Matrix Appraoch Manual

12
Topic: Chapter 8: System of Linear 1 st -Order_Matrix Approach Example 1: Solve 4 2 dx x y dt =- + 5 2 2 dy x y dt =- + Solution Let 4 2 , 52 2 x y - = = - X A Hence, the system become 4 2 52 2 x x d y y dt - = - ( )( ) 4 2 5 4 2 2 0 52 2 2 λ λ λ λ λ - - - = =- - - - - = - - A I 2 2 3 0 λ λ + - = 1 2 1 , 3 λ λ = =- For 1 1 λ = 1 * 1 5 1 2 2 2 5 4 1 2 5 2 1 25 1 25 52 2 1 52 1 1 25 0 0 R R R R - - + - - - - - - - - - - 1 2 2 0 5 k k - = 1 1 2 2 ; 5 5 t e = = K X For 2 3 λ = ( ) ( ) * 1 1 2 2 2 5 4 3 2 1 2 1 2 1 2 52 2 3 52 5 1 2 0 0 R R R R - - + - - -- - - - - -- - - 1 2 2 0 k k - = 3 2 2 2 2 ; 1 1 t e - = = K X Therefore, 3 1 2 2 2 5 1 t t c e c e - = + X

description

DE

Transcript of Matrix Appraoch Manual

  • Topic: Chapter 8: System of Linear 1st-Order_Matrix Approach

    Example 1: Solve

    4 2dx x ydt

    = +

    5 22

    dyx y

    dt= +

    Solution

    Let 4 2

    ,

    5 2 2x

    y

    = =

    X A

    Hence, the system become

    4 25 2 2

    x xdy ydt

    =

    ( )( )4 2 54 2 2 05 2 2 2

    = = =

    A I

    2 2 3 0 + = 1 21 , 3 = =

    For 1 1 = 1 *

    15 1 22

    25

    4 1 2 5 2 1 2 5 1 2 55 2 2 1 5 2 1 1 2 5 0 0

    R R RR

    +

    1 22 05

    k k =

    1 1

    2 2;

    5 5te

    = =

    K X

    For 2 3 = ( )

    ( )*

    1 1 22

    25

    4 3 2 1 2 1 2 1 25 2 2 3 5 2 5 1 2 0 0

    R R RR

    +

    1 22 0k k =

    32 2

    2 2;

    1 1te

    = =

    K X

    Therefore, 31 22 25 1

    t tc e c e

    = +

    X

  • Example 2: Solve

    3dx x ydt

    =

    9 3dy x ydt

    =

    Solution

    Let 3 1 3 1

    ,

    9 3 9 3x x xdy y ydt

    = = =

    X A

    ( )( ) ( )3 1 3 3 9 1 09 3

    = = =

    A I

    1 2 0 = =

    For 0 : = 3 1 3 19 3 0 0

    01 1

    1 1 1;

    3 3 3te

    = = =

    K X

    Since there exist one eigenvector, let 12

    pp

    =

    P

    ( ) =A I P K ( )0 =A I P K 3 1 1 3 1 19 3 3 0 0 0

    Infinitely many solution

    Hence, 1 23 1p p =

    1 21 13 3

    p p= + 0 021 1 1 1 1

    ,

    2 3 3 3 3t tte e t

    = = + = +

    P X

    Choose 2 2p = 1 1p =

    Therefore,

    1 2

    1 1 12 3 3

    c c t

    = + +

    X

  • Example 3: Solve

    6dx x ydt

    =

    5 2dy x ydt

    = +

    Solution

    Let 6 1 6 1

    ,

    5 2 5 2x x xdy y ydt

    = = =

    X A

    ( )( ) ( )6 1 6 2 5 1 05 2

    = = =

    A I

    2 8 17 0 + = 4 i =

    For 4 i = + ( )

    ( )( ) *1 1 226 4 1 2 1 5 2 5 2

    5 2 4 5 2 5 2 0 0i R R Ri i i i

    i i i+

    + + =

    +

    ( )1 25 2 0k i k+ = Choose 2 5k =

    ( )1 2

    25

    ik k

    + = 1 2k i= +

    ( ) ( )1 1 1 2 12 2 1Re ; Im5 5 0i+

    = = = = =

    K B K B K

    4 41 2

    2 1 1 2cos sin ; cos sin

    5 0 0 5t tt t e t t e

    = = +

    X X

    Therefore,

    41 1 2 2 1 2

    2cos sin cos 2sin5cos 5sin

    tt t t tc c c c et t

    + = + = +

    X X X

  • Example 4: Solve the IVP ( ) ( )16 0 , 0 2 , 0 2y y y y + = = =

    Solution Let 1x y= ; 1 2x y x = = ; ( )1 0 2x = 2x y= ; 2 116x y x = = ; ( )2 0 2x =

    1 1 1

    2 2 2

    0 1 0 1;

    16 0 16 0x x xdx x xdt

    = = =

    X A

    21 16 016

    = = + =

    A I

    4 i =

    For 4 i =

    ( ) 1 1 244 1 16 4 16 416 4 16 4 0 0

    i R R Ri i ii i

    ( )1 216 4 0k i k+ = 1 2

    14

    k k=

    ( ) ( )1 1 1 2 10 1Re Im4 1 0i

    = = = = =

    K B K B K

    ( )1 1 2 0 1cos sin cos 4 sin4 0tt t e t t = =

    X B B

    ( )2 2 1 1 0cos sin cos 4 sin 40 4tt t e t t = + = +

    X B B

    1 1 2 2 1 2sin 4 cos 4

    4cos 4 4sin 4t t

    c c c ct t

    = + = +

    X X X

    1 2 1 2

    2 0 1 1, 2

    2 4 0 2c c c c

    = + = =

    sin 4 cos 41 2

    4cos 4 4sin 42t t

    t t

    =

    X

    Since 11

    sin 4 2cos 42

    x y t t= = +

  • Example 5: Consider two tanks A and B, as shown in Figure 1. Suppose Tank A and B contain 50 gallons of water. Initially, 25 pounds of salt is dissolved in tank A. Liquid is pumped into and out of the tanks as indicated in the figure; the mixture exchanged between the two tanks and the liquid pumped out of tank B are assumed to be well-stirred. (a) Use the information given in the figure to construct a mathematical model for the

    number of pounds of salt ( )1x t and ( )2x t at time t in tanks A and B, respectively. (b) Solve using systematic elimination method.

    Solution

    (a) Tank A ( ) ( ) ( )2 210 lb/gal 3 gal/min lb/gal 1 gal/min50 50in

    xR x = + =

    ( ) ( )1

    22lb/gal 4 gal/min

    50 4 4 25outxR x

    t

    = = +

    ( )1 2 2 11 2 , 0 2550 25in outdx R R x x xdt

    = = =

    Tank B

    ( )1 12lb/gal 4 gal/min50 25inxR x = =

    ( ) ( )1

    22lb/gal 4gal/min

    50 4 4 25outxR x

    t

    = = +

    ( )2 1 2 22 2 , 0 025 25in outdx R R x x xdt

    = = =

    (b) Let 1 1 12 2 2

    2 25 1 50 2 25 1 50;

    2 25 2 25 2 25 2 25x x xdx x xdt

    = = =

    X A

    22 25 1 50 2 1 02 25 2 25 25 625

    = = =

    A I

    1 21 3

    ,

    25 25 = =

  • For 11

    :25

    =

    1 1 2

    2522

    251 25 1 50 1 1 2 1 1 22 25 1 25 1 1 2 0 0

    R R RR

    +

    125

    1 1

    1 1,

    2 2t

    e

    = =

    K X

    For 23

    :25

    =

    1 1 2

    2522

    251 25 1 50 1 1 2 1 1 22 25 1 25 1 1 2 0 0

    R R RR

    +

    325

    2 2

    1 1,

    2 2t

    e

    = =

    K X

    Hence, the general solution is

    3125 25

    1 2

    1 12 2

    t tc e c e

    = +

    X

    At 0,t =

    1 2 1 2

    25 1 1 25 25,

    0 2 2 2 2c c c c

    = + = =

    ( ) ( )3 31 125 25 25 251 225 25 , 25 252 2t t t t

    x t e e x t e e = + =

  • Example 6 Solve

    2 3 7dx x ydt

    = +

    2 5dy x ydt

    = +

    Solution

    Let ( )2 3 7 2 3 7, ,1 2 5 1 2 5

    x x xdt

    y y ydt

    = = = = +

    X A F

    2

    1 2

    2 31 0 1, 1

    1 2

    = = = = =

    A I

    For 1 1: =

    *

    1 21 1

    1 3 1 3 3 31 3 0 0 1 1

    R R te+

    = =

    K X

    For 2 1: =

    113 1 2

    2 2

    3 3 1 1 1 1 1 11 1 1 1 0 0 1 1

    R R R te

    = =

    K X

    Thus,

    1 2

    3 11 1

    t tc c e c e

    = +

    X

  • To find particular solution, we can use either method of undetermined coefficient or variation of parameter.

    Undetermined Coefficient

    Since ( )tF are constant, assuming p AB

    =

    X

    2 3 7 2 3 71, 3

    1 2 5 1 2 5A A Ad A BB B Bdt

    = + = = =

    Hence,

    13p

    =

    X

    Therefore,

    1 2

    3 1 11 1 3

    t tc p c e c e

    = + = + +

    X X X

  • Variation of Parameter

    ( ) 3t t

    t t

    e et

    e e

    =

    1 13 1 3

    t t

    t t

    e e

    e e

    =

    +

    1 72 252 3 2 4

    t t t

    t t t

    e e e

    e e e

    = =

    F

    ( ) ( ) ( )1 34

    t t t

    p t t t

    e e et t t dt dt

    e e e

    = =

    X F

    34

    13

    t t t

    t t t

    e e e

    e e e

    =

    =

    Therefore,

    1 2

    3 1 11 1 3

    t tc p c e c e

    = + = + +

    X X X

  • Example 7 Solve

    4 1 3 39 6 10

    te

    = +

    X X

    Solution

    ( )( ) ( )( )24 1 3 14 6 9 10 21 3 7 09 6 3

    = = = + = =

    A I

    1 23 ; 7 = =

    When 1 3: =

    1 29 31 1

    1 1 3 1 1 3 1 19 3 0 0 3 3

    R R te +

    = =

    K X

    When 2 7 : =

    113 1 29 7

    2 2

    3 1 3 1 1 9 1 1 9 1 19 1 9 1 0 0 9 9

    R R R te

    + = =

    K X

    Hence, the complimentary solution:

    3 71 1 2 2 1 2

    1 13 9

    t tc c c c e c e

    = + = +

    X X X

  • Undetermined Coefficient

    Assume ;t t

    p pt t

    Ae AeBe Be

    = =

    X X

    Substitute pX and pX into the system, we obtain

    4 1 3 39 6 10

    t t t

    t t t

    Ae Ae eBe Be e

    = +

    ( )

    14 33

    9 6 10

    t t

    t t

    e A B Ae

    e A B Be

    + =

    + + =

    5536

    194

    A

    B

    =

    =

    Therefore,

    3 71 2

    1 1 55 363 9 19 4

    t t tc p c e c e e

    = + = + +

    X X X

  • Variation of Parameter

    ( ) ( )3 7

    3 7

    3,

    3 9 10

    t t t

    t t t

    e e et t

    e e e

    = =

    F

    3 37 7 3 11 4 2

    10 10 7 73 3 1 14 12

    919 3 3

    t tt t

    t t t tt t

    e ee e

    e e e ee e

    = =

    ( ) ( ) ( )3 33 7 3 1

    1 4 127 73 7 1 1

    4 12

    33 9 10

    t tt t t

    p t tt t t

    e ee e et t t dt dt

    e ee e e

    = =

    X F

    3 7 3712

    3 7 112

    23 7 37 5524 36

    63 7 19172 4

    3 9

    3 9

    tt t

    tt t

    t tt t

    t tt t

    ee e dtee e

    e ee e

    e ee e

    =

    = =

    Therefore,

    3 71 2

    1 1 55 363 9 19 4

    t t tc p c e c e e

    = + = + +

    X X X