Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf...

36
Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf [email protected]

Transcript of Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf...

Page 1: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

Max-Planck-Institut für Plasmaphysik

R. Wolf

Wendelstein 7-X

Scientific Objectives

Robert Wolf

[email protected]

Page 2: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

2

Contents

R. Wolf

• The stellarator concept

• Objectives Sufficient confinement of thermal plasma and fast ions (-particles in a fusion reactor)

Steady state magnetic field

Reliable operation at high plasma densities, high plasma pressure ()

Feasible exhaust concept

• Bringing everything together: The optimized stellarator

• Summary

Page 3: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

3

Contents

R. Wolf

• The stellarator concept

• Objectives Sufficient confinement of thermal plasma and fast ions (-particles in a fusion reactor)

Steady state magnetic field

Reliable operation at high plasma densities, high plasma pressure ()

Feasible exhaust concept

• Bringing everything together: The optimized stellarator

• Summary

Page 4: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

4

The stellarator concept

R. Wolf

2D

Significant part of the magnetic field generated by a plasma current

•Good confinement properties

•Concept further developed

•Pulsed operation

•Current driven instabilities / disruptions

Tokamak

Magnetic field essentially generated by external coils

•Requires elaborate optimization to achieve necessary confinement

• Is ~1½ device generations behind

• Intrinsically steady state

• Soft operational boundaries

Stellarator

3D

Page 5: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

5

The stellarator concept: advantages

R. Wolf

•Intrinsically steady state magnetic field (no current drive)- current drive requirements limited to small adjustments of the rotational transform

(one to two orders of magnitude smaller than in tokamaks)- intrinsically high Q (lower re-circulating power), could operate ignited (?)- quiescent steady state (at high )

•No current driven instabilities (or macroscopic instabilities)- no need to control profiles (?)- no need for feedback or rotation to control instabilities, or nearby conducting structure

•No disruptions- eases design of plasma facing components (breeding blanket)- disruption avoidance or mitigation schemes not required

•Very high density limit (no Greenwald limit)- easier plasma solutions for divertor- reduced fast-ion instability drive

Page 6: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

6

The stellarator concept: disadvantages

R. Wolf

•3D magnetic field configuration- generally poor neoclassical confinement - generally poor fast particle confinement- tendency for impurity accumulation- more complex divertor (and other plasma facing components)- more complex coil configuration

Physics issues addressed by stellarator optimization

Physics issues addressed by stellarator optimization

Physics issue addressed by finding a suitable confinement / operating regime

Physics issue addressed by finding a suitable confinement / operating regime

• Engineering issues addressed when designing and building new devices

• Development of feasible concepts will become important reactor design

• Here issues are maintenance and remote handling

• Engineering issues addressed when designing and building new devices

• Development of feasible concepts will become important reactor design

• Here issues are maintenance and remote handling

Page 7: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

7

The stellarator concept

R. Wolf

Going from 2D / tokamak to 3D / stellarator increases the degrees of freedom to find the most suitable magnetic field configuration

Tokamak: Large experimental flexibility in a given device by tayloring the current profile

Easy way to explore configurational space

Large plasma control effort, critical behaviour at operation boundaries

Stellarator: Little degree of freedom in a given device, but much larger choice of possible magnetic field configurations when devising a device

Very costly way to explore configurational space

Much smaller plasma control effort, benign operation boundaries

Wendelstein 7-X: Entirely new approach – ask for the best (optimized) magnetic configuration and design and build the device accordingly

Page 8: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

8

The family tree of stellarators (and helical configurations)

R. Wolf IPP Summer School, Garching, 20 – 24 September 2010

Torsatrons Heliotrons

ATF, CAT, TJ-KCHS, LHD

He-E, He-J

quasi-symmetric

q-...

W7-AS

advanced

TJ-II

Stellarators

C, Cleo, W7-A, L2, WEGA

classical

modular

Fig-8

CNT

Torsion

H 1

shut downoperatingunder constructionplanned

W7-X

Helias

HSX NCSX, CHS-qa

QPS

q-helical q-axial

Heliacs

Page 9: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

toroidal

poloidal

“unrolled” torus surface:

9

The modular stellarator

R. Wolf

Modular coils

W7-X

Toroidal field coils

Helical field coils

No huge helical coils / mechanical forces can be handled Magnetic fields can be tailored by external current distribution

Page 10: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

10

Contents

R. Wolf

• The stellarator concept

• Objectives Sufficient confinement of thermal plasma and fast ions (-particles in a fusion reactor)

Steady state magnetic field

Reliable operation at high plasma densities, high plasma pressure ()

Feasible exhaust concept

• Bringing everything together: The optimized stellarator

• Summary

Page 11: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

11

Contents

R. Wolf

• The stellarator concept

• Objectives Sufficient confinement of thermal plasma and fast ions (-particles in a fusion reactor)

Steady state magnetic field

Reliable operation at high plasma densities, high plasma pressure ()

Feasible exhaust concept

• Bringing everything together: The optimized stellarator

• Summary

Page 12: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

12

Contents

R. Wolf

• The stellarator concept

• Objectives Sufficient confinement of thermal plasma and fast ions (-particles in a fusion reactor)

Steady state magnetic field

Reliable operation at high plasma densities, high plasma pressure ()

Feasible exhaust concept

• Bringing everything together: The optimized stellarator

• Summary

Page 13: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

13

Visualizing field lines and flux surfaces

R. Wolf

M. Otte, R. Jaenicke, Stell. News (2006)

W7-AS:Field-line tracing with an electron beam using fluorescence in Hydrogen gas (false colour).

W7-AS:flux surface measurements before operation (dark) and after 56000 discharges (green)

... extremely sensitive measurement

... in a tokamak they exist by symmetry considerationsVisualizing a flux surface:

The plasma shape in a stellarator is 3D

Magnetic islands

Page 14: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

14

Plasma confinement

R. Wolf

In a torus: Modulation of the magnetic field strength along the magnetic field lines

magnetic field gradients; field line curvature

Diffusion of the thermal plasma: D eff T7/2

Generally, because of large mean free path, radial drift of fast ions

Tokamak toroidal trapping

(toroidal ripple not shown)Stellarator toroidal trapping helical trapping

Coordinate along field line, one toroidal circumference

Quasi-symmetry acts on eff

Page 15: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

15

Quasi-symmetries

R. Wolf

quasi-helicalquasi-poloidal

quasi-toroidalquasi-isodynamic

classical

courtesy of J. Sanchez

see Canik et al., PRL 98 (2007) 085002

Page 16: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

16

Effect of quasi-symmetry on confinement (minimize eff)

R. Wolf

HSX (Madison, WI, USA)26 kW – quasi-helical symmetry (QHS)67 kW – mirror configuration

from Canik et al., PRL 98 (2007) 085002www.hsx.wisc.edu

Page 17: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

17

Burning fusion plasma requires drift optimization

R. Wolf

75 keV Deuteron

In partially optimized W7-AS fast ions were not confined (at low collision frequency)

Drift optimization in W7-X (introducing quasi-symmetry / quasi-isodynamicity) serves the confinement of fast ions:Radial drift is transforemd into a poloidal precession

75 keV Deuteron

Page 18: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

18

Contents

R. Wolf

• The stellarator concept

• Objectives Sufficient confinement of thermal plasma and fast ions (-particles in a fusion reactor)

Steady state magnetic field

Reliable operation at high plasma densities, high plasma pressure ()

Feasible exhaust concept

• Bringing everything together: The optimized stellarator

• Summary

Page 19: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

19

Contents

R. Wolf

• The stellarator concept

• Objectives Sufficient confinement of thermal plasma and fast ions (-particles in a fusion reactor)

Steady state magnetic field

Reliable operation at high plasma densities, high plasma pressure ()

Feasible exhaust concept

• Bringing everything together: The optimized stellarator

• Summary

Page 20: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

20

Superconducting modular coils (no current drive required)

R. Wolf

• Space between coils (also valid for the high field side in a tokamak)

• In some areas strong bends required

influences choice of superconducting cable conduit

• Coils casings must be strong enough

support only in some positionsW7-X coil

W7-X coil support

Cable-in conduit conductor NbTi

Page 21: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

21

Contents

R. Wolf

• The stellarator concept

• Objectives Sufficient confinement of thermal plasma and fast ions (-particles in a fusion reactor)

Steady state magnetic field

Reliable operation at high plasma densities, high plasma pressure ()

Feasible exhaust concept

• Bringing everything together: The optimized stellarator

• Summary

Page 22: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

22

Contents

R. Wolf

• The stellarator concept

• Objectives Sufficient confinement of thermal plasma and fast ions (-particles in a fusion reactor)

Steady state magnetic field

Reliable operation at high plasma densities, high plasma pressure ()

Feasible exhaust concept

• Bringing everything together: The optimized stellarator

• Summary

Page 23: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

23

The stellarator can operate beyond the Greenwald limit

R. Wolf

Importance of high density maximizing fusion power

stay in optimum fusion reaction range even at higher

current drive efficiency is no issue

low population of fast particles (may actually become necessary)

Pf = ∫ n2 <v> Ef dV ~ p2 <v>/T2 ~ 2B2

<v>/T2 const. at 10 keV

Also in other stellarators (e.g. W7-AS), but up to now only at low temperatures

Ultimately density is limited by radiation

Page 24: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

24

Two kinds of -limiting phenomena

R. Wolf

Stability limits No disruptions Most important in stellarators

interchange type modes (p driven) stabilized by magnetic shear and magnetic well favourable „reversed“ shear by external field

Often observed as a saturation of achievable plasma pressure Energetic particle driven MHD instabilities, potentially dangerous

(-losses in reactor), wall damage

Equilibrium limit Effectively does not occur in tokamaks (because before reaching

the equilibrium limit plasma becomes unstable)

Page 25: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

25

Quiescent behaviour at stability limit

R. Wolf

Stability limits Often observed as a saturation of achievable plasma pressure

• Only weak effect of low-n pressure driven modes below <> =2.5 %

• Alfvén Instabilities restricted to lower density (higher fraction of fast ions)

• Formation of magnetic well stabilizes pressure driven modes

from A. Weller et al.

W7-AS

Page 26: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

26

Equilibrium limit in LHD and comparisons to W7-X

R. Wolf

<> = 0

from Suzuki et al.

Shift of magnetic axis

Increasing ergodization of the plasma boundaryReduction of the confining volume

<>=4%

LHD W7-X

from IAEA book „Helical Confinement Systems“ (in

preparation)

Page 27: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

27

Contents

R. Wolf

• The stellarator concept

• Objectives Sufficient confinement of thermal plasma and fast ions (-particles in a fusion reactor)

Steady state magnetic field

Reliable operation at high plasma densities, high plasma pressure ()

Feasible exhaust concept

• Bringing everything together: The optimized stellarator

• Summary

Page 28: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

28

Contents

R. Wolf

• The stellarator concept

• Objectives Sufficient confinement of thermal plasma and fast ions (-particles in a fusion reactor)

Steady state magnetic field

Reliable operation at high plasma densities, high plasma pressure ()

Feasible exhaust concept

• Bringing everything together: The optimized stellarator

• Summary

Page 29: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

29

Plasma exhaust requires a feasible divertor concept

R. Wolf

Magnetic island divertor in Wendelstein 7-AS

courtesy of J. Baldzuhn

Page 30: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

30

Plasma exhaust requires a feasible divertor concept

R. Wolf

Magnetic island divertor in Wendelstein 7-AS

Divertor module

Page 31: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

31

Requirements for an island divertor …

R. Wolf

… low magnetic shear and resonance at the plasma boundary

W7-X standard case :low m,n rationals avoided

W7-X: high-iota case: = 5/5 resonancewith islands

-profile

5/6

5/5

5/4

Magnetic shear determines the width of island

Cutting of islands with target plates produces divertor configuration

Page 32: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

32

Contents

R. Wolf

• The stellarator concept

• Objectives Sufficient confinement of thermal plasma and fast ions (-particles in a fusion reactor)

Steady state magnetic field

Reliable operation at high plasma densities, high plasma pressure ()

Feasible exhaust concept

• Bringing everything together: The optimized stellarator

• Summary

Page 33: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

33

Contents

R. Wolf

• The stellarator concept

• Objectives Sufficient confinement of thermal plasma and fast ions (-particles in a fusion reactor)

Steady state magnetic field

Reliable operation at high plasma densities, high plasma pressure ()

Feasible exhaust concept

• Bringing everything together: The optimized stellarator

• Summary

Page 34: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

34

The optimization criteria of W7-X

R. Wolf

• Stiff equilibrium configuration: Small Pfirsch-Schlüter and bootstrap currents resulting in small Shafranov shift and high equilibrium beta limit

• MHD stability up to <> = 5%

• Small neoclassical transport D ~ eff3/2 T7/2

• Drift optimization (quasi-isodynamic configuration): Good fast particle confinement

Additional objectives: Steady state operation including particle and energy exhaust with island divertor concept

• Superconducting coils

• Actively cooled divertor and first wall components

• Low magnetic shear with large islands at the plasma boundary

• as much as possible independent of In short: Plasma and magnetic field are as much as possible decoupled

Other optimization criteria are thinkable (e.g. NCSX: tokamak-stellarator hybrid with maximum bootstrap current)

Page 35: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

35

Wendelstein 7-X

R. Wolf

W7-AS

W7-X

LHD

Page 36: Max-Planck- Institut für Plasmaphysik R. Wolf Wendelstein 7-X Scientific Objectives Robert Wolf robert.wolf@ipp.mpg.de.

36

Summary

R. Wolf

• Many advantageous and not so advantageous properties of the stellarator have been demonstrated

• To achieve Sufficient confinement of thermal plasma and fast ions (-particles

in a fusion reactor)

Reliable operation at high plasma densities, high plasma pressure ()

Feasible exhaust concept

at the same time requires optimization procedure

• W7-X is the first stellarator (magnetic confinement experiment) the design of which is derived from optimization criteria

• Its objective is to demonstrate the reactor capability of the stellarator concept