Mathias Gerbaux CTF3 Collaboration Technical meeting 27/01/2009 30 GHz results from 2008.

24
Mathias Gerbaux CTF3 Collaboration Technical meeting 27/01/2009 30 GHz results from 2008

Transcript of Mathias Gerbaux CTF3 Collaboration Technical meeting 27/01/2009 30 GHz results from 2008.

Page 1: Mathias Gerbaux CTF3 Collaboration Technical meeting 27/01/2009 30 GHz results from 2008.

Mathias Gerbaux

CTF3 Collaboration Technical meeting27/01/2009

30 GHz results from 2008

Page 2: Mathias Gerbaux CTF3 Collaboration Technical meeting 27/01/2009 30 GHz results from 2008.

2

Structures tested in 2008

Only two…

• HDS4_thick : re-test, bad results. Didn’t reach an accelerating gradient much higher than 60 MV.m-1.

• C30 speed bump : same geometry as the older 3.5 mm structure except for a « speed bump » lowering the group velocity at the input. Two measurements : fed by the input and by output.

Mathias Gerbaux - CTF3 Collaboration Technical meeting - 27/01/2009

Page 3: Mathias Gerbaux CTF3 Collaboration Technical meeting 27/01/2009 30 GHz results from 2008.

3

Speed bump (TM03)

R=14.398 mm

R_iris= 2.428 mm

Iris_thickness= 1mm

Bandwidth

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

29.5 29.6 29.7 29.8 29.9 30 30.1 30.2 30.3 30.4 30.5

f (GHz)

S12

(dB

) Speed bump TM03

Speed bump TM02

Original

0

0.01

0.02

0.03

0.04

0.05

0.06

0 1 2 3 4 5

cell #

vg

/c

2nd mode speed bump

regular cell nominal value

3rd mode speed bump

3rd mode,final version

Test structure in disks: 30 cell and identical mode launcher of the “conventional” 2π/3 Ø 3.5 mm

Courtesy of

Riccardo Zennaro

Page 4: Mathias Gerbaux CTF3 Collaboration Technical meeting 27/01/2009 30 GHz results from 2008.

4

0 100 200 300 400 500 600 700 800 9000

20

40

60

80

100

120

Time (h)

Ac

ce

lera

tin

g g

rad

ien

t

0 100 200 300 400 500 600 700 800 9000

20

40

60

80

100

120

Time (h)

Pu

lse

len

gth

@ 50%

@ 75%

HDS4_thick re-test: whole history

In total :

1,244,800 pulses, mainly at 1 Hz corresponding to 5.76 SLAC hours at 60 Hz but crappy data

Mathias Gerbaux - CTF3 Collaboration Technical meeting - 27/01/2009

Page 5: Mathias Gerbaux CTF3 Collaboration Technical meeting 27/01/2009 30 GHz results from 2008.

5

208 208.2 208.4 208.6 208.8 209 209.2 209.4 209.6 209.8 2100

10

20

30

40

50

60

70

80

Time (h)

Ac

ce

lera

tin

g g

rad

ien

t

208 208.2 208.4 208.6 208.8 209 209.2 209.4 209.6 209.8 2100

20

40

60

80

100

120

Time (h)

Pu

lse

len

gth

@ 50%

@ 75%

HDS4_thick re-test : typical running

Mathias Gerbaux - CTF3 Collaboration Technical meeting - 27/01/2009

Page 6: Mathias Gerbaux CTF3 Collaboration Technical meeting 27/01/2009 30 GHz results from 2008.

6

0 1 2 3 4 5 6 7 8

x 104

0

500

1000

1500

2000

2500

Pulse number

En

erg

y

IncTransRefl

C30-sb

In total : • 4,101,250 pulses, mainly at 1 Hz

corresponding to 18.99 SLAC hours at 60 Hz• 2186 breakdowns

Weird things due to calibration problems (now solved)

Mathias Gerbaux - CTF3 Collaboration Technical meeting - 27/01/2009

Page 7: Mathias Gerbaux CTF3 Collaboration Technical meeting 27/01/2009 30 GHz results from 2008.

7

0 0.5 1 1.5 2 2.5 3 3.5

x 104

0

500

1000

1500

2000

2500

3000

Pulse number

En

erg

y (

mJ

)

IncTransRefl

1 point every 50 pulses

C30-sb-reversed

In total : • 1,704,650 pulses, mainly at 1 Hz

corresponding to 7.89 SLAC hours at 60 Hz• 501 breakdowns

Weird things due to calibration problems(now solved)

Mathias Gerbaux - CTF3 Collaboration Technical meeting - 27/01/2009

Page 8: Mathias Gerbaux CTF3 Collaboration Technical meeting 27/01/2009 30 GHz results from 2008.

8

We figured out at the end of Fall 2008 that calibration was affected by various factors (drifting baselines, temperature…).

If we assume the measurement of the incident power is not too wrong…

Or at least it is only the absolute calibration that is wrong and it don’t change too quickly.

Then, we can calculate the breakdown rate as a function of the accelerating gradient .

Mathias Gerbaux - CTF3 Collaboration Technical meeting - 27/01/2009

Page 9: Mathias Gerbaux CTF3 Collaboration Technical meeting 27/01/2009 30 GHz results from 2008.

9

1606 1608 1610 1612 1614 1616 1618 1620 1622 1624 162630

40

50

60

70

80

90

100

Time (h)

Acc

eler

atin

g g

rad

ien

t

1606 1608 1610 1612 1614 1616 1618 1620 1622 1624 1626

20

40

60

80

100

Time (h)

Pu

lse

len

gth

@ 50%@ 75%

OK

Breakdown rate calculation

Mathias Gerbaux - CTF3 Collaboration Technical meeting - 27/01/2009

Page 10: Mathias Gerbaux CTF3 Collaboration Technical meeting 27/01/2009 30 GHz results from 2008.

Breakdown rate vs gradient – speed bump structure

65 70 75 80 85 90 95 100

10-6

10-5

10-4

10-3

10-2

Peak gradient (MV/m)

Bre

akd

ow

n r

ate

C30-sbUpper limits

-- Old 3.5mm structure

3.5 mm structures comparison

• No effect of the speed bump on the breakdown rate

• Need post-mortem examination to see if it has one on the surface damage

• Vertical error bars calculated assuming an error of 1 on the breakdown number and 500 on the number of pulses.

• Horizontal error bars : standard deviation of the measured gradient.

• Red circles are upper limits (no breakdown recorded).

• Fit doesn’t take into account these points.

Mathias Gerbaux - CTF3 Collaboration Technical meeting - 27/01/2009

Page 11: Mathias Gerbaux CTF3 Collaboration Technical meeting 27/01/2009 30 GHz results from 2008.

11

DIY electron spectrometer

RL

RL

lLdX

arcsintan1

arcsintan

)(

Rough calculations :•with B=0.15 mT (0.1 A), E(e-) > 200 eV •with B=0.75 mT (0.5 A), E(e-) > 10 keV •with B=3.0 mT (2.0 A), E(e-) > 200 keV•with B=7.5 mT (5.0 A), E(e-) > 500 keVα

α

B

R

L

lXd

CCD

45°

Speed bumpstructure

magnet

Alumina screen

0 A 0 A 1 A

Some spots…

3 A

Most of the time :

Mathias Gerbaux - CTF3 Collaboration Technical meeting - 27/01/2009

filter

Page 12: Mathias Gerbaux CTF3 Collaboration Technical meeting 27/01/2009 30 GHz results from 2008.

DIY electron spectrometer – just a few pictures

Positive magnetic field

Negative magnetic field

• There is an effect compatible with an electron signal (up to 500 keV)• We haven’t a real « zero » position• Huge spread of the spot, non-reproducibility• No calibration number of electrons – light intensity 12

Needs a collimator !B

increasing

Mathias Gerbaux - CTF3 Collaboration Technical meeting - 27/01/2009

Page 13: Mathias Gerbaux CTF3 Collaboration Technical meeting 27/01/2009 30 GHz results from 2008.

13

• 2 structures tested last year : HDS4_thick showed poor performances C30-speed bump gave better results But remember the cumulative duration of the tests is still short compared to

SLAC tests (less than 33 h in total for 2008).

Conclusion and future plans

• C30-sb manufactured following the same procedure as the T18 X-band structure currently tested at SLAC with bad results.

• Spectrometer measurement performed with what was at hand, definitely lacks a collimator !

• Poor reproducibility, we are working to see if it can be related to the position of the breakdown (structure acting as a collimator).

• Nevertheless gave indications of an e- “beam” emmitted during the breakdown with an energy up to at least 500 keV.

• ONE last 30 GHz structure to be tested in 2009 (TM02), optical spectrometry measurement will be done (J. Kovermann).

Mathias Gerbaux - CTF3 Collaboration Technical meeting - 27/01/2009

Page 14: Mathias Gerbaux CTF3 Collaboration Technical meeting 27/01/2009 30 GHz results from 2008.

14

Many thanks :

Alexandra AnderssonJan KovermannSteffen Döbert

Riccardo Zennaro

and for your attention !

to

Mathias Gerbaux - CTF3 Collaboration Technical meeting - 27/01/2009

Page 15: Mathias Gerbaux CTF3 Collaboration Technical meeting 27/01/2009 30 GHz results from 2008.

15

65 70 75 80 85 90 95 100

10-6

10-5

10-4

10-3

10-2

Peak gradient (MV/m)

Bre

ak

do

wn

ra

te

C30-sb

In blue : my analysisIn green : Steffen’s one

Mathias Gerbaux - CTF3 Collaboration Technical meeting - 27/01/2009

Page 16: Mathias Gerbaux CTF3 Collaboration Technical meeting 27/01/2009 30 GHz results from 2008.

16

75 80 85 90 95 100

10-5

10-4

10-3

10-2

Peak gradient (MV/m)

Bre

akdo

wn

rate

C30-sb-reversed

1

2

3

4

5

67

Slight improvement with time

Mathias Gerbaux - CTF3 Collaboration Technical meeting - 27/01/2009

Page 17: Mathias Gerbaux CTF3 Collaboration Technical meeting 27/01/2009 30 GHz results from 2008.

17

70 75 80 85 90 95 10010

-6

10-5

10-4

10-3

10-2

Peak gradient (MV/m)

Bre

ak

do

wn

ra

te

3.5 mm reversed speed bump turned Steffen

3.5 mm reversed speed bump Mathias

Slope difference : 0.2 %

Different points ↔ different analysis(file by file for Steffen’s analysis, single file combining the whole history for mine).

C30-sb-reversed

Mathias Gerbaux - CTF3 Collaboration Technical meeting - 27/01/2009

Page 18: Mathias Gerbaux CTF3 Collaboration Technical meeting 27/01/2009 30 GHz results from 2008.

18

45 50 55 60 65 70

10-4

10-3

Peak gradient (MV/m)

Bre

ak

do

wn

ra

te

HDS4_thick re-test : ``results´´

Upper limit

Mathias Gerbaux - CTF3 Collaboration Technical meeting - 27/01/2009

Page 19: Mathias Gerbaux CTF3 Collaboration Technical meeting 27/01/2009 30 GHz results from 2008.

19

0 5 10 150

20

40

60

80

100

120

Time (h)

Ac

ce

lera

tin

g g

rad

ien

t

0 5 10 150

20

40

60

80

100

120

Time (h)

Pu

lse

len

gth

@ 50%

@ 75%

HDS4_thick beginning of the test

Mathias Gerbaux - CTF3 Collaboration Technical meeting - 27/01/2009

Page 20: Mathias Gerbaux CTF3 Collaboration Technical meeting 27/01/2009 30 GHz results from 2008.

20

Energie(keV)

Vitesse(m/s)

R( 0.15 mT)(m)

R(0.75 mT)(m)

R(1.5 mT)(m)

R(4.5 mT)(m)

R(7.5 mT)(m)

R(9 mT)(m)

R(15 mT)(m)

X( 0.15 mT)(m)

X(0.75 mT)(m)

X(1.5 mT)(m)

X(4.5 mT)(m)

X(7.5 mT)(m)

X(9 mT)(m)

X(15 mT)(m)

0.1 A 0.5 A 1.0 A 3.0 A 5.0 A 6.0 A 10.0 A 0.1 A 0.5 A 1.0 A 3.0 A 5.0 A 6.0 A 10.0 A

10000 2.99E+08 1.86E+02 3.72E+01 1.86E+01 6.20E+00 3.72E+00 3.10E+00 1.86E+007.52E-05 3.76E-04 7.50E-04 2.23E-03 3.70E-03 4.43E-03 7.28E-03

5000 2.99E+08 1.13E+02 2.27E+01 1.13E+01 3.78E+00 2.27E+00 1.89E+00 1.13E+001.23E-04 6.16E-04 1.23E-03 3.64E-03 6.01E-03 7.17E-03 1.17E-02

3000 2.97E+08 7.49E+01 1.50E+01 7.49E+00 2.50E+00 1.50E+00 1.25E+00 7.49E-011.87E-04 9.30E-04 1.85E-03 5.47E-03 8.97E-03 1.07E-02 1.74E-02

2000 2.94E+08 5.38E+01 1.08E+01 5.38E+00 1.79E+00 1.08E+00 8.96E-01 5.38E-012.60E-04 1.29E-03 2.57E-03 7.55E-03 1.23E-02 1.47E-02 2.38E-02

1000 2.82E+08 3.14E+01 6.29E+00 3.14E+00 1.05E+00 6.29E-01 5.24E-01 3.14E-014.44E-04 2.20E-03 4.36E-03 1.26E-02 2.05E-02 2.44E-02 3.98E-02

500 2.59E+08 1.94E+01 3.87E+00 1.94E+00 6.46E-01 3.87E-01 3.23E-01 1.94E-017.20E-04 3.55E-03 7.00E-03 2.00E-02 3.24E-02 3.88E-02 6.96E-02

200 2.08E+08 1.10E+01 2.20E+00 1.10E+00 3.66E-01 2.20E-01 1.83E-01 1.10E-011.27E-03 6.19E-03 1.21E-02 3.43E-02 5.88E-02 7.60E-02 #NUM!

100.00 1.60E+08 7.17E+00 1.43E+00 7.17E-01 2.39E-01 1.43E-01 1.20E-01 7.17E-021.93E-03 9.36E-03 1.81E-02 5.32E-02 1.51E-01 #NUM! #NUM!

10.00 5.80E+07 2.24E+00 4.48E-01 2.24E-01 7.47E-02 4.48E-02 3.74E-02 2.24E-026.07E-03 2.82E-02 5.73E-02 #NUM! #NUM! #NUM! #NUM!

1.00 1.80E+07 6.84E-01 1.37E-01 6.84E-02 2.28E-02 1.37E-02 1.14E-02 6.84E-031.90E-02 2.30E-01 #NUM! #NUM! #NUM! #NUM! #NUM!

0.10 5.90E+06 2.24E-01 4.48E-02 2.24E-02 7.46E-03 4.48E-03 3.73E-03 2.24E-035.75E-02 #NUM! #NUM! #NUM! #NUM! #NUM! #NUM!

Spectrometer calculations

RL

RL

lLdX

arcsintan1

arcsintan

)(

α

α

B

R

L

lXd

45°

Speed bumpstructure

magnet

Alumina screen

Page 21: Mathias Gerbaux CTF3 Collaboration Technical meeting 27/01/2009 30 GHz results from 2008.

21

DIY electron spectrometer – ``statistical´´ analysis

Increasing B field

See Jan’s presentation on February, 18th

Mathias Gerbaux - CTF3 Collaboration Technical meeting - 27/01/2009

Page 22: Mathias Gerbaux CTF3 Collaboration Technical meeting 27/01/2009 30 GHz results from 2008.

22

Same phase advanceSame P/cSame aperture and iris shapeSame field configuration in the iris region

but

Different group velocity: 4.7% & 2%Different R/Q: 29 kΩ/m & 12 kΩ/m

TM02 structure

Is it possible to change some global parameter without changing local field distribution?

Only by changing the propagating mode

TM02 regular cell

TM01 regular cell “reference”

Test structure in disks: 30 cell and identical mode launcher of the “conventional” 2π/3 Ø 3.5 mm

Courtesy of

Riccardo

Page 23: Mathias Gerbaux CTF3 Collaboration Technical meeting 27/01/2009 30 GHz results from 2008.

23as ds vgs( ) a1 d1 vg1( )

TM01: 2π/3 Vg=4.7%

TM02: 2π/3 Vg=2.0%a

Vg

d

Direct comparison of Vg

Courtesy of

Riccardo

Page 24: Mathias Gerbaux CTF3 Collaboration Technical meeting 27/01/2009 30 GHz results from 2008.

24

Why speed bump?

From Igor’s presentation at the X band workshop:

Very often we do observe, that after accelerating structure processing the most of the surface modifications take place in a few first cells. Also the number of cells involved is correlated with the group velocity, the less the Vg the fewer cells modified.

What do we certainly know, the breakdown ignition is a very fast process: 0.1 -10 ns. If so, one can propose the main difference between the “first” and “second” cell is accessible bandwidth.And the lower group velocity the more the difference.The first cell, if breakdown occurs is loaded by the input coupler/waveguide and is very specific in terms of bandwidth. Other words, the first cell can accept “more” energy during breakdown initiation then consequent ones. Worse to mention that we do not know the exact transient behavior of the breakdown and the structure bandwidth could play important role.

We can tray by reducing vg in the matching cell

HDS 60 L

PINC

HDS 60 S

PINC

Courtesy of

Riccardo

Je ne sais pas si la vidéo restera longtemps à cette adresse mais pour le moment, vous pouvez écouter l’intégralité du « discours à l’occasion du lancement de la réflexion pour une Stratégie Nationale de Recherche et d’Innovation » de Sarkozy. Attention cependant, ses putains d’accents poujadistes et sa façon de nous prendre pour des cons sont susceptibles de vous mettre de très très mauvaise humeur !http://www.elysee.fr/accueil/Bonne journée quand même…