Maximizing the spectral gap of networks produced by node removal

17
Maximizing the spectral gap of networks produced by node removal Naoki Masuda (University of Tokyo, Japan) Refs: 1. Watanabe & Masuda, Physical Review E, 82, 046102 (2010) 2. Masuda, Fujie & Murota, In: Complex Networks IV, Studies in ComputaUonal Intelligence, 476, 155163 (2013) Collaborators: Takamitsu Watanabe (University of Tokyo, Japan) Tetsuya Fujie (University of Hyogo, Japan) Kazuo Murota (University of Tokyo, Japan)

Transcript of Maximizing the spectral gap of networks produced by node removal

Page 1: Maximizing the spectral gap of networks produced by node removal

Maximizing  the  spectral  gap  of  networks  produced  by  

node  removal

Naoki  Masuda  (University  of  Tokyo,  Japan)

Refs:  1.  Watanabe  &  Masuda,  Physical  Review  E,  82,  046102  (2010)2.  Masuda,  Fujie  &  Murota,  In:  Complex  Networks  IV,  Studies  in  ComputaUonal  Intelligence,  476,  155-­‐163  (2013)

Collaborators:Takamitsu  Watanabe  (University  of  Tokyo,  Japan)Tetsuya  Fujie  (University  of  Hyogo,  Japan)Kazuo  Murota  (University  of  Tokyo,  Japan)

Page 2: Maximizing the spectral gap of networks produced by node removal

Laplacian  of  a  network

x(t) = �Lx(t)

x1 =� 2x1 + x2 + x4

=(x2 � x1) + (x4 � x1)

1 2

3 4

L =

0

BB@

2 �1 0 �1�1 2 0 �10 0 1 �1�1 �1 �1 3

1

CCA

�1 = 0 < �2 �3 · · · �NEigenvalues:

Page 3: Maximizing the spectral gap of networks produced by node removal

Spectral  gap• If  λ2  is  large,  diffusive  dynamical  processes  on  networks  

occur  faster.  Ex:  synchronizaUon,  collecUve  opinion  formaUon,  random  walk.

• Note:  unnormalized  Laplacian  here

• Problem:  Maximize  λ2  by  removing  Ndel  out  of  N  nodes  by  two  methods.

• SequenUal  node  removal  +  perturbaUve  method  (Watanabe  &  Masuda,  2010)

• Semidefinite  programming  (Masuda,  Fujie  &  Murota,  2013)

• Note:  Removal  of  links  always  decreases  λ2  (Milanese,  Sun  &  Nishikawa  2010;  Nishikawa  &  Mober  2010).

Page 4: Maximizing the spectral gap of networks produced by node removal

PerturbaUve  method• Extends  the  same  method  for  adjacency  matrices  

(Restrepo,  Ob  &  Hunt,  2008)

• Much  faster  than  the  brute  force  method.

Lu =�2u

(L+�L)(u+�u) =(�2 +��2)(u+�u)

�u =�u� uiei

where ei ⌘ (0, . . . , 0, 1|{z}i

, 0, . . . , 0)

=) ��2 ⇡P

j2Niuj(ui � uj)

1� u2i

Select  i  that  maximizes  Δλ2  

Page 5: Maximizing the spectral gap of networks produced by node removal

Results:  model  networks(N  =  250,  <k>  =  10)

Goh

WS

HKBA

ER

f0 0.1 0.2 0.3 0.4 0.5

f0 0.1 0.2 0.3 0.4 0.5

f0 0.1 0.2 0.3 0.4 0.5

1

3

5

1

1.4

1.8

perturbative

betweenness-based

degree-based

optimal sequential

1

1.2

0.9

0.8

1.1

0.9

1

1.1

1.2

1

0.6

1.4

f0 0.1 0.2 0.3 0.4 0.5

f

Ȝ 2norm

ali

zed

0 0.1 0.2 0.3 0.4 0.5

Goh

Page 6: Maximizing the spectral gap of networks produced by node removal

Results:  real  networksperturbative

betweenness-baseddegree-basedoptimal sequential

e-mail

C. elegans

2

3

4

5

0.5

0

1

1.5

2

Ȝ 2Ȝ 2

E. coli

0

0.2

0.4

0.6

0.8

macaque

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.50

f f

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5f f

N  =  279<k>  =  16.4

N  =  1133<k>  =  9.62

N  =  71<k>  =  12.3

N  =  2268<k>  =  4.96

Page 7: Maximizing the spectral gap of networks produced by node removal

Conclusions

• Careful  node  removal  can  increase  the  spectral  gap.

• For  a  variety  of  networks,  the  perturbaUve  strategy  works  well  with  a  reduced  computaUonal  cost.

• Ref:  Watanabe  &  Masuda,  Physical  Review  E,  82,  046102  (2010)

Page 8: Maximizing the spectral gap of networks produced by node removal

However,

• SequenUal  opUmal  may  not  be  opUmal  for  Ndel  ≥  2.

• An  obvious  combinatorial  problem  if  we  pursue  the  opUmal  soluUon.

Page 9: Maximizing the spectral gap of networks produced by node removal

min  t  subject  to

tI � F (x1, . . . , xn) ⌫ 0 (eigenvalues: t� �n · · · t� �1)

Semidefinite  programming

Eigenvalue  minimizaUon  using  SDP

nX

i=1

ciximin subject  to F0 +nX

i=1

xiFi ⌫ 0

F0, . . . , Fn :  symmetric  matrices

F (x1, . . . , xn) = F0 +nX

i=1

xiFi (eigenvalues: �1 · · · �n)

F0, . . . , Fn :  symmetric  matrices

Page 10: Maximizing the spectral gap of networks produced by node removal

DifficulUes  in  our  case• Discreteness:  xi  ∈  {0,  1}

• Ndel  (irrelevant)  0  eigenvalues  appear.

• Not  interested  in  the  zero  eigenvalue    λ1=0.

• So,  let’s  start  with  the  following  problem:

max  t  subject  to

λ1=0  →  λ1’=αNew  zero  eigenvalue  →  βBut,  a  nonlinear  constraint  

�tI +X

i<j;(i,j)2E

xixjLij + ↵J + �

NX

i=1

(1� xi)Ei ⌫ 0

NX

i=1

xi = N �Ndel, xi 2 {0, 1}

where Ei = diag(0, . . . , 0, 1|{z}i

, 0, . . . , 0)

L =X

1i<jN ;(i,j)2E

Lij

Page 11: Maximizing the spectral gap of networks produced by node removal

(Lovász,  1979;  Grötschel,  Lovasz  &  Schrijver,  1986;  Lovasz  &  Schrijver,  1991)

• Xij,  where  (i,j)  is  not  a  link,  is  a  “free”  variable.

• We  can  reduce  the  number  of  variables  using  Xii  =  xi.  But  sUll  O(N2)  terms  exist,  and  the  algorithm  runs  slowly.

• For  a  technical  reason,  we  set  α  =  β/N

• Challenges

• Discreteness  of  xi  →    “relax”  the  problem

• Nonlinear  constraint  →    introduce  new  vars

Xij ⌘ xixj

� tI +X

i<j;(i,j)2E

XijLij + ↵J + �

NX

i=1

(1� xi)Ei ⌫ 0

NX

i=1

xi = N �Ndel

Y ⌘1 x

>

x X

�⌫ 0

0 xi(= Xii) 1(1 i N)

SDP1

←  actually  not  needed

�tI +X

i<j;(i,j)2E

xixjLij + ↵J + �

NX

i=1

(1� xi)Ei ⌫ 0

max  t  subject  to

Page 12: Maximizing the spectral gap of networks produced by node removal

An  improved  method  SDP2:  “local  relaxaUon”

�tI +X

i<j;(i,j)2E

XijLij + ↵J + �

NX

i=1

(1� xi)Ei ⌫ 0

x1x2 �0

x1(1� x2) �0

(1� x1)x2 �0

(1� x1)(1� x2) �0

X12 �0

x1 �X12 �0

x2 �X12 �0

1� x1 � x2 +X12 �0

Page 13: Maximizing the spectral gap of networks produced by node removal

IntuiUve  comparison• Consider  N=1  (unrealisUc  though).

• SDP1

• Note:  In  fact,  X11  =  x1.

• SDP2

• Linear!

1 x

>

x X

�=

1 x1

x1 X11

�⌫ 0 () X11 � x

21

8>>><

>>>:

Xij � 0

xi �Xij � 0

xj �Xij � 0

1� xi � xj +Xij � 0

with i = j = 1 =)

8><

>:

X11 � 0

X11 x1

X11 � 2x1 � 1

Page 14: Maximizing the spectral gap of networks produced by node removal

• Number  of  vars  reduced.

• Size  of  the  SDP  part  reduced.

• Constraint  0  ≤  xi  ≤  1  unnecessary.

SDP2 max  t  subject  to�tI +

X

i<j;(i,j)2E

Xij˜

Lij+↵J + �

NX

i=1

(1� xi)Ei ⌫ 0,

NX

i=1

xi =N �Ndel,

For links (i, j)

8>>><

>>>:

Xij � 0

xi �Xij � 0

xj �Xij � 0

1� xi � xj +Xij � 0

Page 15: Maximizing the spectral gap of networks produced by node removal

Small  networks

Karate  club(N=34,  78  links,  β=2)Data:  Zachary  (1977)  

Macaque  corUcal  net(N=71,  438  links,  β=2)

Data:  Sporns  &  Zwi  (2004)    

0

1

2

0 10 20

h2

Ndel(a)

sequentialSDP1SDP2

0

1

2

3

0 10 20

h2

Ndel(b)

Page 16: Maximizing the spectral gap of networks produced by node removal

RelaUvely  large  networks

BA  model  (scale-­‐free  net)(N=150,  297  links,  β=2)

C.  elegans  neural  net(N=297,  2287  links,  β=2.5)Data:  Chen  et  al.  (2006)

0.5

0.6

0.7

0 10 20

h2

Ndel(c)

1

1.5

2

2.5

3

0 10 20 30

h2

Ndel(d)

SDP2

sequenUal

ObservaUon:  SDP1/SDP2  may  work  beber  for  sparse  networks.

Page 17: Maximizing the spectral gap of networks produced by node removal

Possible  direcUons

• Go  violate  convexity

• (1-­‐xi)  →  (1-­‐xi)p,  and  increase  p  gradually  from  p=1.  By  the  Newton  method

• Parameter  tuning?

�tI +X

i<j;(i,j)2E

XijLij + ↵J + �

NX

i=1

(1� xi)Ei ⌫ 0