs, are not restricted to 

this foundation type alone. 

 

Recommendations  

Non‐linear modelling of physical environmental effects is dependent upon foundation 

solution‐specific engineering design. The various solutions have different dimensions and 

profiles. Clarity on these dimensions and any ‘real world’ data acquired by engineers will 

assist in running these models for EIA; 

Early and clear engagement between the engineers and the regulators and their technical 

and statutory advisors (specifically The Concrete Centre, the Gravity Foundation Interest 

Group, the MMO and the Offshore Renewable Energy Licensing Group) is advised. Case 

history from other seabed user sectors demonstrates that early and continued engagement 

can mitigate misunderstandings and result in cost‐effective application s and timely delivery 

of projects; 

Regulators and their advisors, along with solution providers and developers, need to ensure 

that any monitoring requirements are fit‐for‐purpose and CGBF‐specific. Clear hypotheses to 

be tested should be expected; 

Strategic research to assess generic effects should be considered by regulators, their 

advisors and industry. Reef effects associated with artificial hard substrata are common to 

many sectors and foundation types, not just the offshore wind sector using CGBFs;  

The findings and determinations within this report should be used to inform any ‘realistic 

Page 148: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

132  

worst case scenario’ modelling that the regulators and their advisors conduct to better 

inform all involved in delivering Round 3 developments; and 

Any opportunity to gather ‘real world’ data should be considered and acted upon pro‐

actively. Deployment of solution types at test bed facilities will enable Pilot Studies to be 

conducted. Best practice dictates that early consideration of beneficial monitoring of 

environmental effects from the testing of techniques or structures will provide invaluable 

data. Consideration to monitoring deployment of multiple structures will start to address 

some of the current modelling constraints that can be monitored. Although extra cost will be 

involved upfront there are likely to be cost benefits through the pre‐application and 

application stages. 

 

 

 

 

Page 149: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

133  

14 References 

Aarsleff Bilfinger Berger Joint Venture 2011, Offshore Windfarm Rødsand 2, viewed 21 May 2012, <http://www.abjv.com/files/abjv%20RDS2.pdf>. 

ABPmer, 2005.  Assessment of potential impact of Round 2 offshore windfarm developments on sediment transport.  Report R.1109. 

Aumônier, S. H. (2010). Carbon footprint of marine aggregate extraction. The Crown Estate.Bailey, H., Senior, B., Simmons, D., Rusin, J., Picken, G. and Thompson, P.M., 2010. Assessing underwater noise levels during pile‐driving at an offshore windfarm and its potential effects on marine mammals. Marine Pollution Bulletin 60 (2010) 888–897. 

Bailey, H., Senior, B., Simmons, D., Rusin, J., Picken, G. and Thompson, P.M., 2010. Assessing underwater noise levels during pile‐driving at an offshore windfarm and its potential effects on marine mammals. Marine Pollution Bulletin 60 (2010) 888–897 

Baines M E, and Evans, P G H.  2009.  Atlas of the Marine Mammals of Wales.  CCW Monitoring Report No. 68. 

BERR, 2008.  Atlas of UK Marine Renewable Energy Resource.  181pp. 

Bishop J.R., 1981.  Experience with scour at the Christchurch Bay Tower.  National Maritime Institute.  NMI‐R‐120.  OT‐M‐8101. 

Bloomfield, A. and Solandt, J‐L., 2008. The Marine Conservation Society basking shark watch 20 year report (1987‐2006) 

Boesen, C & Andersen, S 2005, 'Environmental effect studies – Status more than two years after the erection of Horns Rev and Nysted Offshore Windfarms', Copenhagen Offshore Wind, 26‐28 October 2005. 

den Boon J.H., Sutherland J., Whitehouse R., Soulsby R., Stam C.J.M., Verhoeven K., Høgedal M. and Hald T., 2004.. Scour Behaviour and Scour Protection for Monopile Foundations of Offshore Wind Turbines. In: Proc. 2004 European Wind Energy Conference, London, UK, European Wind Energy Association [CD‐ROM]. p14. 

Brabant, R. and Jacques, T.G., 2010. Chapter 2. Introduction: offshore wind energy development in the Belgian part of the North Sea & anticipated impacts pp9‐38 in Degraer, S., Brabant, R. & Rumes, B. (Eds.) (2010) Offshore windfarms in the Belgian part of the North Sea: Early environmental impact assessment and spatio‐temporal variability. Royal Belgian Institute of Natural Sciences, Management Unit of the North Sea Mathematical Models. Marine ecosystem management unit. 184 pp. + annexes. 

Bremner, J., Paramor, O.A.L. and Frid, C.L.J., 2006. Developing a methodology for incorporating ecological structure and functioning into designation of Special Areas of Conservation (SAC) in the 0‐12 nautical mile zone. School of Biological Sciences, University of Liverpool. 158pp. 

Bureau of Ocean Energy Management, Regulation and Enforcement (BoEMRE), 2012. Rigs‐to‐Reef website. Last visited on 28 June 2012. http://www.gomr.boemre.gov/homepg/regulate/environ/rigs‐to‐reefs/information.html 

Page 150: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

134  

Carroll B., Cooper W.S., Dewey N.K., Whitehead P.A., Dolphin A., Rees J., Judd A., Whitehouse R., and Harris J.M., 2010.  A further review of sediment monitoring data.  COWRIE ScourSed‐09.  Final Report, March 2010. 

Cefas, 2004. Offshore Windfarms: Guidance Note for Environmental Impact Assessment in Respect of FEPA and CPA Requirements. Prepared for the Marine Consents and Environmental Unit, Version 2 ‐ June 2004. 

Cefas, 2005.  Assessment of the Significance of Changes to the Inshore Wave Regime as a consequence of an Offshore Wind Array.  Defra Project Code A1227. 

Cefas, 2010.  Strategic Review of Offshore Windfarm Monitoring Data Associated with FEPA Licence Conditions.  ME1117.  August 2010. 

Cefas, 2011.  Guidelines for data acquisition to support marine environmental assessments for offshore renewable energy projects.  Cefas contract report: ME5403 – Module 15.  15th June 2011. 

Central Dredging Agency (CEDA), 2011. CEDA Position Paper: underwater sound in relation to dredging. Terra et Aqua, number 125, December 2011, 23‐28. 

Centrica Energy Ltd, 2008. Environmental Report for Monitoring of the Disposal of Drill Arisings at Lynn and Inner Dowsing. Document No. LD‐E‐CE‐013‐0117‐300100‐004‐R. 

Centrica Energy Ltd, 2009. Race Bank Offshore Windfarm ES. 

Centrica Energy Ltd, 2010. LID6 Environmental Statement. 

Coates, D., Vanaverbeke, J., Rabaut, M. and Vincx, M., 2010. Chapter 6. Soft‐sediment macrobenthos around offshore wind turbines in the Belgian Part of the North Sea reveals a clear shift in species composition in Degraer, S., Brabant, R. & Rumes, B. (Eds.) (2010) Offshore windfarms in the Belgian part of the North Sea: Early environmental impact assessment and spatio‐temporal variability. Royal Belgian Institute of Natural Sciences, Management Unit of the North Sea Mathematical Models. Marine ecosystem management unit. 184 pp. + annexes. 

Coates, D. and Vincx, M., 2010. Chapter 7 Monitoring the effects of offshore windfarms on the softsubstratum macrobenthos: Year‐1 Bligh Bank and Year‐2 Thorntonbank. pp. 83‐103 in Degraer, S., Brabant, R. & Rumes, B. (Eds.) (2010) Offshore windfarms in the Belgian part of the North Sea: Early environmental impact assessment and spatio‐temporal variability. Royal Belgian Institute of Natural Sciences, Management Unit of the North Sea Mathematical Models. Marine ecosystem management unit. 184 pp. + annexes. 

Compagno, L., Dando, M. and Fowler, S., 2005. Collins Field Guide: Sharks of the World. pp 368. Harper Collins. ISBN: 0007136102. 

Connor, D.W., Allen, J.H., Golding, N., Howell, K.L., Lieberhnecht, L.M., Northern, K.O., and Reker, J.B., 2004. The Marine Habitat Classification for Britain and Ireland Version 04.05 JNCC, Peterborough ISBN 1 861 07561 8 (internet version) www.jncc.gov.uk/MarineHabitatClassification. 

Page 151: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

135  

Cook A.S.C.P. and Burton N.H.K., 2010. A review of the potential impacts of marine aggregate extraction on seabirds. Marine Aggregate Levy Sustainability Fund, Marine Environment Protection Fund Project 09/P130. 

Cooper, K.M., Curtis, M., Wan Hussin, W.M.R., Barrio Frojan, C.R.S., Defew, E.C., Nye, V., Patterson, D.M. 2011. Implications of dredging induced changes in sediment particle size composition for the structure and function of marine benthic macrofaunal communities. Marine Pollution Bulletin. 62, 2087‐2094. 

Cooper W.S., 2010.  Coastal processes.  In: Huddlestone J., (Ed.). Understanding the environmental impacts of offshore windfarms.  COWRIE.  138pp. 

Cooper W.S., and Beiboer F., 2002.  Potential effects of offshore wind developments on coastal processes.  ETSU W/35/00596/00/REP. 

Cooper W.S., Rees J., and Coates T., 2008.  Review of Round 1 sediment process monitoring data – lessons learnt. A report for the Research Advisory Group on behalf of DECC. 

Cripps, S.J. and Aabel, J.P., 2002. Environmental and socio‐economic impact assessment of Ekoreef, a multiple platform rigs‐to‐reefs development. ICES Journal of Marine Science, 59: S300–S308. 2002 doi:10.1006/jmsc.2002.1293, available online at http://www.idealibrary.com 

DECC, 2008. Dynamics of scour pits and scour protection – Synthesis report and recommendations (Milestones 2 and 3). Final Report prepared by HR Wallingford Ltd, ABP Marine Environmental Research Ltd and Centre for Environment, Fisheries and Aquaculture Science for the Research Advisory Group, Department of Energy and Climate Change (DECC) and Department for Environment, Food and Rural Affairs (Defra). 

DECC, 2011a. Comparative Review of Foundations for Offshore Wind Turbines: Engineering and Environmental Considerations. 

DECC, 2011b.  National Policy Statement for Renewable Energy Infrastructure (EN‐3).  Presented to Parliament pursuant to section 5(9) of the Planning Act 2008. 

DNV, 2007.  Design of Offshore Wind Turbine Structures.  Offshore Standard DNV‐OS‐J101.  

Department for Environment, Food and Rural Affairs (Defra), 2010. The Government’s strategy for contributing to the delivery of a UK network of marine protected areas. 

Degraer S., and Brabant R., (Eds.), 2009.  Offshore windfarms in the Belgian part of the North Sea: State of the art after two years of environmental monitoring.  Royal Belgian Institute for Natural Sciences, Management Unit of the North Sea Mathematical Models.  Marine Ecosystem Management Unit.  287 pp. + annexes. 

Degraer S., Brabant R., and Rumes B., (Eds.), 2010.  Offshore windfarms in the Belgian part of the North Sea: Early environmental impact assessment and spatio‐temporal variability.  Royal Belgian Institute of Natural Sciences, Management Unit of the North Sea Mathematical Models.  Marine Ecosystem Management Unit.  184 pp. + annexes. 

Derweduwen, J., Vandendriessche, S. and Hostens, K., 2010. Chapter 8 Monitoring of the effects ofthe Thorntonbank and Bligh Bank windfarms on the epifauna and demersal fish fauna of soft‐bottom sediments: Thorntonbank: status during construction (T2), Bligh Bank: status during 

Page 152: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

136  

construction (T1). pp. 105‐131 in Degraer, S., Brabant, R. & Rumes, B. (Eds.) (2010) Offshore windfarms in the Belgian part of the North Sea: Early environmental impact assessment and spatio‐temporal variability. Royal Belgian Institute of Natural Sciences, Management Unit of the North Sea Mathematical Models. Marine ecosystem management unit. 184 pp. + annexes. 

Department of Transport, Local Government and the Regions 2000, 'Environmental impact assessment: A guide to procedures', 0 72 772960 8, HMSO, London. 

DONG Energy, 2006. The Danish Offshore Windfarm Demonstration Project: Horns Rev and Nysted Offshore Windfarms Environmental impact assessment and monitoring 2005, viewed 21 May 2012, <http://193.88.185.141/Graphics/Energiforsyning/Vedvarende_energi/Vind/havvindmoeller/vvm%20Horns%20Rev%202/begge%20parker/Review%20rapport%202005.pdf>. 

DONG Energy, Vattenfall, The Danish Energy Authority and The Danish Forest and Nature Agency, 2006. Danish Off shore Wind – Key Environmental Issues. ISBN: 87‐7844‐625‐2 

Eastwood, P. D., Mills, C. M., Aldridge, J. N., Houghton, C. A., and Rogers, S. I., 2007. Human activities in UK offshore waters: an assessment of direct, physical pressure on the seabed. – ICES Journal of Marine Science, 64: 453–463. 

Eclipse Energy Company Ltd, 2005. Ormonde Project Environmental Impact Assessment: Non‐Technical Summary. 16pp. 

EMU Ltd, 2009. Lynn and Inner Dowsing Hydrographic Monitoring Survey. Centrica Energy, Report No: 09/J/1/02/1495/0925, 47pp. 

EMU Ltd, 2010a. Marine Biodiversity and Aggregate Dredging in Both a Two and Three Dimensional Context ‐ Volume 1. Report No. 10/J/1/03/0843/1068 Study commissioned August 2004. ISBN: 978 0 907545 41 5. 

EMU Ltd, 2010b.  South Coast Marine Aggregate Regional Environmental Assessment Volume 1 & 2. Report No. J/1/06/1165. 

EMU Ltd, 2011a.  Anglian Offshore Marine Aggregate Regional Environmental Assessment  

ERM Ltd, 2011b.  Draft Marine Mammal Chapter for the Humber Regional Environmental Assessment. 

ETSU, 2002.  Potential effects of offshore wind developments on coastal processes.  ETSU W/35/00596/00/REP.  Prepared by ABPmer and METOC. 

ESRa, 2012. Evaluation of Pile Driving Noise Mitigation Systems (ESRa) program. Press release downloaded on 23 July 2012. http://www.offshore‐stiftung.com/60005/Uploaded/Offshore_Stiftung%7C0712PMESRaAbschlussbericht_en.pdf 

European Wind Energy Association (EWEA), 2009. Oceans of Opportunity: Harnessing Europe’s largest domestic energy resource. 67pp. 

Evans, P.G.H., 1987. The natural history of whales and dolphins. Academic Press. ISBN: 0‐12‐244200‐8. 

Page 153: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

137  

van de Eynde D., Brabant R., Fettweis M., Francken F., Melotte J., and Van Lancker V., 2010.  Chapter 3. Monitoring of hydrodynamic and morphological changes at the C‐Power and the Belwind offshore windfarm sites – A synthesis.  In:  Offshore windfarms in the Belgian part of the North Sea.  Early environmental impact assessment and spatio‐temproal variability. 

Foden, J., 2011.  Integrated spatial assessment of human pressures and impact on UK seabed habitats. PhD Thesis.  

Foden J., Rogers S.I., Jones A.P., 2011. Human pressures on UK seabed habitats: a cumulative impact 

assessment. Mar Ecol Prog Ser 428:33‐47. 

Frederiksen, H., 2008. Offshore Foundations for Windfarms, UROP Project ‐ National University of Singapore. 

Frederiksen, M., Edwards, M., Richardson, A.J., Halliday, N.C. and Wanless, S., 2006. From plankton to top predators: bottom‐up control of a marine food web across four trophic levels. Journal of Animal Ecology 2006 75, 1259–1268. 

Haelters J., Norro A. and Jacques T.G., 2009. Chapter 3 Underwater noise emission during the phase I construction of the C‐Power windfarm and baseline for the Belwind windfarm. pp. 17‐37 in Degraer, S. and Brabant, R. (Eds.), 2009. Offshore windfarms in the Belgian part of the North Sea: State of the art after two years of environmental monitoring. Royal Belgian Institute for Natural Sciences, Management Unit of the North Sea Mathematical Models. Marine ecosystem management unit. 287 pp. + annexes. 

Hammer L., Anderson S., and Rosenberg R., 2010.  Adapting offshore wind power foundations to local environment.  Swedish Environment Protection Agency.  Report 6367.  May 2010. 

Hildebrande J.A., 2005. Impacts of Anthropogenic Sound.  In J.E. Reynolds et al. (eds), Marine Mammal Research: Conservation beyond Crisis. The Johns Hopkins University Press, Baltimore, Maryland. Pages 101‐124 (2005) 

Hill, J.M, Marzialetti, S and Pearce, B.  2011.  Recovery of Seabed Resources Following Marine Aggregate Extraction. Marine ALSF Science Monograph Series No. 2. MEPF 10/P148. (Edited by R. C. Newell & J. Measures). 44pp. ISBN: 978 0 907545 45 3. 

Hiscock, K. (Ed), 1998. Marine Nature Conservation Review. Benthic marine ecosystems of Great Britain and the north‐east Atlantic. Peterborough, Joint Nature Conservation Committee. (Coasts and seas of the United Kingdom. MNCR series). ISBN: 1‐86107‐445‐X 

Hiscock, K., Tyler‐Walters, H. and Jones, H., 2002. High Level Environmental Screening Study for Offshore Windfarm Developments – Marine Habitats and Species Project. Report from the Marine Biological Association to The Department of Trade and Industry New & Renewable Energy Programme. (AEA Technology, Environment Contract: W/35/00632/00/00.)  

HM Government, 2012. Marine Strategy Framework Directive consultation: UK Initial Assessment and Proposals for Good Environmental Status. Impact Assessment. March 2012. 

Houlsby, G.T.,  Ibsen, L.B. & Byrne B.W., 2005. Suction caissons for wind turbines, IN: Frontiers in Offshore Geotechnics: ISFOG 2005 – Gourvenec & Cassidy (eds), Taylor & Francis Group, London, ISBN 0 415 39063 X. 

Page 154: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

138  

HR Wallingford, Cefas, UEA, Posford Haskoning and D’Olier B., 2002.  Southern North Sea Sediment Transport Study, Phase 2.  HR Wallingford Report EX 4526.  August 2002 

International Federation for Structural Concrete (fib ‐ fédération internationale du béton), 2009. fib Bulletin No. 50: concrete structures for oil and gas fields in hostile marine environments. 36pp. ISBN: 978‐2‐88394‐090‐1. 

Joint Nature Conservation Committee (JNCC), 1995. European seabirds at sea database: seabird and cetacean UKDMAP datasets version 2.1. JNCC, Peterborough. 

Joint Nature Conservation Committee (JNCC), 2007. Second Report by the UK under Article 17 on the implementation of the Habitats Directive from January 2001 to December 2006. Peterborough: JNCC. Available from: www.jncc.gov.uk/article17 

Joint Nature Conservation Committee (JNCC), 2010a. UK SeaMap 2010 – predictive mapping of seabed habitats in UK Waters. JNCC Report No. 446. Available from: http://jncc.defra.gov.uk/page‐2117. 

Joint Nature Conservation Committee (JNCC), 2010b. Statutory nature conservation agency protocol for minimising the risk of injury to marine mammals from piling noise.  

Joint Nature Conservation Committee, Natural England and Countryside Council for Wales (JNCC, NE and CCW), 2010. The protection of marine European Protected Species from injury and disturbance ‐Draft guidance for the marine area in England and Wales and the UK offshore marine area. Draft guidance.  

Jones, L.A., Hiscock, K. and Connor, D.W. 2000. Marine Habitat Reviews. A summary of ecological requirements and sensitivity characteristics for the conservation and management of marine SACs. Peterborough: Joint Nature Conservation Committee. 

Jones L A, Coyle M D, Gilliland P M, Larwood J G & Murray A R.  2004.  Irish Sea Marine Natural Area Profile : A contribution to regional planning and management of the seas around England. Peterborough: English Nature. 

Kolian, S. and Sammarco, P.W., 2008. Removal of Offshore Oil and Gas Platforms: Rationale for Retaining Infrastructure to Develop Offshore Renewable Resources in the Gulf of Mexico. Ecorigs and Louisiana University Marine Consortium. 

Lambkin D.O., Harris J.M., Cooper W.S., and Coates T., 2009.  Coastal Process modelling for offshore windfarm environmental impact assessment: Best practice guide.  COWRIE COAST‐07‐08.  September 2009. 

Lindoe Offshore Renewables Center 2012, Offshore Windfarms List – global database, viewed 21 May 2012, <http://www.lorc.dk/offshore‐wind‐farms‐map/list?os_sst=Gravity+based>. 

Linley E.A.S., Wilding T.A., Black K., Hawkins A.J.S. and Mangi S., 2007. Review of the reef effects of offshore windfarm structures and their potential for enhancement and mitigation. Report from PML Applications Ltd and the Scottish Association for Marine Science to the Department for Business, Enterprise and Regulatory Reform (BERR), Contract No: RFCA/005/0029P. 

Lynch, D. and Fulcher, D. 2012. Weighty Challenge. Energy: Offshore Wind. New Civil Engineer 26.04.12. p16. 

Page 155: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

139  

Marine Conservation Society (MCS), 2012. Marine species sightings map. Available at http://www.mcsuk.org/sightings/map/index.php. Last referenced 22 May 2012. 

Marine Ecological Surveys Ltd. (MES), 2008. Marine Macrofauna Genus Trait Handbook. Marine Ecological Surveys Limited, 24a Monmouth Place, BATH, BA1 2AY. ISBN 978‐0‐9506920‐2‐9. http://www.genustraithandbook.org.uk/.Last accessed on 20 May 2012. 

Marine Life Information Network (MarLIN). 2012. Marine Life Information Network. Last accessed on 20 May 2012 at www.marlin.ac.uk 

Marine Management Organisation 2011, 'Marine licensing guidance documents 1‐12', Marine Management Organisation, Newcastle. 

Minerals Management Service, 2000. Platform Ecology Studies Funded by the Minerals Management Service’s Environmental Studies Program: An Annotated Bibliography  

Natural England and Joint Nature Conservation Committee (NE and JNCC), 2011. General advice on assessing potential impacts of and mitigation for human activities on MCZ features using existing regulation and legislation. – June 2011. 

Newell, R.C, Seiderer, L.J and Hitchcock, D.R.  1998.  The impact of dredging works in coastal waters: a review of the sensitivity to disturbance and subsequent recovery of biological resources on the sea bed. Oceanography and Marine Biology: an Annual Review, 36: 127‐178. 

Newell R.C., Seiderer L.J., Simpson N.M., and Robinson J.E., 2004. Impacts of marine aggregate dredging on benthic macrofauna off the south coast of the United Kingdom. Journal of Coastal Research, 20, 115–125. 

Norro, A., Haelters, J., Rumes, B. & Degraer, S., 2010. Chapter 4 Underwater noise produced by the piling activities during the construction of the Belwind offshore windfarm (Bligh Bank, Belgian marine waters). pp. 37‐51 in Degraer, S., Brabant, R. & Rumes, B. (Eds.) (2010) Offshore windfarms in the Belgian part of the North Sea: Early environmental impact assessment and spatio‐temporal variability. Royal Belgian Institute of Natural Sciences, Management Unit of the North Sea Mathematical Models. Marine ecosystem management unit. 184 pp. + annexes. 

Nybakken, J.W. and Bertness, M.D. 2004. Marine Biology: An Ecological Approach (6th Edition). Benjamin Cummings. ISBN: 0805345825. 

OSPAR Commission, 2006.  Review of the Current State of Knowledge on the Environmental Impacts of the Location, Operation and Removal/Disposal of Offshore Wind‐Farms.  38pp. 

Henry M. Page, H.M., Dugan, J.E., Dugon, D.S., Richards, J.B. and Hubbard, D.M., 1999. Effects of an offshore oil platform on the distribution and abundance of commercially important crab species. Mar Ecol Prog Ser. Vol. 185: 47‐57. 

Peire K., Nonneman H., and Bosschem E., 2009.  Gravity Base Foundations for the Thornton Bank Offshore Windfarm. Terra et Aqua, 115, 19‐29. 

Perrow, M.R., Gilroy, J.J., Skeate, E.R. and Tomlinson, M.L., 2011. Effects of the construction of Scroby Sands offshore windfarm on the prey base of Little tern Sternula albifrons at its most important UK colony. Marine Pollution Bulletin 62 (2011) 1661–1670. 

Page 156: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

140  

Pinnegar, J., Blasdale, T., Campbell, N., Coates, S., Colclough, S., Fraser, H., Greathead, C., Greenstreet, S., Neat, F., Sharp, R., Simms, D., Stevens, H., and Waugh, A., 2010. Charting Progress 2 Healthy and Biological Diverse Seas Feeder Report: Section 3.4: Fish. Published by Department for Environment Food and Rural Affairs on behalf of UKMMAS. p378‐505. In: UKMMAS (2010) Charting Progress 2 Healthy and Biological Diverse Seas Feeder report (Eds. Frost, M & Hawkridge, J). 

Posey, M. H. and Ambrose, W. G., 1994. Effects of proximity to an offshore hard‐bottom reef on infaunal abundances. Marine Biology 118: 745‐753. 

Rees, J. M. 2005. Scroby Sands offshore windfarm coastal processes monitoring. AE0262 final report to Defra/DTI. Centre for Environment, Fisheries and Aquaculture Science, Lowestoft. 51 pp. 

Reid J.B., Evans P.G.H. and Northridge S.P., 2003.  Atlas of Cetacean Distribution in north‐west European waters. 

Reiss, H., Degraer, S., Duineveld, G. C. A., Kro¨ncke, I., Aldridge, J., Craeymeersch, J., Eggleton, J. D., Hillewaert, H., Lavaleye, M. S. S., Moll, A., Pohlmann, T., Rachor, E., Robertson, M., vanden Berghe, E., van Hoey, G., and Rees, H. L. 2010. Spatial patterns of infauna, epifauna, and demersal fish communities in the North Sea. – ICES Journal of Marine Science, 67: 278–293. 

Reubens, J., Degraer, S. and Vincx, M., 2010. Chapter 6. The importance of marine windfarms, as artificial hard substrata, for the ecology of the ichthyofauna. pp. 69‐82 in Degraer, S., Brabant, R. & Rumes, B. (Eds.) (2010) Offshore windfarms in the Belgian part of the North Sea: Early environmental impact assessment and spatio‐temporal variability. Royal Belgian Institute of Natural Sciences, Management Unit of the North Sea Mathematical Models. Marine ecosystem management unit. 184 pp. + annexes. 

Robinson, S.P, Theobald, P.D, Hayman, G, Wang, L.S, Lepper, P.A, Humphrey, V and Mumford, S.  2011.  Measurement of noise arising from marine aggregate dredging operations, MALSF (MEPF Ref no. 09/P108). 

Royal Haskoning, 2005. Strangford Lough Marine Current Turbine Environmental Statement. 

RPS Energy and RWE NPower Renewables, 2011. Triton Knoll Preliminary Environmental Information. 

Schaumann, P. and Böker, C., 2005. Can Tripods and Jackets compete with Monopiles? Contribution to Copenhagen Offshore Wind, 26‐28 October 2005. 

Scottish Executive, 2007. Scottish Marine Renewables SEA Environmental Report. Downloadable from http://www.seaenergyscotland.net/SEA_Public_Environmental_Report.htm. 

Sea Watch Foundation, 2008a. Cetaceans of Eastern England. http://www.seawatchfoundation.org.uk/docs/EasternEngland.pdf 

Sea Watch Foundation, 2008b. Cetaceans of South‐East England. http://www.seawatchfoundation.org.uk/docs/South‐eastEngland.pdf 

Seidel, M., 2010. Feasibility of Monopiles for Large Offshore Wind Turbines, Conference Proceedings DEWEK 2010, Bremen: DEWI 2010. 

Page 157: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

141  

Skeate,E.R., Perrow, M.R. and Gilroy, J.J., 2011. Likely effects of construction of Scroby Sands offshore windfarm on a mixed population of harbour Phoca vitulina and grey Halichoerus grypus seals. Marine Pollution Bulletin 64 (2012) 872–881. 

Shark Trust, 2010. An identification guide to the sharks, rays and chimaeras. Volume 1: The British Isles and Northeast Atlantic. Chapter 2 – Sharks. The Shark Trust. Plymouth, UK. 

Strabag Offshore Wind GmbH (STRABAG), 2012. Industrial Serial Production Process of STRABAG Gravity Bases for large scale Offshore Windfarms. 

Thomsen, F., McCully, S.R., Weiss, L., Wood, D., Warr, K., Barry, J., and Law, R., 2011. Cetacean Stock Assessment in Relation to Exploration and Production Industry Activity and other Human Pressures: Review and Data Needs. Aquatic Mammals 37:1‐93. 

Talisman Energy, 2005. Beatrice Windfarm Demonstrator Project Environmental Statement. 422pp. 

Thorsen, G., 1971. Life in the Sea. World University Library.  

Tappin, D R, Pearce, B, Fitch, S, Dove, D, Gearey, B, Hill, J M, Chambers, C, Bates, R, Pinnion, J, Diaz Doce, D, Green, M, Gallyot, J,Georgiou, L, Brutto, D, Marzialetti, S, Hopla, E, Ramsay, E, and Fielding, H. 2011. The Humber Regional Environmental Characterisation (REC). British Geological Survey Report OR/10/54. 357pp. 

Tillin H.M., Houghton A.J., Saunders J.E., and Hull S.C., 2011. Direct and Indirect Impacts of Marine Aggregate Dredging. Marine ALSF Science Monograph Series No. 1. MEPF 10/P144. (Edited by R. C. Newell & J. Measures). 41pp.  

TURTLE, 2012. Turtle Database accessible at http://data.nbn.org.uk/ Last accessed 20 May 2012. 

Tyler‐Walters, H. and Hiscock, K. 2005. Impact of human activities on benthic biotopes and species. Report to Department for Environment, Food and Rural Affairs from the Marine Life Information Network (MarLIN). Plymouth: Marine Biological Association of the UK. [Contract no. CDEP 84/5/244]. 

UK Biodiversity Action Plan (UKBAP), 1999. UK Biodiversity Group Tranche 2 Action Plans ‐ Volume V: Maritime species and habitats. Available at http://www.ukbap.org.uk/ 

Vanermen N. & Stienen E., 2009. Chapter 8 Seabirds & offshore windfarms: monitoring results 2008. pp. 151‐221 in Degraer, S., Brabant, R. & Rumes, B. (Eds.) (2010) Offshore windfarms in the Belgian part of the North Sea: Early environmental impact assessment and spatio‐temporal variability. Royal Belgian Institute of Natural Sciences, Management Unit of the North Sea Mathematical Models. Marine ecosystem management unit. 184 pp. + annexes. 

Vanermen, N., Stienen, E.W.M., Onkelinx, T., Courtens, W., Van de walle, M. and Verstraete, H., 2010. Chapter 9 Monitoring seabird displacement effects by offshore windfarms: a modelling approach. pp. 133‐152 in in Degraer, S. and Brabant, R. (Eds.), 2009. Offshore windfarms in the Belgian part of the North Sea: State of the art after two years of environmental monitoring. Royal Belgian Institute for Natural Sciences, Management Unit of the North Sea Mathematical Models. Marine ecosystem management unit. 287 pp. + annexes. 

Page 158: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

142  

Vincent M A, Atkins S M, Lumb C M, Golding N, Lieberknecht L M and Webster M.  2004.  Marine nature conservation and sustainable development ‐ the Irish Sea Pilot. Report to Defra by the Joint Nature Conservation Committee, Peterborough. 

Walker, L.J. and Johnston, J., 1999. Guidelines for the Assessment of Indirect and Cumulative Impacts as well as Impact Interactions. EC DG XI Environment, Nuclear Safety & Civil Protection. ISBN: 92‐894‐1337‐9. 

Weilgart L.S., 2007. A Brief Review of Known Effects of Noise on Marine Mammals. International Journal of Comparative Psychology, 20(2). http://escholarship.org/uc/item/11m5g19h;jsessionid=CD8CECEACC213719C359AF603874E4F9 

Weinhold, N., 2012. Seas the Potential. New Energy, 1. 

Whitehouse, R.J.S., 2004. Marine scour at large foundations. In: Proceedings of the 2nd International Conference on Scour and Erosion, Singapore. Chiew, Y.M., Lim, S.Y., and Cheng, N.S., (Eds). Stallion Press, Singapore, pp. 455‐463. 

Whitehouse R.J.S., 2008.  Scour at Marine Structures. Telford, London. 198pp. 

Whitehouse, R.J.S., Harris, J.M., Sutherland, J. and Rees, J., 2011a. The nature of scour development and scour protection at offshore windfarm foundations. Marine Pollution Bulletin 62, pp. 73‐88. 

Whitehouse, R.J.S., Sutherland, J. and Harris, J.M., 2011b. Evaluating scour at marine gravity foundations. Maritime Engineering, Vol. 164 Issue MA4, pp143‐157 http://dx.doi.org/10.1680/maen.2011.164.4.143 

Wilke, F., Kloske, K. and Bellman, M., 2012. ESRa ‐ Evaluation of Pile Driving Noise Mitigation Systems program: Technical report. 

Wootten, R.J., 1992. Fish Ecology. Blackie. ISBN 0‐412‐02931‐6. 

Zaaijer, M.B., 2003. Comparison of monopile, tripod, suction bucket and gravity base design for a 6 MW turbine. Delft University of Technology, Netherlands. 

Zucco, C., Wende, W., Merck, T., Köchling, I. & Köppel, J., 2006. Ecological Research on offshore windfarms: International exchange of experiences (Part B Literature Review of Ecological impacts). pp. 284. 

 

   

Page 159: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

143  

Appendices

   

Page 160: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

144  

Page left blank 

Page 161: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix A 

 

A-1  

AppendixA‐RegulatoryFrameworkThere are two routes for the licensing of CGBFs within the marine environment: 

1 Through the Marine Management Organisation; and 

2 Through the Planning Inspectorate (formally the Infrastructure Planning Commission). 

Marine Licences are obtained through application to the Marine Management Organisation (MMO) 

under the Marine and Coastal Access Act 2009 (MCAA). The MMO are responsible for licensing of 

offshore energy installations where the project is between 1 and 100MW. Guidance for applications 

made under the MCAA is provided by the MMO in their guidance notes which is available from their 

website http://www.marinemanagement.org.uk/licensing/how/guidance.htm, Marine Management 

Organisation, 2011. 

A simplified description and overview of the process is outlined in Figure A.1 and can be broken 

down into 5 stages, described below.  

Stage 1: Screening Determination ‐ The Applicant contacts the Regulator to request their opinion as 

to whether the application constitutes a relevant or habitat project, and whether the application 

requires an Environmental Statement (ES). The regulator will then contact the applicant with their 

decision. 

Stage 2: Scoping Determination ‐ Where the application is deemed to require an Environmental 

Statement, the Applicant, or their agent, will provide information to relevant consultees that 

describe the nature of the development and requests their opinion, regarding the scope of the EIA 

and ES. A Scoping Report is then compiled, based on the responses, which describes the results of 

the consultation and outlines the scope of the ES. This report is then sent to the regulator to ensure 

that their scoping opinion is also captured within the document. 

Stage 3: Investigation and Preparation of the Environmental Statement ‐ The Applicant initiates 

production of the ES based on the scope agreed in the preceding stages. At the outset of this 

process, all consultees are contacted to request that relevant information is made available to the 

Applicant, to enable completion of the ES. Data gaps identified are filled with specially 

commissioned studies, or other relevant data or studies identified by the Applicant. The Applicant 

will also prepare a draft schedule of conditions that will manage or mitigate the significant effects 

identified through the production of the ES. 

Stage 3b: Informal Consultation ‐ Following completion of the ES, the Applicant may wish to seek 

the opinion of consultees regarding its findings and recommendations. Changes may be made to the 

application, ES or supporting evidence before finalising the ES for submission (Stage 4). 

Stage 4: Submission of the Application ‐ Once the Applicant is content that the evidence presented 

within the application addresses the issues raised in the stages above then the Applicant submits the 

application to the Regulator for decision. 

Stage 5: Follows after Figure A.1. 

Page 162: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix A 

 

A-2  

Figure A.1: The Application process under the terms of the Marine and Coastal Access Act © Marine Management Organisation 

Page 163: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix A 

 

A-3  

Stage 5: Final Consultation and Decision ‐ Following receipt of the application, the Regulator will 

advertise the application and contact consultees to seek confirmation that they are content with the 

application. Following this process the Regulator will make a decision on the application and write to 

all parties to notify them of their decision, which may take the form of an approval, refusal or a 

public enquiry.   

Stage 5a: Appeal ‐ The Applicant may, at the end of this process appeal the decision made. 

Applications made to the Planning Inspectorate are made through the Planning Act 2008, which was 

amended by the MCAA 2009 and the Localism Act 2011. The 2008 Act was introduced to streamline 

the process for decision‐making of nationally significant infrastructure projects, allowing a fairer and 

faster process for both communities and developers. The process was administered by the 

Infrastructure and Planning Commission (IPC) until April 2012 when it was dissolved and the decision 

making powers transferred to the Planning Inspectorate. 

The process can be summarised by the following description of the stages of application involved. 

Pre‐application – The application is initiated by a developer notifying the Planning Inspectorate that 

they intend to submit an application. The applicant is required to consult extensively on the 

application prior to submission to prevent issues arising later in the project. This pre‐application 

consultation is a process which will vary in scale and length, depending upon the site under 

consultation.  

Acceptance – Following the formal application of the development, the Planning Inspectorate will 

examine the documents submitted for up to 28 days to assess whether the application meets the 

legislative requirements. 

Pre‐examination – Pre‐examination allows members of the general public to register with the 

Planning Inspectorate and submit written representations on the application. This stage takes 

around 3 months and includes an informal meeting where everyone that has registered and 

submitted their view is invited to attend. 

Examination – The examination stage of the process lasts six months. People who have made 

relevant representations are asked to provide further details in writing. The Examining Authority 

takes account of all the information they have been presented with to consider all relevant 

representations, evidence and questions and answers received during the hearing.  

Planning Inspectorate recommendation / Secretary of State’s decision – The Planning Inspectorate 

is required to submit a report within 3 months of the start of the examination period with a 

recommendation to the relevant Secretary of State. The Secretary of State must then make their 

decision on the application within the following 3 months of the examination period. 

Post decision – Decision may be challenged in the High Court through a process known as Judicial 

Review for 6 weeks following the decision from the Secretary of State. 

 

Page 164: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix A 

 

A-4  

NatureConservationLegislation

The nature conservation legislation considered most pertinent to the use of CGBFs in the deeper 

offshore marine environment is mostly international in nature such as the Habitats Directive EC 

Directive 92/43 on the Conservation of Natural Habitats and of Wild Fauna and Flora and the Birds 

Directive EC directive 79/409 on the conservation of wild birds. Other international legislation that 

may have a bearing upon CGBF installations includes: 

The Convention for the Protection of the Marine Environment of the North‐East Atlantic 

known as the OSPAR Convention is an intergovernmental treaty encourages International 

cooperation to protect the marine environment of the Northeast Atlantic; 

The Convention on Wetlands of International Importance called the Ramsar Convention 

and is an intergovernmental treaty that provides the framework for national action and 

international cooperation for the conservation and wise use of wetlands and their resources. 

Ramsar; 

The Water Framework Directive (EC Directive 2000/60) is a European Union directive which 

commits European Union member states to achieve good qualitative and quantitative status 

of all water bodies (including marine waters up to one nautical mile from shore) by 2015; 

and 

The Marine Strategy Framework Directive (EC Directive 2008/56) is a European Union 

Directive which commits European Union member states to achieve ‘Good Environmental 

Status’ (GES) by 2020 across Europe’s marine environment. 

The most notable domestic legislation pertinent to nature conservation in the marine environment is 

the recently enacted Marine and Coastal Access Act 2009. This legislation empowers the delivery of 

an ecologically coherent network of well managed marine protected areas by 20102 discussed 

below. 

National legislation for the designation of conservation sites under the Wildlife and Countryside Act 

(1981) as amended and the Natural Environment and Rural Communities Act 2006 is not 

considered within this report. Most of the sites, known as Sites of Special Scientific Interest (SSSI) 

and Areas of Scientific Interest (ASSI) in Northern Ireland, notified under this legislation are for 

terrestrial and coastal features and are unlikely to interact with the effects from CGBFs (see Section 

6.2). 

The UK Government and the Devolved Administrations are aiming to achieve ‘clean, healthy, safe, 

productive, and biologically diverse oceans and seas’. The UK Marine Policy Statement developed 

under the Marine and Coastal Access Act 2009 sets out the objectives and priorities to enable that 

aim to be realised. Further, the UK Government and the Devolved Administrations have certain 

commitments and obligations directing policies regarding marine nature conservation to develop an 

ecologically coherent network of well managed MPAs under the OSPAR12 Convention (Defra, 2010). 

These are to: 

Establish a representative network of MPAs by 2012 under the World Summit for 

Sustainable Development (WSSD);  

Page 165: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix A 

 

A-5  

Establish a network of well managed MPAs by 2012 to enable delivery of WSSD targets 

under the Convention on Biological Diversity; 

Establish Special Protection Areas under the Wild Birds Directive and Special Areas of 

Conservation under the Habitats Directive; 

Support the achievement of Good Environmental Status under the Marine Strategy 

Framework Directive; 

Ensure the continuing delivery of favourable condition on marine and intertidal Sites of 

Special Scientific Interest in line with the public service agreement target; and 

Support the achievement of Good Ecological Status for estuarine and coastal waters under 

the Water Framework Directive. 

Projects that may use CGBFs are most likely to have to consider impacts upon:  

Special Areas of Conservation (SAC) designated under the Habitats Directive;  

Special Protection Areas (SPA) designated under the Birds Directive; and  

Marine Conservation Zones (MCZ) to be designated under the Marine and Coastal Access Act 

2009 (at the time of drafting this report MCZs are recommended to Defra, who are 

reviewing them before designation). 

ArchaeologicalLegalandPolicyFrameworks

ResponsibilityThe management of marine archaeology is subject to devolution. Separate administrative 

arrangements apply in each home country, and there are separate policies and – in some cases – 

legal provisions. 

Home Country  Organisation  Overarching Policy England  English Heritage  Conservation Principles Wales  Cadw  The Welsh Historic Environment Strategic Statement: 

Headline Action Plan     Cadw Priorities 2011‐16 Scotland  Historic Scotland  Scottish Historic Environment Policy (SHEP)     The Marine Historic Environment: strategy for the 

protection, management and promotion of marine heritage 2012‐15 

Northern Ireland  NI Environment Agency    

The immediate remit of each agency is territorial waters, but in practice, advice is offered to relevant 

regulators in respect of the offshore zones of each home country to the limit of the UK Continental 

Shelf. 

PolicyThe UK’s overarching policy with respect to marine archaeology is set out in Our Seas ‐ A Shared 

Resource: High Level Marine Objectives and in the UK Marine Policy Statement. 

HM Government’s aspiration for the next 20 years, as set out in Our Seas – A Shared Resource, 

envisages that the marine environment’s ‘rich natural and cultural heritage are better protected’, 

Page 166: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix A 

 

A-6  

‘the integrity of marine and coastal ecosystems and marine cultural heritage is conserved’, and 

‘there will be appropriate protection for, and access to, our marine heritage assets’. 

Further detail is provided by the UK Marine Policy Statement, which includes the following passage: 

2.6.6.3 The view shared by the UK Administrations is that heritage assets should be enjoyed for 

the quality of life they bring to this and future generations, and that they should be conserved 

through marine planning in a manner appropriate and proportionate to their significance. 

Opportunities should be taken to contribute to our knowledge and understanding of our past 

by capturing evidence from the historic environment and making this publicly available, 

particularly if a heritage asset is to be lost. 

2.6.6.7 In considering the significance of heritage assets and their setting, the marine plan 

authority should take into account the particular nature of the interest in the assets and the 

value they hold for this and future generations. This understanding should be applied to avoid 

or minimise conflict between conservation of that significance and any proposals for 

development. 

2.6.6.9 Where the loss of the whole or a material part of a heritage asset’s significance is 

justified, the marine plan authority should identify and require suitable mitigating actions to 

record and advance understanding of the significance of the heritage asset before it is lost. 

There is a relatively small number of designated heritage assets that are subject to additional 

statutory protection and are also accorded special attention in the UK MPS. However, the UK MPS 

also makes the following important statement about undesignated heritage assets: 

2.6.6.5 Many heritage assets with archaeological interest in these areas are not currently 

designated as scheduled monuments or protected wreck sites but are demonstrably of 

equivalent significance. The absence of designation for such assets does not necessarily 

indicate lower significance and the marine plan authority should consider them subject to the 

same policy principles as designated heritage assets. 

In England, further detail on the consideration of archaeology in marine licensing is expected to 

emerge in the detail of the regionally‐based marine plans that are either anticipated or in 

preparation. The updated Draft Vision and Objectives for the East marine plans (East Inshore and 

East Offshore) includes the following objective: 

Objective 6: To conserve all heritage assets and ensure that marine development and use is in 

keeping with the character of the local area. 

In Scotland, the pre consultation draft of Scotland’s National Marine Plan included a section on the 

Marine Historic Environment that identified the following ‘key challenge’: 

To realise the full potential of the marine historic environment as a resource – cultural, 

educational, economic and social. 

The following objectives are set out: 

Page 167: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix A 

 

A-7  

To enhance and promote knowledge and understanding of the marine historic environment 

through research, cross‐sector mapping initiatives and dissemination of evidence about coastal 

and marine heritage assets 

To protect key marine heritage assets through effective marine planning, supported by 

statutory designation where desirable 

To ensure development within the marine context respects the setting of key heritage assets 

on land 

To secure greater enjoyment and economic benefit from, key coastal and marine heritage 

tourism resources 

More specific policies to elaborate the UK MPS are yet to be developed in Wales and Northern 

Ireland. 

DesignatedHistoricAssetsA relatively small number of heritage assets are designated under a variety of pieces of legislation. 

The Protection of Wrecks Act 1973 (PWA 1973) and the Ancient Monuments and Archaeological 

Areas Act 1979 (AMAA 1979) have both been used to designate the remains of wrecks on the 

grounds of their archaeological importance. The AMAA 1979 can be used to designate a wider range 

of heritage asset types in addition to wrecks, though it has not been used extensively in this respect. 

The PWA 1973 is used throughout territorial waters across each of the four home countries, but 

administered separately by the four national heritage agencies. The AMAA 1979 applies in England, 

Scotland and Wales. In Northern Ireland, the Historic Monuments and Archaeological Objects 

(Northern Ireland) Order 1995 applies, and includes some generally applicable rules on searching for 

and reporting archaeological objects, in addition to provisions on the designation of monuments. In 

parallel, the Protection of Military Remains Act 1986 (PMRA 1986) has been used to designation a 

variety of vessels in military service lost in UK waters or further afield. The PMRA 1986 also provides 

that all military aircraft crash sites are automatically protected. The provisions of the PMRA 1986 are 

administered by the Ministry of Defence. 

Designated sites at sea are clearly identified in a variety of public sources. Marine planning will take 

into account their particular importance, but such sites are also subject to specific legal restrictions – 

often requiring a licence for any potentially damaging activities. If a wind farm site is to be 

developed in an area that includes designated heritage assets, then it is important that account is 

taken of the need for licences – even to carry‐out investigations, 

Although the AMAA 1979 and the PWA 1973 remain in force in Scotland, the PWA 1973 is in the 

course of being replaced by provisions on Historic Marine Protected Areas (HMPAs) contained in the 

Marine (Scotland) Act 2010. Historic Scotland published guidance in March 2012 on how it intends 

to select, designate and manage HMPAs. 

As well as having a bearing on offshore wind farm proposals where there are already designated 

heritage assets present, it should be borne in mind that the same legislation generally makes 

provision for the designation of additional sites. This is especially important if an important site 

Page 168: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix A 

 

A-8  

comes to light in the course of marine development, and where a heritage agency wants a secure 

mechanism over and above planning‐based requirements to ensure that the developer takes proper 

account of the discovery. The Protection of Wrecks Act 1973, in particular, has been used to 

introduce protection very rapidly in cases where sites have been brought to light by development 

activities. 

OtherStatutoryRequirementsAll archaeological material that meets the legal definition of ‘wreck’ that is found or taken 

possession of in UK waters – or brought within those waters – must be notified to the Receiver of 

Wreck by virtue of the Merchant Shipping Act 1995 (MSA 1995). The subsequent treatment of such 

wreck, including ownership and salvage awards, is governed by the MSA 1995. For wreck that comes 

to light in the course of offshore renewable development, adherence to the Offshore Renewables 

Protocol for Archaeological Discoveries (ORPAD) will satisfy the requirements of the Merchant 

Shipping Act 1995. 

GuidanceAs indicated above, pro‐active collaboration between marine industries and archaeologists has 

helped establish a range of ‘best practice’ frameworks set out in guidance documents. 

JointNauticalArchaeologyPolicyCommittee(JNAPC)The JNAPC Code of Practice for Seabed Development (JNAPC 2006) sets out a general framework for 

all forms of seabed development, providing generic guidance on the key steps that marine industries 

should consider in safeguarding the marine historic environment in the course of developing and 

implementing their proposals. 

COWRIECowrie produced three sets of detailed guidance relating to offshore renewables and the historic 

environment, as follows: 

Wessex Archaeology, 2007. Historic Environment Guidance for the Offshore Renewable Sector 

Oxford Archaeology and Lambrick G., 2008. Archaeology and Heritage 2008 Guidance for 

Assessment of Cumulative Impacts on the Historic Environment from Offshore Renewable 

Energy. 

Gribble, J. and Leather, S., 2011. Offshore Geotechnical Investigations and Historic 

Environment Analysis: Guidance for the Renewable Energy Sector. 

TheCrownEstateThe Crown Estate has published two documents for industry‐wide adoption that are intended to 

facilitate the agreement and implementation of specific mitigation measures for historic 

environment effects arising from offshore renewables projects: 

Wessex Archaeology, 2010a. Clauses for Archaeological Written Schemes of Investigation: 

Offshore Renewables Projects. 

Page 169: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix A 

 

A-9  

Wessex Archaeology, 2010b. Protocol for Archaeological Discoveries: Offshore Renewables 

Projects. 

EnglishHeritageThe general policy of English Heritage towards wind farms is set out in Wind Energy and the Historic 

Environment. The following detailed guidance is also relevant: 

English Heritage, March 2012. Ships and Boats: Prehistory to 1840. Introductions to Heritage 

Assets. 

English Heritage, May 2012. Ships and Boats: Prehistory to Present. Designation Selection 

Guide. 

AggregateLevySustainabilityFundThe Aggregate Levy Sustainability Fund supported a large amount of highly relevant work on the 

range, character, importance and optimum methodologies for addressing the marine historic 

environment of the UK Continental Shelf. Although the principal focus was on the potential effects 

of marine aggregate dredging, many of the results are applicable to offshore renewable 

development. A wide range of detailed reports was made available as a result of the ALSF. The best 

guide to these results is to be found in the following summaries: 

Bicket, A., 2011. Submerged Prehistory: research in context. 

Hamel, A.T., 2011. Wrecks at Sea: research in context. 

BibliographyBicket, A., 2011. Submerged Prehistory: Research in Context. Marine Aggregate Levy Sustainability 

Fund (MALSF) Science Monograph Series No. 5. Marine Aggregate Levy Sustainability Fund. 

Cadw, 2011. “Cadw Priorities 2011‐16.” 

http://cadw.wales.gov.uk/docs/cadw/publications/Cadw_priorities_2011_to_2016_EN.pdf . 

Department for Environment, Food and Rural Affairs (Defra), 2010. The Government’s strategy for 

contributing to the delivery of a UK network of marine protected areas. 

English Heritage, 2008. “Conservation Principles, Policies and Guidance for the Sustainable 

Management of the Historic Environment”. English Heritage. http://www.english‐

heritage.org.uk/publications/conservation‐principles‐sustainable‐management‐historic‐

environment/ . 

English Heritage, 2012a. Ships and Boats: Prehistory to 1840. Introductions to Heritage Assets. 

English Heritage. 

English Heritage, 2012b. “Ships and Boats: Prehistory to Present. Designation Selection Guide”. 

English Heritage. 

Page 170: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix A 

 

A-10  

Hamel, A., 2011. Wrecks at Sea: Research in Context. Marine Aggregate Levy Sustainability Fund 

(MALSF) Science Monograph Series No. 6. Marine Aggregate Levy Sustainability Fund. 

Historic Scotland, 2011. “Scottish Historic Environment Policy”. Historic Scotland. 

http://www.historic‐scotland.gov.uk/shep‐dec2011.pdf . 

Historic Scotland, 2012a. “The Marine Historic Environment: Strategy for the Protection, 

Management and Promotion of Marine Heritage 2012‐15”. Historic Scotland. http://www.historic‐

scotland.gov.uk/marine‐strategy‐2012‐15.pdf . 

Historic Scotland, 2012b. “Marine Protected Areas in the Seas Around Scotland: Guidelines on the 

Selection, Designation and Management of Historic Marine Protected Areas.” http://www.historic‐

scotland.gov.uk/historic‐mpa‐guidelines.pdf . 

HM Government, 2009. “Our Seas ‐ A Shared Resource: High Level Marine Objectives”. Department 

for Environment, Food and Rural Affairs. 

HM Government, 2011. “UK Marine Policy Statement”. The Stationary Office. 

http://archive.defra.gov.uk/environment/marine/documents/interim2/marine‐policy‐

statement.pdf. 

Joint Nautical Archaeology Policy Committee, 2006. “Code of Practice for Seabed Development”. 

JNAPC. 

Marine management Organisation (MMO), 2012. “Draft Vision and Objectives for East Marine Plans: 

Update.” 

Oxford Archaeology, and George Lambrick Archaeology and Heritage, 2008. Guidance for 

Assessment of Cumulative Impacts on the Historic Environment from Offshore Renewable Energy. 

COWRIE project reference CIARCH‐11‐2006. COWRIE Ltd. 

Scottish Government, 2011. “Scotland’s National Marine Plan:  Pre‐Consultation Draft.” 

http://www.scotland.gov.uk/Resource/Doc/346796/0115349.pdf . 

Welsh Assembly Government, Cadw. 2009. “The Welsh Historic Environment Strategic Statement: 

Headline Action Plan.” http://www.rcahmw.gov.uk/media/123.pdf . 

Wessex Archaeology, 2007. Historic Environment Guidance for the Offshore Renewable Energy 

Sector. COWRIE Project ARCH‐11‐05. Newbury: COWRIE Ltd. 

Wessex Archaeology, 2010a. Protocol for Archaeological Discoveries: Offshore Renewables Projects. 

London: The Crown Estate. 

Wessex Archaeology, 2010b. Model Clauses for Archaeological Written Schemes of Investigation: 

Offshore Renewables Projects. London: The Crown Estate. 

Page 171: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix B 

 

B-1  

AppendixB–RequirementforEnvironmentalImpactAssessment

1.1 StatutoryRequirementsThe Environmental Impact Assessment Directive (97/11/EC) (the EIA Directive) requires an 

assessment of the impacts that may potentially arise from the development of certain public and 

private projects. Offshore windfarms (and consequently their GBFs) require an EIA because the 

generation of electricity from wind installations are listed in Annex II of the EIA Directive. The EIA 

Directive is transposed into UK law through the Planning Act 2008 and the Marine Works (EIA) 

Regulations and enacted through the Planning Inspectorate and Marine Licensing system 

respectively.  

1.2 ScreeningOpinionThe EIA Directive allows for an applicant to request a Screening Opinion from the relevant authority. 

This opinion assesses whether the development requires an EIA to be carried out. However, given 

the size, nature and location of offshore windfarm sites (that may or may not utilise CGBFs), it is 

unlikely that the requirement for EIA will be screened out at any site. 

1.3 ScopingOpinionAs described in Section Error! Reference source not found. above, the scoping opinion can be 

sought by the applicant from the relevant authority to ascertain the information and studies 

required to be included within the EIA. It is recommended that a scoping report detailing the scope 

and content of the proposed EIA is circulated to the relevant authorities for sign off. 

1.4 HabitatsDirectiveandBirdsDirectiveEC Directive 92/43 on the Conservation of Natural Habitats and of Wild Fauna and Flora (Habitats 

Directive) 

The Habitats Directive was introduced to promote biodiversity by establishing measures to prevent 

the further decline in biodiversity experienced by habitats or species. Furthermore, it established a 

mechanism for the robust protection for those habitats and species of European importance listed in 

the annexes of the document – Annex I habitats, Annex II species and Annex IV European protected 

species. 

Under the Habitats Directive, a list of sites is proposed to form a network of Sites of Community 

Importance (SCIs). Once approved on a European scale, the sites become designated as Special 

Areas of Conservation (SACs), and together with Special Protection Areas (SPAs) classified under the 

Birds Directive, form a network of protected areas known as Natura 2000. 

The Habitats Directive is implemented through The Conservation of Habitats and Species Regulations 

2010 – The Habitats Regulations ‐ and the Offshore Marine Conservation (Natural Habitats, &c.) 

(Amendment) Regulations 2010 – The Offshore Habitats Regulations. Within English territorial 

waters, the legislation is administered by Natural England (NE), whilst the Joint Nature Conservation 

Committee (JNCC) is responsible for the administration of the legislation for UK’s waters beyond 12 

nautical miles. 

Page 172: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix B 

 

B-2  

EC directive 79/409 on the conservation of wild birds (Birds Directive) 

The Birds Directive provides the framework for the conservation, management and human 

interactions with wild birds in Europe. The main provisions of the Birds Directive include: 

• The maintenance of the populations of all wild bird species across their natural range (Article 

2) with the encouragement of various activities to that end (Article 3). 

• The identification and classification of Special Protection Areas (SPAs) for rare or vulnerable 

species listed in Annex I of the Directive, as well as for all regularly occurring migratory species 

(Article 4). 

• The establishment of a general scheme of protection for all wild birds (Article 5). 

• Restrictions on the sale and keeping of wild birds (Article 6). 

• Specification of the conditions under which hunting and falconry can be undertaken (Article 

7). 

• Prohibition of large‐scale non‐selective means of bird killing (Article 8). 

• Procedures under which Member States may derogate from the provisions of Articles 5‐8 

(Article 9) 

• Encouragement of certain forms of relevant research (Article 10 and Annex V). 

• Requirements to ensure that introduction of non‐native birds do not threatened other 

biodiversity (Article 11). 

Together with Special Areas of Conservation (SACs) designated under the Habitats Directive, SPAs 

form a network of European protected areas known as Natura 2000. 

The Birds Directive is implemented through the Wildlife & Countryside Act 1981 (as amended), The 

Conservation of Habitats and Species Regulations 2010; the Wildlife (Northern Ireland) Order 1985; 

the Nature Conservation and Amenity Lands (Northern Ireland) Order 1985; the Conservation 

(Natural Habitats, & c.) (Northern Ireland) Regulations 1995 (as amended); the Offshore Marine 

Conservation (Natural Habitats & c.) Regulations 2007 (as amended 2010) as well as other legislation 

related to the uses of land and sea. The Directive is administered by the statutory nature 

conservation agencies including Natural England (NE) and the Joint Nature Conservation Committee 

(JNCC). 

1.5 TheMarineandCoastalAct2009The Marine and Coastal Access Act 2009 created a new type of Marine Protected Area (MPA), called 

a Marine Conservation Zone (MCZ). 

MCZs will protect nationally important marine wildlife, habitats, geology and geomorphology. The 

Marine Conservation Zone Project concerns the selection of MCZs in English inshore waters and 

offshore waters next to England, Wales and Northern Ireland. Sites will be selected to protect not 

just the rare and threatened, but the range of marine wildlife. 

MCZs, together with other types of MPA, will deliver the Government's aim for an 'ecologically 

coherent network of Marine Protected Areas'. This means the MPA network will be a collection of 

areas that work together to provide more benefits than an individual area could on its own. 

Page 173: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix B 

 

B-3  

Currently there is no statutory obligation to consider the series of recommended MCZs submitted by 

the regional projects to Defra for designation. 

1.6 DataforinclusionintheEnvironmentalStatementThe details of exactly what is required to be included within the Environmental Statement will be 

bespoke to the individual site where GBFs are due to be placed. However, there are several guidance 

documents that provide details of the generic information that may be applicable, and show 

methodologies for undertaking the Environmental Statement.  

The MMO suggest using the Essex Guide for EIA, whilst the Windfarm guidance document suggest 

use of the ‘Environmental Impact Assessment – A Guide to Procedures’, produced by the 

Department of Transport, Local Government and the Regions (DTLR) (Department of Transport, 

Local Government and the Regions 2000), and in guidance on assessments under Section 36 and 

Section 37 of The Electricity Act 1989. 

Atmospheric emissions must also be taken into account during the EIA process, particularly CO2 and 

NOx. These must include the costs associated with the construction of the CGBF, the emissions 

relating to the transport and emplacement of the CGBFs and their decommissioning. The carbon 

costs for aggregates are well documented and Aumônier et al. (2010) provides detail on the carbon 

costs associated with marine aggregate dredging, which can be used as a proxy for the ground 

preparation works and backfill operations. As the CGBFs are recyclable (see Section 10 for more 

details) the carbon costs associated with construction are essentially a one‐off cost. In addition, the 

ES should include details of the likely carbon savings arising as a result of the wind turbines 

supported by the CGBF. 

BibliographyAumônier, S. H., 2010. Carbon footprint of marine aggregate extraction. The Crown Estate. 

 

 

   

Page 174: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix B 

 

B-4  

Page left blank 

Page 175: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix C 

 

C-1  

AppendixC–AMethodologyforAssessmentofEnvironmentalRiskPosedbyConcreteGravityBaseFoundationStructures

1.1 OverviewIn order for a plan, project or proposal to be assessed in a robust manner with necessary levels of 

transparency a clear risk assessment methodology is required.  There are a number of ways that this 

can be achieved but in the simplest sense the assessment process must attempt to quantify the 

following in order to determine the significance of the risk posed by the proposals: 

1. The nature of the environment in which the plan, project or proposal will be undertaken; 

2. The likely physical effects of the proposals in terms of how they alter the environment 

around them; 

3. The nature of the impacts that may result from the physical effects of the proposals; 

4. The environmental, social and economic features (known as receptors) in the vicinity of the 

works that may be susceptible to the impacts; 

5. The level of susceptibility of the receptors to the impacts and their ability to recover from 

impacts (known as sensitivity); 

6. The spatial and temporal extent over which impacts may be felt by the receptors (known as 

exposure); and 

7. The severity of the impacts with reference to the baseline conditions of the site and the 

natural variability of the environment (known as magnitude). 

Items 1‐3 above are determined through analysis and reporting of available data and literature 

review.  Where data/knowledge gaps are evident, there may be the need for specific technical or 

field studies to obtain, a) the most robust baseline description of the development site and b) the 

nature of impacts likely to result from the proposals. 

Once items 1‐3 have been satisfactorily completed, the risk assessment can be undertaken.  This 

process begins with identification of all the potential receptors that may be affected by the impacts 

of the proposals.  Once this has been completed, the sensitivity of the receptors is determined 

through review of technical/scientific literature.  Then, using the description of the physical effects 

of the proposals, the level of exposure of the receptors to the impacts can be determined.  At this 

stage, if it can be shown that there is no exposure pathway between the project and the receptor 

then the impact assessment can conclude that there is negligible risk to that receptor.  If exposure is 

proven for a specific receptor and impact, the magnitude of the impact is then determined.  In this 

way, by applying a staged approach, only those receptors that are shown to be sensitive to impacts 

and exposed to impacts will need to be subjected to the entire process. 

More detail regarding the process for items 1‐3 is presented in Sections 5, 6, 7, 8 and 9.  Further 

detail regarding the risk assessment methodology, items 4‐7, is presented below.  An overview of 

the rationale and assessment process that can be used to determine the environmental risk of a 

proposed activity, operation, plan or project is provided.  It has been developed by MarineSpace 

Limited and allows the delivery of a standardised, repeatable and transparent methodology.  The 

Page 176: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix C 

 

C-2  

risk assessment process flow is illustrated in FigureC.1 and an illustration of the risk assessment 

matrix is presented in FigureC.2. 

The Marine Works Regulations (2011) provide the most relevant overview of the process for 

completing an Environmental Statement (ES) for marine developments.  The basic elements of this 

process have been incorporated into the methodology that has been applied to developing the risk 

assessment.  In essence, the methods applied to developing the risk assessment, should utilise the 

best available evidence of environmental/impact receptor sensitivity and the best available evidence 

of the nature, scale, extent and magnitude of impacts resulting from the proposed construction, 

operation and decommissioning, to determine the severity of the risk posed by the proposals.  

Obviously, the results of process are open to debate insofar as the determination of the level of risk 

posed will require, in some cases, application of expert judgement.  However, provided that the 

evidence base used in the risk assessment is relevant and scientifically robust, then the 

determination of level of risk should be suitable for purposes of determining whether a licence to 

construct or operate may be granted.   

Page 177: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix C 

 

C-3  

Figure C.1:  Process flow for completion of an environmental risk assessment. 

 

   

Project Design

Site Description Impact Description

Identification of Receptors and Determination of Sensitivity

Index of Sensitive Receptors Determination Impact Extent

Determination of Impact Magnitude

Determination of Receptor Exposure to Impacts

Index of Sensitive Receptors with Risk of Exposure

Determination of Risk

Options for Risk Mitigation

Risk Management Plan

ES / EIA / Risk Assessment Scoping Study

Page 178: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix C 

 

C-4  

1.2 RiskAssessmentMethodologyTo assess the level of risk from impacts resulting from a particular plan or project to a range of 

receptors, a methodology has been developed that takes account of the sensitivity of the receptor, 

the exposure of the receptor to effects / impacts and the magnitude of the effects / impacts over 

and above the baseline condition and inherent natural variability.  More guidance on the criteria to 

be considered when determining levels of sensitivity, exposure and magnitude is provided below.  It 

should be borne in mind that the rationale for this assessment requires an understanding of the 

baseline environmental conditions at the location of the proposed activity.  This will usually be 

provided from a desktop study reviewing all suitable available environmental data, published 

research reports, grey literature and peer review publications.  In most cases it is appropriate that a 

dedicated environmental characterisation survey will also be required to provide the suitable 

resolution of site‐specific environmental information.  This baseline sets the context for the 

environmental risk assessments.  

1.2.1 CriteriaEmployedtoDetermineLevelsofSensitivity,ExposureandMagnitudeWhen conducting the risk assessment process, detailed in this section, determinations should be 

supported by receptor‐specific risk matrices.  The risk matrices provide details of the limits 

employed when determining the scores for the individual elements of receptor sensitivity, receptor 

exposure to impact and impact magnitude.  An illustrative example is provided in Appendix C Section 

1.7 below. 

1.2.2 SensitivityThe risk assessment process presented in this document facilitates the identification of notable 

seabed features that may be sensitive to the proposed activities. Such features are usually 

associated with nature conservation habitats and / or species and / or archaeology and heritage; 

though important features supporting fisheries resources or key life stage areas may also be 

identified.  Anthropogenic structures such as gas pipelines and high use areas such as Traffic 

Separation Scheme lanes and approaches may also be identified as sensitive to CGBF construction 

and operation. 

Where specific sensitive receptors have been identified during the EIA scoping phase of a project, 

these are assessed as discrete entities. Sensitivity thresholds are determined for each receptor and 

presented individually within the risk matrices to ensure a clear single‐receptor assessment.  This 

helps clarify exposure and magnitude assessments to allow appropriate mitigation or management 

advice to be identified.  

Notable features/receptors should also be specifically identified, described and the assessment 

presented within the final ES.  For example, in the case of heritage features and Sabellaria spinulosa 

reefs (where identified within the impact footprint of the proposals) specific investigation of 

sensitivity will be required. 

Prior to completion, the context of the risk assessment should always be clearly stated in terms of 

scale of the proposals, the nature of the works to be carried out, a clear overview of the types of 

effect/impact that may occur during different phases of the works and the timescales for 

construction and operation phases of the project.  This will ensure that a clearly defined ‘effect 

Page 179: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix C 

 

C-5  

envelope’ is established that will assist in determining if receptors will be affected (exposure) and 

the frequency, longevity and magnitude of any effect. 

1.2.3 SensitivityofSpecificReceptorstoImpactsfromCGBFsSensitivity information should be drawn from relevant scientific sources, as applicable.  An overview 

of the basic process required to develop understanding of sensitivity for a range of broad receptor 

groups is presented below. 

Similarly, information presented in relevant Natura 2000 site designation and assessment dossiers 

and Regulation 33(2) and 35(3) conservation objective packages should be used to determine 

sensitivity of designated nature conservation features. 

1.2.4 CoastlinesandNearshoreBanksIt is well understood that the foundations of offshore wind turbines have the potential to impact 

hydrodynamic processes and sediment transport patterns.  Generally, effects are localised although 

there is the potential for effects from a number of foundation structures to combine and create 

effects over a greater extent (see Section 9).  The sensitivity criteria for the geomorphological 

receptors of coastlines and nearshore sandbanks are related to the stability and erosional potential 

of these features.  Risk assessment must therefore identify areas of the coast or nearshore banks 

that may be particularly vulnerable to erosion and/or high‐energy (storm) events, and determine 

where there are potential interactions between the predicted future physical effects of CGBFs and 

the receptors.  

The physical effects deemed to have the greatest potential impact on coastlines and nearshore 

banks are altered wave climate and tidal currents caused by refraction effects, bathymetric change, 

near bed sediment transport, and sediment flux.  These effects may lead to potential impacts on 

protective banks, which may in turn lead to increased coastline erosion; disruption/alteration of 

sediment supply; and changes in wave‐ and tidal‐driven processes if structures are placed close to 

the shore. 

Both coastlines and nearshore banks may have a range of geomorphological characteristics and a 

natural potential for change i.e. they are not equally vulnerable to the effects of installation of 

gravity base foundation structures. Those coastlines characterised by unconsolidated easily erodible 

sediments, with a low occurrence of hard coastal engineering structures, are deemed to be the most 

sensitive to the effects.  Nearshore banks composed of unconsolidated sand will have the greatest 

potential to be affected by hydrodynamic changes, and the associated sediment transport effects.  It 

is also recognised that nearshore sand banks are often persistent features, despite the natural 

effects of erosive, high energy, storm events.  They therefore have a moderate to high tolerance, 

adaptability and recoverability to the effects of waves and changes in sediment flux.  

1.2.5 BenthicEcologyandFishSpeciesDetails of the intolerance to effects for specific benthic habitats, species and biotopes (also fish 

species) are described in great detail on the MarLIN website.  Use of the MarLIN sensitivity indices 

and thresholds is standard practice within UK benthic ecology EIA determinations (Tyler‐Walters and 

Hiscock, 2005; MarLIN, 2012). 

Page 180: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix C 

 

C-6  

Where possible individual biotopes must be identified within the environmental footprint 

(application area and SIZ) of the proposed activity described in the ES and then assessed according 

to the various effects / pressures arising from gravity base construction activity and during their 

operational lifetime.  In many cases due to the limited resolution of benthic data and habitat maps 

then an amalgamation of biotopes / biotope complexes will need to be assessed.  In these cases, 

where it is not possible to assign an effect pathway to one single benthic receptor group, 

consideration should been given to the sensitivity of habitats or species known to be constituents of 

the amalgamated group receptor.  To ensure a conservative or precautionary assessment in the 

absence of higher resolution data the sensitivity assessment should be conducted using the most 

sensitive representative species or biotope. 

1.2.6 FishandShellfishSpeciesPossible fish and shellfish receptor species should be identified and the most sensitive of these used 

to inform the risk assessment. The process should consider that highest sensitivity receptors are 

likely to be those associated with habitats supporting key life stages of species, such as spawning 

grounds and nursery areas. 

Information located on the MarLIN website, both species‐specific and that associated with habitats / 

biotopes, should be used along with that contained in relevant reference material cited in the 

baseline description of fish and shellfish communities. 

1.2.7 BirdspeciesSpecific references related to sensitivity of bird species should be reviewed and summarised in the 

baseline description of the development site.  The primary effects / pressures assessed are related 

to water quality (changes in turbidity) interfering with predation, alteration of habitat supporting 

birds species (roosting, nesting, loafing, prey species) or disturbance / displacement.  NB Effects 

considered in this document are related to the foundations structures and not the turbine blades. 

Sensitivity associated with habitats or prey species should be drawn from the risk assessments for 

coasts, nearshore banks, benthic ecology and fish/shellfish ecology (as described above).  Species‐

specific sensitivity should be informed by references cited in the baseline site description.  

Additionally for bird species the risk assessment as a whole will need to draw from the baseline 

description and assessment associated with nature conservation.  Relevant references from Natural 

England, Countryside Council for Wales, Scottish Natural Heritage and the Joint Nature Conservation 

Committee will need to be reviewed in respect of Special Protection Areas and Ramsar sites 

supporting bird species listed in the related section of the environmental baseline description. 

1.2.8 NatureConservationHabitats,SpeciesandSitesSensitivities for nature conservation receptors are associated with benthic habitats and species, fish 

species, bird species, and marine mammal species.  The sensitivities should be drawn from the 

information used to assess these receptors as described above.  The nature conservation sensitivity 

must also draw on information published by the Countryside Council for Wales, Natural England, 

Scottish Natural Heritage and the Joint Nature Conservation Committee regarding designated 

habitats, species and sites.  For example, Regulation 33(2) and 35(3) conservation objective packages 

describe in detail the sensitivities of designated features and these should be used accordingly. 

Page 181: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix C 

 

C-7  

1.2.9 HeritageandArchaeologicalFeaturesThe sensitivity criteria and thresholds for in situ archaeological / prehistoric finds, isolated 

prehistoric finds, aviation, and maritime heritage resources must be determined in the assessment.  

Each of these broad receptor / resource categories will need to be assigned sensitivity categories 

(value, adaptability, tolerance and recoverability) based upon peer‐review literature, research 

reports and expert judgement. 

It should be noted that in most cases historic/archaeological receptors in the marine environment 

have high national value, low adaptability, low tolerance and low recoverability values.  The risk of 

impact can (generally) be considered medium to high, yet appropriate mitigation measures for 

known resources can result in impact significance being low.  This reduced impact significance is 

possible through restriction of exposure (most obviously through avoidance), by clearly determining 

the magnitude of effects and applying relevant management measures during project planning and 

construction. 

1.2.10 OtherSeaUsersandSeabedInfrastructureSensitivities associated with other sectors operating in the vicinity of the application area should be 

drawn from relevant literature and authorities.  In the case of the commercial fishing, recreational 

sailing and shipping industries, focused consultation and/or technical studies is likely to be required 

to determine the nature of use of an area.  To determine the presence or absence of infrastructure 

on the seabed, relevant authorities should be consulted (e.g. DECC – oil and gas, Kingfisher – cables 

and pipelines).   

The sensitivity of other users will need to be determined and will primarily be based on their ability 

to withstand the displacement effects of construction activities and CGBF operation.  Longer‐term 

displacement during turbine operation is more likely to be considered during EIA for the wind farm 

development rather than the construction of the foundations. 

1.3 ExposureExposure is determined by the overlap of effects temporally and spatially with receptors. Exposure 

pathways can be determined through strategic of regional cumulative assessments as a worst case 

scenario. These assessments are useful for regulators, planners, managers and their advisors. 

However final quantitative assessments can only be determined at the application stage when a 

project specific Environmental Statement and EIA have been produced. 

Spatial analysis through the use of GIS software and known or modelled effect footprints and the 

mapped extent, distribution and occurrence of receptors is a standard tool used to allow exposure 

determinations. 

1.4 MagnitudeofImpactsfromCGBFsThe magnitude of impacts resulting from CGBFs must be considered in both the context of the 

baseline condition of the environment at the time of the assessment and the natural variability in 

physical conditions at the site, which may exert similar pressures as those resulting from site 

preparation and emplacement activity.  All consideration of impact magnitude should be made in 

the context of these basic considerations of baseline condition and natural variability. 

Page 182: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix C 

 

C-8  

1.5 MagnitudeintheContextofNaturalVariabilityThe natural variability of physical and hydrodynamic conditions at a site will have an effect on the 

significance of impacts occurring as a result of emplacement of a gravity base structure.  The 

magnitude of impacts resulting from the GBF structures should be considered in the context of the 

variability of the natural environmental conditions at the site.  This consideration is only possible for 

receptors that are influenced by the environmental conditions of the site e.g. benthic species, fish, 

birds etc.  Consideration of the magnitude of impacts in the context of natural variability cannot be 

given to receptors that are unaffected by natural variability e.g. fishing, shipping etc. 

The evidence used regarding the physical and biological characteristics of the site and its regional 

setting will provide the basis for the consideration of the natural variability of the environment.  This 

evidence should then been considered in the context of the magnitude of impacts resulting from the 

construction and operation of the CGBFs. 

To assess the magnitude of impacts in the context of natural variability some expert judgement will 

need to be applied utilising the description of the physical and biological conditions and the nature, 

scale and extent of impacts likely to result from GBF emplacement. 

1.6 MagnitudeabovethePresentBaselineIn any environmental impact assessment, the present baseline of the site will have been described in 

terms of the physical, biological and socio‐economic characteristics of the site, including; 

Oceanographic conditions, seabed character, sediments, sediment transport 

Benthic communities, fish, shellfish, birds and marine mammals 

Conservation sites, habitats and species 

Other users of the seabed and marine space 

The primary method of determining the magnitude of impacts is by expert judgement, informed by 

the best available descriptions of physical and biological conditions, and a description of the 

historical activities at the site. 

The magnitude of impact above current baseline conditions is best determined through reference to 

the type and level of historical activity at the site and the type and level of activity likely to result 

from the CGBF emplacement proposals.  The magnitude of impacts will also be controlled by the 

period over which seabed preparation and construction will occur.   

1.7 WorkedExampleFor the purposes of the risk assessment undertaken in this document, sensitivity is defined in terms 

of a receptor’s value (in terms of importance, quality and rarity), tolerance, adaptability and 

recoverability.  For each receptor, consideration is given to each of these component parts of the 

sensitivity assessment with overall sensitivity being governed by the combined scores for each part.  

The scores for each element range from 0‐3 and are determined based on consideration of the 

available evidence. 

In practice, to determine the sensitivity of a receptor each characteristic (value, adaptability, 

tolerance and recoverability) is scored from 0‐3.  In most cases 0 represents a negligible score 

Page 183: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix C 

 

C-9  

whereas 3 indicates a high value for the characteristic.  In the case of recoverability, adaptability and 

tolerance a low score indicates that the receptor is capable of withstanding the impact pressure and 

should reduce the sensitivity score, whereas a high score for these characteristics will lead to a high 

sensitivity. 

As an example, a receptor is considered to have the following scores for the different elements of 

sensitivity: 

Sensitivity Element          Score 

Value (importance, quality, rarity)         2 

Tolerance               2 

Adaptability               1 

Recoverability               2 

Combined score (sum)             7 

 

The following limits have subsequently been used to determine whether the sensitivity of the 

receptor is negligible, low, medium or high. 

Combined score          Sensitivity 

0‐3              Negligible (0) 

4‐6              Low (1) 

7‐9              Medium (2) 

10‐12              High (3) 

 

In this example the additive result indicates that the sensitivity of the receptor is considered medium 

as it falls in the 7‐9 combined score range (7). A sensitivity score of 2 is therefore carried forward to 

the final risk assessment (see below). 

1.7.1 ExposureFor this methodology, exposure is defined in terms of how the impacts affect a receptor including 

the spatial extent of the impact, its longevity above baseline levels and the frequency at which the 

impact occurs. 

In practice, to determine the exposure of a receptor to a particular impact, each characteristic 

(spatial extent, longevity and frequency) is scored from 0‐3.  The combined scores are then used to 

determine the level of exposure that a receptor will experience.  As an example, a receptor is shown 

to have the following exposure scores: 

Exposure Element          Score 

Spatial extent               2 

Longevity               2 

Frequency               1 

Combined score (sum)             5 

 

Page 184: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix C 

 

C-10  

The following limits have subsequently been used to determine whether the exposure to the impact 

is negligible, low, medium or high. 

Combined score          Exposure 

0              Negligible (0) 

1‐4              Low (1) 

5‐7              Medium (2) 

8‐9              High (3) 

 

Therefore in this example, the additive result indicates that the exposure level of a receptor to a 

specific impact is medium as it falls in the 5‐7 combined score range.  An exposure score of 2 is 

therefore carried forward to the risk assessment (see below). 

1.7.2 MagnitudeMagnitude is defined in terms of the level of the impact above background conditions and natural 

variability by whatever parameters are measurable.  

In practice, to determine the magnitude of an impact, each characteristic (level above background, 

level in the context of natural variability) is scored from 0‐3.  The combined scores are then used to 

determine the level of exposure that a receptor will experience.  As an example, a receptor has been 

scored as follows: 

Magnitude Element          Score 

Impact level above background           1 

Impact level in the context of natural variability       2 

Combined score (sum)             3 

 

The following limits have subsequently been used to determine whether the magnitude of the 

impact is negligible, low, medium or high. 

Combined score          Magnitude 

0              Negligible (0) 

1‐2              Low (1) 

3‐4              Medium (2) 

5‐6              High (3) 

 

Therefore in this example, the additive result indicates that the magnitude level of the impact is 

medium as it falls in the 3‐4 combined score range.  A magnitude score of 2 is therefore carried 

forward to the risk assessment (see below). 

As noted, the methodology adopted for this assessment utilises three elements; receptor sensitivity, 

exposure to impact and the magnitude of impact.  As described, limits will be defined to assist in 

ascribing relevant values to these elements for all the receptors and potential impacts considered.  

Page 185: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix C 

 

C-11  

The parameters adopted to ascribe values to the level of sensitivity, exposure and risk will be 

adjusted according to the nature of the receptor and the impact. 

1.7.3 OverviewoftheEnvironmentalRiskAssessmentMatrixA risk assessment matrix has been developed to determine the risk posed by a range of impacts to a 

range of receptors.  The matrix is illustrated in Figure.  In practice, to determine the level of risk 

posed by an impact to a receptor, the scores resulting from the assessment outlined above are 

multiplied to determine the level of risk.  Using the scores in the example above (sensitivity – 2, 

exposure – 2, magnitude – 2) a medium level of risk has been ascribed (see Figure C.2). 

In the example shown in Figure C.2, the receptor and impact considered has resulted in a medium 

level of risk.  By applying this method to assessment of all receptors and impacts, a clearly defined 

result can be achieved which will be based on available evidence regarding the issues discussed. 

It should be noted that broad receptor groups e.g. the coast, marine ecology, infrastructure etc., are 

made up of a range of individual receptors e.g. fish and shellfish, pipelines, benthic habitats etc.  As 

such, a risk assessment would be conducted to account for the individual elements of the broad 

receptor groups with an overall risk summary for each broad group also presented.  

 

Figure C.2: Risk assessment matrix. 

 

Magnitude

Sensitivity

Exposure0

1

2

3

0

1

2

30 1 2 3

Risk = 2 x 2 x 2 = 8

Score     Risk Value 

0  =  Negligible 1‐5  =  Low  6‐15  =  Medium 16‐30  =  High 

Page 186: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix C 

 

C-12  

For the purposes of this assessment, risk scores of <6 (Negligible and Low values) are considered 

insignificant and mitigation is unnecessary.  Risk scores of 6‐15 (Medium values) are considered 

significant but impacts are capable of being suitably mitigated through application of appropriate 

management or monitoring measures.  Risk scores >15 (High values) are considered significant and 

impacts are likely to be mitigated only through application of specifically targeted measures and/or 

acquisition of further environmental information to better determine impact severity and 

significance. 

BibliographyCIRIA, 1998. Regional seabed sediment studies and assessment of marine aggregate dredging. 

Construction Industry Research and Information Association, London, Report C505. 

Genus Traits Handbook: http://www.genustraithandbook.org.uk/ 

Jones, L.A., Hiscock, K. and Connor, D.W., 2000. Marine Habitat Reviews. A summary of ecological 

requirements and sensitivity characteristics for the conservation and management of marine SACs. 

Peterborough: Joint Nature Conservation Committee.  

MarLIN website: http://www.marlin.ac.uk/sensitivityrationale.php 

Tyler‐Walters, H. and Hiscock, K., 2005. Impact of human activities on benthic biotopes and species. 

Report to Department for Environment, Food and Rural Affairs from the Marine Life Information 

Network (MarLIN). Plymouth: Marine Biological Association of the UK. [Contract no. CDEP 84/5/244]. 

 

Page 187: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix D 

 

D-1  

AppendixD–ProductionofCGBFsHaskoning (2011) provide details of the likely space required to establish a CGBF production plant of 

around 100 units per year. The space calculated was a maximum of 50 Ha. There is also significant 

available wharf space available at the major port around the UK as shown in the figure below: 

Figure D.0: Major UK Port availability for CGBF construction (from Haskoning, 2011)  

 

The key components required to produce CGBFs are: 

1. Cement 

2. Fine aggregate (e.g. sand) 

3. Coarse aggregate (e.g. gravel or crushed rock) 

These elements can be supplied from different sources, but are restricted through the location of 

the geological deposits from which the elements are sourced.  

CementCement for example is located in regions where limestone is readily available. The figure below is 

taken from the MPA website and shows the cement plants operated by its members which are 

concentrated in the midlands. 

   

Page 188: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix D 

 

D-2  

Figure D.2: MPA Cement Plants in UK (from MPA website)  

 

CrushedRockCrushed rock production occurs within the geologically older parts of the UK. The 2009 quarries 

utilised in the BGS minerals survey are shown in the figure below (Mankelow et al. 2011). Whilst 

crushed rock produces the coarse elements of aggregate required for concrete, it also produces 

significant fines which although not presently utilised in concrete production, may in future be 

utilised for this purpose. Alternatively, as a result of the significant volumes of crushed rock fines 

produced, the fines may be used as backfill for the CGBFs. 

 

   

Page 189: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix D 

 

D-3  

Figure D.3: UK Quarries Producing Crushed Rock Fines in 2009 (from Mankelow et al., 2011)  

 

SandandGravelSand and gravel can be obtained from either land based or marine based sources. The current land 

based sources as recorded by BGS (Mankelow et al. 2011) are shown in the figure below: 

 

   

Page 190: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix D 

 

D-4  

Figure D.4: UK Quarries Producing Sand and Gravel in 2009 (from Mankelow et al., 2011)  

 

It is also important to note the location of marine aggregate dredging sites around the UK, as whist 

some marine ports are included within the Sand and gravel section, marine fill may be utilised to 

backfill the CGBFs. Therefore the following map shows the current location of UK marine aggregate 

extraction areas: 

 

   

Page 191: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix D 

 

D-5  

Figure D.5: Marine Aggregate Licence Areas in English and Welsh Waters in 2009 (adapted Licence Area data from The Crown Estate)  

 

MarineAggregateEmissionsAumônier et al. (2010) provide an assessment of the carbon cost of the production of a tonne of 

marine aggregate. They calculate the emissions occurring as a result of transit to a dredging site, the 

dredging of a cargo, the transit to the wharf and the discharge and processing of the cargo. The 

Page 192: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix D 

 

D-6  

carbon cost of producing this material on a long‐range cycle (which may be required for CGBF 

backfill) was calculated to be 11.73 kg CO2‐eq per tonne of aggregate delivered. 

This is likely to be an overestimation of the carbon cost as the British Marine Aggregate Producers 

Association (BMAPA) have produced a sustainable development report that has calculated the CO2 

emissions released through the production and transportation of marine aggregates from 2006 to 

2009 (BMAPA 2010). The results of this report are shown in Error! Reference source not found., and 

the average of the values presented is 7.58kg/t.  

Table D.1: CO2 Emissions Arising from Marine Aggregate Extraction during the Period 2006‐2009 UK Quarries Producing Crushed Rock Fines in 2009 (from BMAPA, 2010)  

  2009  2008  2007  2006 

Total CO2 emissions (tonnes)  120.81t  134,64t  157,15t  158,20t 

Marine aggregate production  14.94mt  19.75mt  20.64mt  20.29mt 

CO2 emissions per tonne landed  8.09kg/t 6.82kg/t 7.61kg/t  7.80kg/t 

 

Excluding transportation from the calculation and comparing the energy use to land based 

production, the following comparison can be established (Kemp, 2008): 

Figure D.6: Energy Use in Material Extraction (from Kemp, 2008) 

 

Whilst long haul marine aggregate production appears to consume a similar amount of energy when 

compared to land based production, the differences are very small. The differences become smaller 

still when the costs of transportation are added to the production costs illustrated above. 

BibliographyAumônier, S. H., 2010. Carbon footprint of marine aggregate extraction. The Crown Estate. 

BMAPA., 2010. Strength from the depths ‐ fourth annual sustainable development report. 

Kemp, R., 2008. Energy Consumption of Marine Aggregate Extraction. The Crown Estate. 

Mankelow, J.M., Sen, M.A., Wrighton,C.E. & Idoine D., 2011. Collation of the results of the 2009 

aggregate minerals survey for England and Wales. HMSO. 

Page 193: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix E 

E-1

AppendixE‐OverviewoftheDredgingProcessanditsPotentialEnvironmentalEffects This section presents the range of potential environmental impacts associated with dredging of the seabed. As the dredging process required for preparation of the seabed prior to emplacement of GBFs is identical to that undertaken when extracting marine aggregate, technical reports related to the effect of marine aggregate dredging have been used to provide the basis for this section.    

TheDredgingProcess Dredging of the seabed is undertaken using either of two main methods; trailer dredging or static dredging.  A description of the two methods is provided below.  

Trailerdredging During trailer dredging, the vessel dredges whilst traversing over the area of seabed from where removal of sediment is required.  Upon reaching the dredging area, the crew of the vessel deploys the dredge pipe which is lowered to the seabed.  Powerful pumps are used to draw sediment and water up to the vessel where the mixture is discharged into the dredger’s hopper.  Following discharge into the hopper, the coarse sediment settles out of the sediment/water mixture and is retained in the hopper.  Water and unwanted fine sediment leaves the hopper via spillways and is returned to the sea.  During the loading process the hopper gradually fills with sediment until the vessel’s hopper reaches capacity.  At this point the dredge pipe is retrieved and the vessel transits to its discharge location.  Discharge of the load to land is achieved by a variety of methods including grabs, drag‐buckets and bucket wheels, or some vessels have the facility to discharge the load at sea through doors in the hull.  

Staticdredging During static dredging, the vessel loads whilst anchored over the dredging location.  Upon reaching the dredging area, the vessel anchors and lowers its dredge pipe to the seabed.  As with trailer dredging, powerful pumps are then used to suck sediment and water up from the seabed.  The sediment/water mixture is discharged into the hopper of the vessel following which retention of coarse sediment and rejection of unwanted material is achieved as described for trailer dredging.  Following loading, discharge occurs in the same way as for trailer dredging.  

ThePhysicalEffectsofSeabedDredging In preparing this overview the following technical studies and resources have been used:   ALSF monograph series (http://CEFAS.defra.gov.uk/alsf/downloads/monograph‐series‐

2011.aspx)  Thames Estuary Marine Aggregate Regional Environmental Assessment (MAREA) (ERM Ltd, 

2010) 

Page 194: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix E 

E-2

The MAREA report highlighted nine effects of  seabed dredging, which have the potential to impact the marine environment.  The physical effects of seabed dredging activities are summarised as:   Seabed removal  Vessel displacement  Noise and vibration  Suspended sediments  Fine sand dispersion  Bathymetric changes  Waves changes  Tidal current changes  Sediment flux (proxy for sediment erosion and accretion) 

  The physical effects of dredging listed above may subsequently cause a range of impacts on physical, biological and socio‐economic receptors.  More detail regarding the potential impact of dredging are provided below.  ThePotentialImpactsofSeabedDredgingDredging causes direct, indirect and cumulative impacts in the marine environment. An overview of the potential direct, indirect and cumulative impacts of dredging is presented below.  ImpactsonthephysicalenvironmentSeabed dredging can potentially cause changes in the physical environment, directly through the removal of seabed sediments, and indirectly, through changes in waves, tidal currents and suspended sediment concentrations.   DirectphysicalimpactsRemoval of surface layers of sediment from the seabed is the primary direct impact on the physical environment resulting from dredging. The physical characteristics of the seabed (topography and sediment particle size) and the bathymetry (water depth) are altered. The dredging method determines the extent of topographical and bathymetrical changes:  • Static dredging creates deeper (5‐10m) depressions in the seabed, over time these depressions may coalesce to form an irregular seabed topography; • Trailer hopper suction dredging creates shallow furrows that can extend for several kilometres in length. Generally these depressions are 2‐3 m wide and initially only around 0.5m deep potentially up to approximately 3m.  Such impacts are confined to the area from which sediment is removed by the drag head.  IndirectphysicalimpactsSeabed dredging has the potential to indirectly impact the physical environment in a variety of ways including: • changing of local wave conditions • reduction of the sheltering effects of offshore sandbanks • exacerbation of beach drawdown processes • changes to tidal currents • alteration of sediment transport pathways 

Page 195: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix E 

E-3

The removal of sediment from the seabed has the potential to affect the hydrodynamic and sedimentary regimes both within and surrounding the dredge site and further afield e.g. at adjacent coastlines.   

Effectstomarineecologyfrommarineaggregateextractionontheseabed Dredging will result in impacts on seabed habitats and the animal communities that use them.  Seabed fauna can be affected by direct impacts, when sediment is removed from the dredge site, and also by indirect impacts related to sediment deposition and transport around the dredge site.  PhysicallossMarine aggregate extraction directly removes the surface layer of the seabed, which has a direct impact on the benthic communities within the dredging area, including the removal of infauna and epifauna. Physical loss of habitat during extraction operations could also result from the settlement of suspended particles mobilised during dredging, including fine sediments released during screening. The deposition of these fine sediments can locally change the nature of the surface substratum, making it finer and potentially altering the benthic communities where these changes occur. Also, fine sediments settling onto the seabed can (subject to prevailing environmental conditions) be transported on or near the seabed further away from the dredging area by tidal currents and waves, extending the potential area of seabed/community changes and potential smothering of sessile benthic communities beyond the boundaries of a dredging area.  

 

PhysicaldamagePhysical damage can manifest itself in many ways. In association with marine aggregate extraction operations the main pressures are abrasion (from the draghead) and changes (increases) to suspended sediment loads (concentrations). High (increased) suspended sediment loads would be unlikely to affect the communities in the (assessment) area as they are evolved to exist in high turbidity waters. However, sediment plumes can elevate suspended sediment concentrations (SSC) above natural background loads, especially those associated with calm weather periods. There are variables that may result in impacts, e.g. cumulative effects of several plumes adding together. Also the temporal scale of dredging may have an additive effect e.g. SSC increase may only be in order of tens mg/l elevation above background levels but if this occurs every week then effectively the operation is mimicking a significant increase in effects similar to storm events. Therefore care is needed when assessing plume effects as whilst SSC increase may be minimal the ‘scale’ of (cumulative) effect may reach an ecological tipping point.   ImpactsonMarineEcologyThe seabed supports a highly diverse range of animals including invertebrates such as sponges, anemones, crabs, shellfish, molluscs and burrowing worms and larger species such as fish, birds and marine mammals (whales, dolphins and seals).  Aggregate dredging has the potential to impact the marine ecology directly via: 

Removal of material from the seabed 

The creation of sediment plumes  The removal of seabed deposits has impacts on seabed habitats, benthic organisms and fish species through the removal of habitats and changes in seabed topography.  Research by Newell et al., (1998) identified that there is a 30‐70% reduction in species diversity, a 40‐95% reduction in the 

Page 196: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix E 

E-4

number of individuals and a similar reduction in biomass of benthic communities under the path of the draghead in dredge areas as benthic species are unable to escape entrainment.   The removal of seabed deposits can also entrain fish and fish eggs and larvae and entrain eggs from fish that use the seabed for spawning (e.g. herring, sand eels and black bream). Sand and gravel habitats are important spawning grounds for several fish species.  Sediment plumes in the water column created by outwash and screening can directly impact the marine ecology in two ways: 

reduced water clarity (turbidity) research has shown can lead to short term avoidance of the working area by some animals.   

increased sediment concentration can lead to a reduction in the respiration and feeding efficiency of benthic organisms.  Increased sediment can block organs as animals have to filter a much greater proportion of organic from inorganic particles, potentially reducing feeding efficiency 

 Sediment plumes can also indirectly impact animals through the deposition of sediment. Deposition of suspended sediments has two impacts on the seabed. Animals living in or on the seabed can be immediately smothered and buried; while the habitat change from coarse sediments to finer sands alters the character of the associated benthic community.  

ImpactsontheHistoricenvironment The marine environment contains a huge wealth of historic and culturally important assets. Dredging of the seabed has led to the recovery of numerous important archaeological remains that may otherwise have not been discovered. This has expanded the available knowledge base of the marine historic resource.  DirectImpactsontheHistoricenvironmentDirect damage to heritage resources from the draghead and the loss of artefacts and heritage resources through entrainment alongside the removed sediment are the main impacts from dredging to the historic environment.   IndirectImpactsontheHistoricenvironmentChanges in the physical environment, through bathymetric and sediment transport pathways alteration can lead to sediment scour and deposition around an historic artefact or site. This can alter the degradation rates, and potentially remove or relocate archaeological remains.  However, deposition of sediment over a site or artefact may offer protection to the remains, which could be considered a positive effect of dredging.  

Impactstoothermarineusers The main impact arising from seabed dredging on other marine users is temporary exclusion from the area being dredged. This could impact commercial fisheries, shipping and recreational users.   

Page 197: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix E 

E-5

TheExtentofthePhysicalEffectsofMarineAggregateExtraction For the purposes of this document, available literature regarding the nature and extent of impacts arising from marine aggregate extraction has been reviewed.  In addition to the direct effects on the seabed that result from the passage of the dredge gear (drag‐head), several distinct secondary impact zones are detectable around a dredging location.  The effects of dredging are summarised in Figure E.1.  Figure E.1: Direct and indirect impacts of dredging on the marine environment (from Tillin et al, 2011) 

 

 Several studies of marine aggregate dredging activities (EMU Ltd, 2010; ERM Ltd, 2010; Hill et al., 2011; HR Wallingford, 2010a, 2010b, 2010c, 2010d; Tillin et al., 2011) indicate that zones of secondary impact are detectable around the direct impact area where removal of sediment has occurred.  The literature cited indicates that immediately surrounding the direct impact zone, a zone of smothering exists resulting from deposition of plume sediment discharged from the vessel.  Around this smothering zone, a zone of sediment bedforms may develop if sediment deposition occurs in large enough volumes (e.g. if dredging occurs for extended periods or if large volumes of sediment are dredged). Beyond the bedform zone, a zone of dispersed sediment may develop as fine sediment is transported by tidal currents away from the dredging area.   

Bibliography EMU Ltd, 2010. South Coast Marine Aggregate Regional Environmental Assessment Volume 1 & 2. Report No. J/1/06/1165.   ERM Ltd, 2010. Marine Aggregate Regional Environmental Assessment of The Outer Thames Estuary (MAREA). Prepared for the Thames Estuary Dredging Association (TEDA). 347pp.   Hill, J.M, Marzialetti, S and Pearce, B., 2011. Recovery of Seabed Resources Following Marine Aggregate Extraction. Marine ALSF Science Monograph Series No. 2. MEPF 10/P148. (Edited by R. C. Newell & J. Measures). 44pp. ISBN: 978 0 907545 45 3.  HR Wallingford., 2010a. South Coast Dredging Association MAREA: Wave Study Technical Note DDR4323‐04.   HR Wallingford., 2010b. South Coast Dredging Association MAREA: Tidal Flows and Sediment Transport Study Technical Note DDR4323‐05.  

Page 198: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix E 

E-6

 HR Wallingford., 2010d. A Review of Waves, Tides, Sediment Transport and Plume Dispersion Impacts from Aggregate Dredging to 2013, South Coast Region. Report for Haskoning UK Ltd. Report No. EX6301. 88pp.   Newell, R.C, Seiderer, L.J and Hitchcock, D.R., 1998. The impact of dredging works in coastal waters: a review of the sensitivity to disturbance and subsequent recovery of biological resources on the sea bed. Oceanography and Marine Biology: an Annual Review, 36: 127‐178.  Tillin, H. M, Houghton, A. J, Saunders, J. E and Hull, S. C., 2011. Direct and Indirect Impacts of Marine Aggregate Dredging. Marine ALSF Science Monograph Series No. 1. MEPF 10/P144. (Edited by R. C. Newell & J. Measures). 41pp. ISBN: 978 0 907545 43 9.  

Page 199: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix F 

 

F-1  

AppendixF–NatureConservationHabitatsandSpeciesThere are several lists of marine habitats and species of nature conservation importance. This 

appendix lists the habitats and species that the life cycle of a Concrete Gravity Base Foundations in 

the marine environment is likely to interact with.  

No statements regarding sensitivity of receptor habitats or species or the likely significance of any 

exposures or vulnerabilities is made. Sensitivity information can be sourced from the standard EIA 

toolkit, such as the Marine Life Information Network (MarLIN, www.marlin.ac.uk) and the Genus 

Trait Handbook (http://www.genustraithandbook.org.uk/). Reference should also be made to site‐

specific designation, classification and management advice published by the Statutory Nature 

Conservation Agencies (SNCAs) such as Site Assessment Documents and Regulation 33(2) and 

Regulation 35(3) Conservation Objectives and Advice on Operations packages. 

The relevant SNCAs are: 

The Environment Agency for Northern Ireland (EANI) – with remit for Northern Irish waters 

out to 12 nautical miles; 

The Countryside Council for Wales (CCW) – with remit for Welsh waters out to 12 nm; 

Natural England (NE) – with remit for English waters out to 12 nm; 

Scottish Natural Heritage (SNH) – with remit for Scottish waters out to 12 nm; and 

The Joint Nature Conservation Committee (JNCC) – with remit for all UK waters beyond 12 

nm out to the Continental Shelf. 

As cited in Section 7.7 of the main report, there are numerous domestic and international legislation 

that details conservation and protection measures for marine habitats and species. The following are 

sub‐divided by the most relevant legislation for Concrete Gravity Base Foundations associated with 

deployment as part of Round 3 in UK waters. Only habitats and species likely to interact with CGBFs 

or works associated with their lifecycle in the marine environment are listed i.e. these are not 

complete lists of all marine habitats and species listed under the relevant legislation. 

HabitatsDirective

AnnexIHabitats(From http://jncc.defra.gov.uk/page‐1523; http://www.ukmarinesac.org.uk/ms1_2.htm) 

UK marine habitats listed in Annex I of the Habitats Directive whose conservation requires the designation of Special Areas of Conservation  

EU Code   

1110  Sandbanks which are slightly covered by seawater all the time

1130  Estuaries

Page 200: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix F 

 

F-2  

1140  Mudflats and sandflats not covered by seawater at low tide

1160  Large shallow inlets and bays

1170  Reefs 

1180   Submarine structures made by leaking gases

1180   Submarine structures made by leaking gases

 

AnnexIISpecies(From http://jncc.defra.gov.uk/page‐1523) 

UK marine species listed in Annex II of the Habitats Directive whose conservation requires the designation of Special Areas of Conservation  

EU Code   

1095   Petromyzon marinus   Sea lamprey

1099   Lampetra fluviatilis   River lamprey

1102   Alosa alosa   Allis shad

1103   Alosa fallax   Twaite shad

1106  Salmo salar   Atlantic salmon

1349   Tursiops truncatus   Bottlenose dolphin

1351   Phocoena phocoena   Harbour porpoise

1364   Halichoerus grypus   Grey seal

1365   Phoca vitulina   Common seal

 

AnnexIVSpecies(From http://www.legislation.gov.uk/uksi/2010/490/schedule/2/made) 

Page 201: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix F 

 

F-3  

Note: there are no marine flora (sea grasses) or seaweeds listed on Annex IV of the Habitats 

Directive only marine fauna. 

UK marine European protected species listed in Annex IV of the Habitats Directive whose conservation requires the protection of species from injury and disturbance  

Cetacea  Dolphins, porpoises and whales (all species) 

Caretta caretta  Marine turtles    Loggerhead turtle

Chelonia mydas  Marine turtles    Green turtle

Lepidochelys kempii  Marine turtles    Kemp’s Ridley turtle

Eretmochelys imbricata  Marine turtles    Hawksbill sea turtle

Dermochelys coriacea  Marine turtles    Leatherback turtle

 

BirdsDirective

AnnexIspeciesThere are numerous bird species listed for conservation under the Birds Directive. Seabirds and 

estuarine/coastal bird species fall into two lists: 

Annex 1 species of the Birds Directive; and  

Regularly occurring migratory birds around the UK not on Annex 1 of the Birds Directive. 

Specifically for interactions with CGBFs then seabirds including grebes, divers, gulls, sea ducks, auks, 

cormorants and shags, shearwaters and petrels, gannets and skuas will need to be considered where 

their ranges overlap the wind array. 

Given the limited likelihood of effects from Round 3 deployed CGBFs reaching the coast, then it is 

unlikely that species of duck, geese, swans and waders will need to be considered as interacting with 

these foundation structures. 

Full lists of bird species protected under the Birds Directive can be found at 

http://www.ukmarinesac.org.uk/ms1_2.htm and http://eur‐

lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:020:0007:0025:EN:PDF 

 

Ramsarsites

The Convention on Wetlands of International Importance is called the Ramsar Convention and is an 

intergovernmental treaty that provides the framework for national action and international 

cooperation for the conservation and wise use of wetlands and their resources. Ramsar sites support 

Page 202: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix F 

 

F-4  

bird species and in the UK are usually underpinned by Sites of Special Scientific Interest and 

designated with SPAs. All Ramsar sites with seabird features are designated at the coast. Considering 

the limited likelihood of CGBF‐related effects from Round 3 interacting with the coast then the sites 

are not examined in detail in this report. Qualifying species that may be offshore foraging and which 

can interact with the foundations are generally considered through the auspices of the Birds and 

Habitats Directive in the UK. 

MarineandCoastalAccessAct2009

The provisions under the Marine and Coastal Act 2009 for the implementation of Marine 

Conservation Zones (MCZs) cites lists of habitats and species that are regarded rare, scarce or 

representative and for which protection through a national Marine Protected Area (MPA) network is 

appropriate. The suite of recommended MCZs in English waters has been submitted to Defra for 

review with a requirement to designate by the end of 2012. 

Whilst Round 3 zones and recommended MCZs are not coincidental it is prudent to consider the 

qualifying features as potentially part of CGBFs installation until such time that the MPA network is 

deemed sufficient and ecologically coherent.  

There are two lists of habitats and one of species that are nationally important and for MCZs may be 

designated. There are: 

Broadscale habitats; 

Habitat Features of Conservation Importance; and 

Species Features of Conservation Importance. 

The full lists of habitats and species are listed in the Ecological Network Guidance which is located at: 

(http://www.naturalengland.org.uk/Images/100608_ENG_v10_tcm6‐17607.pdf).  

Broadscale habitats and Habitat FOCI (those coloured orange are unlikely to interact with CGBFs as 

part of Round 3 projects). 

Blue mussel beds  

Cold‐water coral reefs 

Coral gardens 

Deep‐sea sponge aggregations  

Estuarine rocky habitats  

File shell beds  

Fragile sponge and anthozoan communities on subtidal rocky habitats  

Honeycomb worm reefs  

Horse mussel beds  

Intertidal underboulder communities  

Littoral chalk communities  

Maerl beds  

Mud habitats in deep water 

Native oyster beds  

Peat and clay exposures  

Page 203: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix F 

 

F-5  

Ross worm reefs 

Sea pen and burrowing megafauna communities  

Seagrass beds 

Sheltered muddy gravels  

Subtidal chalk 

Subtidal sands and gravels  

Tide‐swept channels  

 

Species FOCI (those coloured orange are unlikely to interact with CGBFs as part of Round 3 projects). 

Scientific Name  Common name 

Gitanopsis bispinosa  Amphipod shrimp  

Cruoria cruoriaeformis  Burgundy maerl paint weed 

Phymatolithon calcareum  Common maerl 

Lithothamnion corallioides  Coral maerl 

Gobius couchi   Couch's goby  

Caecum armoricum  Defolin’s lagoon snail 

Anguilla anguilla  European eel  

Atrina pectinata  Fan mussel 

Gobius cobitis  Giant goby  

Pollicipes pollicipes  Gooseneck barnacle  

Grateloupia montagnei  Grateloup's little‐lobed weed 

Haliclystus auricula  Kaleidoscope jellyfish  

Gammarus insensibilis  Lagoon sand shrimp  

Armandia cirrhosa  Lagoon sand worm 

Tenellia adspersa  Lagoon sea slug  

Hippocampus guttulatus  Long snouted seahorse 

Lucernariopsis campanulata  Stalked jellyfish 

Lucernariopsis cruxmelitensis  St John’s jellyfish 

Ostrea edulis  Native oyster  

Arctica islandica  Ocean quahog 

Padina pavonica  Peacock's tail  

Eunicella verrucosa  Pink sea‐fan  

Amphianthus dohrnii  Sea‐fan anemone 

Paludinella littorina  Sea snail  

Hippocampus hippocampus  Short snouted seahorse 

Osmerus eperlanus  Smelt  

Palinurus elephas  Spiny lobster  

Nematostella vectensis  Starlet sea anemone  

Leptopsammia pruvoti  Sunset Cup Coral 

Alkmaria romijni  Tentacled lagoon‐worm 

Victorella pavida  Trembling sea mat  

Raja undulata  Undulate ray 

 

Page 204: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix F 

 

F-6  

TheConventionfortheProtectionoftheMarineEnvironmentoftheNorth‐EastAtlantic known as the OSPAR Convention. 

OSPAR has established a list of threatened and/or declining species and habitats in the North‐East 

Atlantic. The list provides an overview of the biodiversity in need of protection in the North‐East 

Atlantic and is being used by the OSPAR Commission to guide the setting priorities for further work 

on the conservation and protection of marine biodiversity under Annex V of the OSPAR Convention. 

Some of the habitats and species of the list have the potential to interact with CGBFs in Round 3 

installations and will warrant consideration in any project‐specific EIA. 

 

MarineStrategyFrameworkDirectiveThe Marine Strategy Framework Directive (EC Directive 2008/56) is a European Union Directive 

which commits European Union member states to achieve ‘Good Environmental Status’ (GES) by 

2020 across Europe’s marine environment. 

UK Government is currently conducted a public consultation on the various delivery scenarios and 

costs for the 11 descriptors of Good Environmental Status (GES). The most relevant information 

including lists of notable habitats and indicator species can be found at: 

http://www.defra.gov.uk/environment/marine/msfd/ 

TheUKBiodiversityActionPlanInformation regarding UKB BAP marine habitats and species can be found at: 

http://jncc.defra.gov.uk/default.aspx?page=5155 

The following habitats and species are on the marine list. Those colour‐coded in orange are unlikely 

to inhabit areas where CGBFs may be emplaced as part of Round 3 projects. 

Taxon  Scientific Name  Common name 

alga 

Anotrichium barbatum  Bearded Red Seaweed 

Ascophyllum nodosum ecad mackaii  Wig Wrack or Sea‐loch Egg Wrack 

Cruoria cruoriaeformis  Burgundy maerl paint weed 

Dermocorynus montagnei    

Lithothamnion corallioides  Coral Maërl 

Padina pavonica  Peacock’s tail 

Phymatolithon calcareum  Common Maërl 

bird 

Aythya marila  Greater Scaup 

Gavia arctica  Black‐throated Diver 

Larus argentatus subsp. argenteus  Herring Gull 

Melanitta nigra  Common Scoter 

Puffinus mauretanicus  Balearic Shearwater 

Sterna dougallii  Roseate Tern 

Page 205: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix F 

 

F-7  

bony fish 

Ammodytes marinus  Lesser Sandeel 

Aphanopus carbo  Black Scabbardfish 

Clupea harengus  Herring 

Coryphaenoides rupestris  Roundnose Grenadier 

Gadus morhua  Cod 

Hippocampus guttulatus  Long‐snouted Seahorse 

Hippocampus hippocampus  Short‐snouted Seahorse 

Hippoglossus hippoglossus  Atlantic Halibut 

Hoplostethus atlanticus  Orange Roughy 

Lophius piscatorius  Sea Monkfish 

Merlangius merlangus  Whiting 

Merluccius merluccius  European Hake 

Micromesistius poutassou  Blue Whiting 

Molva dypterygia  Blue Ling 

Molva molva  Ling 

Pleuronectes platessa  Plaice 

Reinhardtius hippoglossoides  Greenland Halibut 

Scomber scombrus  Mackerel 

Solea solea  Sole 

Thunnus thynnus  Blue‐fin Tuna 

Trachurus trachurus  Horse Mackerel 

cnidarian 

Amphianthus dohrnii  Sea‐fan Anemone 

Arachnanthus sarsi  Scarce Tube‐dwelling Anemone 

Edwardsia timida  Timid Burrowing Anemone 

Eunicella verrucosa  Pink Sea‐fan 

Funiculina quadrangularis  Tall Sea Pen 

Haliclystus auricula  Kaleidoscope jellyfish 

Leptopsammia pruvoti  Sunset Cup Coral 

Lucernariopsis campanulata  Stalked jellyfish 

Lucernariopsis cruxmelitensis  St John’s jellyfish 

Pachycerianthus multiplicatus  Fireworks Anemone 

Pachycordyle navis  Brackish Hydroid 

Swiftia pallida  Northern Sea Fan 

Taxon  Scientific Name  Common name 

crustacean 

Arrhis phyllonyx    

Mitella pollicipes  Gooseneck Barnacle 

Palinurus elephas  Crayfish, Crawfish or Spiny Lobster 

mollusc 

Atrina fragilis  Fan Mussel 

Ostrea edulis  Native Oyster 

Tenellia adspersa  Lagoon Sea Slug 

cetacean  Balaenoptera acutorostrata  Minke Whale 

Page 206: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix F 

 

F-8  

Balaenoptera borealis  Sei Whale 

Balaenoptera musculus  Blue Whale 

Balaenoptera physalus  Fin Whale 

Delphinus delphis  Common Dolphin 

Eubalaena glacialis  Northern Right Whale 

Globicephala melas  Long‐finned Pilot Whale 

Grampus griseus  Risso's Dolphin 

Lagenorhynchus acutus  Atlantic White‐sided Dolphin 

Lagenorhynchus albirostris  White‐beaked Dolphin 

Megaptera novaeangliae  Humpback Whale 

Mesoplodon bidens  Sowerby's Beaked Whale 

Mesoplodon mirus  True's Beaked Whale 

Orcinus orca  Killer Whale 

Phoca vitulina  Common Seal 

Phocoena phocoena  Harbour Porpoise 

Physeter catodon  Sperm Whale 

Stenella coeruleoalba  Striped Dolphin 

Tursiops truncatus  Bottle‐nosed Dolphin 

Ziphius cavirostris  Cuvier's Beaked Whale 

shark/skate/ray 

Centrophorus granulosus  Gulper Shark 

Centrophorus squamosus  Leafscraper Shark 

Centroscymnus coelolepsis  Portuguese Dogfish 

Cetorhinus maximus  Basking Shark 

Dalatias licha  Kitefin Shark 

Dipturus batis  Common Skate 

Galeorhinus galeus  Tope Shark 

Isurus oxyrinchus  Shortfin Mako 

Lamna nasus  Porbeagle Shark 

Leucoraja circularis  Sandy Ray 

Prionace glauca  Blue Shark 

Raja undulata  Undulate Ray 

Rostroraja alba  White or Bottlenosed Skate 

Squalus acanthias  Spiny Dogfish 

Squatina squatina  Angel Shark 

Taxon  Scientific Name  Common name 

tunicate  Styela gelatinosa  Loch Goil Sea Squirt 

turtle Caretta caretta  Loggerhead Turtle 

Dermochelys coriacea  Leatherback Turtle 

 

UK BAP Broad Habitat  UK BAP Priority Habitat 

Page 207: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix F 

 

F-9  

Supralittoral Rock  Maritime Cliff and Slopes 

Supralittoral Sediment Coastal Vegetated Shingle 

Coastal Sand Dunes 

Littoral Rock 

Intertidal Chalk  

Intertidal Underboulder Communities 

Sabellaria alveolata reefs 

Littoral Sediment  

Coastal Saltmarsh 

Intertidal Mudflats 

Seagrass Beds  

Sheltered Muddy Gravels 

Peat and Clay Exposures 

Sublittoral Rock  

Subtidal Chalk 

Tide‐Swept Channels 

Fragile Sponge and Anthozoan Communities on Subtidal Rocky Habitats 

Estuarine Rocky Habitats 

Seamount Communities 

Carbonate Mounds 

Cold‐water Coral Reefs  

Deep‐Sea Sponge Communities 

Sabellaria spinulosa Reefs 

Sublittoral Sediment  

Subtidal Sands and Gravels 

Horse Mussel Beds  

Mud Habitats in Deep Water 

File Shell Beds 

Maerl Beds 

Serpulid Reefs 

Blue Mussel Beds on Sediment 

Saline Lagoons 

 

   

Page 208: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix F 

 

F-10  

Page left blank 

 

Page 209: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix G 

 

G-1  

AppendixG–Contacts

Keycontacts

MarineManagementOrganisationMarine Management Organisation Lancaster House Hampshire Court Newcastle upon Tyne NE4 7YH  Tel: 0300 123 1032 Fax: 0191 376 2681 Email: [email protected]  

ThePlanningInspectorateThe Planning Inspectorate Temple Quay House Temple Quay Bristol BS1 6PN  Tel: 0303 444 5000 E‐mail: [email protected]  

RegulatoryAdvisorsGroup

CadwCadw Welsh Government Plas Carew Unit 5/7 Cefn Coed Parc Nantgarw Cardiff CF15 7QQ  Tel:  01443 336000 Fax:  01443 336001 E‐mail: [email protected]  

Page 210: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix G 

 

G-2  

CentreforEnvironment,Fisheries&AquacultureScience(Cefas)Regulatory Assessment Team Centre for Environment, Fisheries & Aquaculture Science Pakefield Road Lowestoft Suffolk  NR33 0HT  Tel: 01502 562244 Fax: 01502 513865 

CountrysideCouncilforWalesThe Countryside Council for Wales Maes y Ffynnon Ffordd Penrhos Bangor Gwynnedd  LL57 2DW  Tel: 01248 385500  

EnglishHeritageEnglish Heritage Eastgate Court 195‐205 High Street Guildford GU1 3EH  Tel: 01483 252000  

HistoricScotlandHistoric Scotland Longmore House Salisbury Place Edinburgh EH9 1SH  Tel: 0131 668 8600  

Page 211: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix G 

 

G-3  

JointNatureConservationCommitteeJoint Nature Conservation Committee Dunnet House 7 Thistle Place Aberdeen  AB10 1UZ  Tel: 01224 655704 

NaturalEnglandNatural England 3rd Floor Touthill Close City Road Peterborough PE1 1UA  Tel:  0845 600 3078 Email: [email protected]  

NorthernIrelandEnvironmentAgencyNorthern Ireland Environment Agency Klondyke Building Cromac Avenue Gasworks Business Park Lower Ormeau Road Belfast BT7 2JA  Tel: 0845 302 0008 Fax: 028 9056 9264 Email: [email protected]  

ScottishNationalHeritageScottish National Heritage Battleby Redgorton Perth PH1 3EW  Tel: 01738 444177  Fax: 01738 458611 Email: [email protected]  

Page 212: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix G 

 

G-4  

FisheriesFor enquiries regarding commercial fisheries please contact the main MMO office in the first instance. For enquiries regarding dispensation for fisheries surveys please contact the main MMO office in the first instance.  

LocalMMOOffices:See http://www.marinemanagement.org.uk/contacts/local.htm for contact details.  

AssociationofSeaFisheriesCommitteesAssociation of Sea Fisheries Committees  6 Ashmeadow Rd  Arnside  Via Carnforth  Lancashire  LA5 0AE   Tel: 01524 761 616   

NationalFederationofFishermensOrganisationsNational Federation of Fishermens Organisations Marsden Road Fish Docks Grimsby South Humberside DN31 3SG  Tel: 01472 352141 e‐mail: [email protected]  

Navigation

EnglishHeritageArchive(formallytheNationalMonumentsRecordCentre)English Heritage Archive The Engine House Fire Fly Avenue Swindon   SN2 2EH   Tel: 01793 414700 Fax: 01793 414444 Email: archive@english‐heritage.org.uk  

Page 213: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix G 

 

G-5  

MaritimeandCoastguardAgencyMaritime and Coastguard Agency Hydrography, Meteorology and Ports Branch Spring Place 105 Commercial Road Southampton SO15 1EG  Tel: 023 80329138 Fax: 023 80329204 

NERCSeaMammalResearchUnit(SMRU)NERC Sea Mammal Research Unit (SMRU) University of St Andrews  Fife  KY16 8LB   Tel: 01334 462630   

RSPBRSPB  The Lodge  Sandy  Bedfordshire  SG19 2DL  Tel: 01767 683355  

UKCableProtectionCommitteeUK Cable Protection Committee Level 3 Communications Limited Level 3 House Prescot Street London E1 8HG  Tel: 020 7954 2575       

Page 214: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments: 

Appendix G 

 

G-6  

Page left blank  

Page 215: MB MarineSpace  concrete center

A Review of Marine Environmental Considerations Associated with Concrete Gravity Base Foundations in Offshore Wind Developments. 

 

 

End page 

Page 216: MB MarineSpace  concrete center

 

 

 

MarineSpace Ltd in conjunction with  

ABPmer and Fjordr for 

The Concrete Centre 

07/09/2012 

Version 1.0