Maxim Gorshkov Visit my website for this slideshow: .

21
Maxim Gorshkov Visit my website for this slideshow: www.mgorshkov.com/mcgill/ biol112

Transcript of Maxim Gorshkov Visit my website for this slideshow: .

Page 1: Maxim Gorshkov Visit my website for this slideshow: .

Maxim Gorshkov

Visit my website for this slideshow:www.mgorshkov.com/mcgill/biol112

Page 2: Maxim Gorshkov Visit my website for this slideshow: .

The low temperature preservation of humans and animals

Goal: Successfully preserve human being, revive or take out of preservation at later point.

Fairly theoretical concept: long-term memory, personality, and identity stored in cell structures that do not require continuous brain activity to survive.

Page 3: Maxim Gorshkov Visit my website for this slideshow: .

1. Life can be stopped and restarted if the structure is properly preserved

◦ Certain organs (ex. Heart) can be cooled until stopped, restarted within the hour.

2. Structures can be preserved well by Vitrification

◦ Rather than freezing, certain technique can be performed

3. Methods for repairing structures are now foreseen.

◦ Nanotechnology and the like now imminent and relevant to Cryopreservation

Page 4: Maxim Gorshkov Visit my website for this slideshow: .

Basic testing involving Cyanobacteria Cells in Cyanobacterial suffer stress osmotic

stress/ice crystal damage during thawing/freezing processes◦ Extrapolation to all life: damage with all living

cells Reduce effects with Cryoprotective

compounds◦ Specifically Glycerol or ~5% Methanol for

Cyanobacteria

Page 5: Maxim Gorshkov Visit my website for this slideshow: .

Cyanobacteria represents most living cells within animals

Researchers began in the late 1990s to work with composition tissues such as cartilage.

Pioneered further Cryopreservation research

Page 6: Maxim Gorshkov Visit my website for this slideshow: .

Rats were anesthetised and two flaps were markedon the epigastric region. Incision was made aroundone of the flaps Tissue removed wasstored at 4 degrees untilpreserved

Page 7: Maxim Gorshkov Visit my website for this slideshow: .

To study effects:◦ Skin defect was formed, preserved flap was

interposed and sutured Conclusions:

◦ Potential expansion of technique but only 2/17 cryopreserved rats survived unique experiment.

◦ Key factors were investigated to include the preservation agent and the warming rate.

Page 8: Maxim Gorshkov Visit my website for this slideshow: .

Most popular/researched technique for cryopreservation

Based on premise that amphibians/insects tolerate varying amount of freezing

Since the viscosity of water is low, it can be vitrified by extremely rapid “flash-freezing”

The new structure in the polymer-like form is the “vitrified form” rather than the crystalline structure of regular frozen water.

Page 9: Maxim Gorshkov Visit my website for this slideshow: .

Theory: cryoprotectors would work as well as flash-freezing (or at least aid)

Study done in 1949 in which glycerol was introduced to protect bull sperm against freezing, further proven with red blood cells later on

DMSO also introduced as cryoprotectant, useful and easily passes through membranes

Mouse embryos preserved though combination of DMSO and glycerol

Page 10: Maxim Gorshkov Visit my website for this slideshow: .

Freezing Without Cryoprotector

Page 11: Maxim Gorshkov Visit my website for this slideshow: .

Freezing With Cryoprotector

Page 12: Maxim Gorshkov Visit my website for this slideshow: .

We’ve seen that freezing/warming rates of a sample affect the viability of the sample

Research has been done at University of Tennesse and has achieved a reasonable survival rate of mouse oocytes.

Through the vitrification cooling to -196 degrees Celsius and then warming to room temperature a sophisticated experiment was performed

Page 13: Maxim Gorshkov Visit my website for this slideshow: .

Cooling/warming rates varied to investigate survival rate

Procedure:◦ Mature mice made to superovulate and the

oocytees were collected◦ Oocytes were vetrified in a solution of Ethylene

Glyocol, Acetamide, and Ficoll.◦ Oocytes were collected when warm and the

viability was assessed.

Page 14: Maxim Gorshkov Visit my website for this slideshow: .

Based on the results, 70-80% of sample surivied regardless of cooling rate.

Slowest warming rate had loest percentage of sample survival.

Page 15: Maxim Gorshkov Visit my website for this slideshow: .
Page 16: Maxim Gorshkov Visit my website for this slideshow: .
Page 17: Maxim Gorshkov Visit my website for this slideshow: .

High sensitivity of suvival to warming rates crystallization of intracellular structues during warming or growth responsible for lethality

Much more potential available for growth in the field based on this study and others.

Page 18: Maxim Gorshkov Visit my website for this slideshow: .

In the United States, cryonics can only be legally performed on humans after they have been pronounced legally dead as otherwise it would count as murder or assisted suicide.

Ideally this is performed with minutes of a cardiac arrest

Page 19: Maxim Gorshkov Visit my website for this slideshow: .

Given that a company in US offers Cryopreservation for $80,000/$200,000…

Selfish/irresponsible use of money which can provide a potential equivalent amount of money to efforts in developing countries

Social implications for Cryopreserved person, be that they are preserved: culture shock, alienation.

Big leap forward in science and can also open up many new directions with implications in many fields.

Page 20: Maxim Gorshkov Visit my website for this slideshow: .

Given the choice, would you want to be Cryopreserved?

Page 21: Maxim Gorshkov Visit my website for this slideshow: .

1. Mazur P, Seki S. Survival of mouse oocytes after being cooled in a vitrification solution to −196 °C at 95° to 70,000 °C/min and warmed at 610° to 118,000 °C/min: A new paradigm for cryopreservation by vitrification. Cryobiology. 2011;62(1);1-7.

2. Jacobsen IA, Pegg DE, et al. Cryopreservation of organs: A review. Cryobiology. 1984;21(5):377-384.

3. Cryopreservation of Cyanobacteria [homepage on the Internet]. Austin: University of Austin; [cited 2011 Feb 28]. Available from: http://www-cyanosite.bio.purdue.edu/protocols/cryo.html.

4. Cui X, Gao D, Vasconez H, Rinker B. Cryopreservation of composite tissues and transplantation: Preliminary studies. Cryobiology. 2007;55(3);295-304.

5. Merkle RC. The technical feasibility of cryonics. Medical Hypotheses. 1992;39(1);6-16

6. Cryonics: Alcor Life Extension Foundation [homepage on the Internet]. United States of America: Alcor Life Extension Foundation. Available from http://www.alcor.org.

7. Vitrification in Cryonics [homepage on the Internet]. Available from http://www.benbest.com/cryonics/vitrify.html.