Mathematics. Inverse Trigonometric Functions Session.

45
Mathematics

Transcript of Mathematics. Inverse Trigonometric Functions Session.

Mathematics

Inverse Trigonometric Functions

Session

Session Objectives

Session Objectives

2. Properties of Inverse Trigonmetric Function

1. Basic Concepts of inverse trigonometric functions

• Definition• Domain and Range

3. Conversion of one form of Inverse Trig. Fn. to other Forms

4. Identities containing inverse trigonometric functions

Basic Concepts - Definition

Inverse of a Function :

Function must be bijective

Trigonometric functions are periodic.

sin x is periodic with period equal to 2π

Not Bijective

Hence , inverse of sin x should not be valid ????

Basic Concepts - Definition

However, trigonometric functions are bijective for particular value sets in the domain.

sin-1 x is valid in these value sets

Inverse trigonometric function - principal value set

Smallest Numerical Angle

sin x is bijective in [-π/2 , π/2 ] and in [π/2 ,3π/2 ] ……. for x R

[-π/2 , π/2 ]

Basic Concepts - Definition

Inverse trigonometric functions inverse circular function.

arc sin x sin-1x ( principal value )

Inverse Trigonometric function - sin –1 x

Domain of sin –1x

( value which x can take ) is [-1,1]

Range of sin –1 x

(values which sin–1x can take ) is [- /2, /2 ]

-1 1/2

-/2

3/2

X

Y

Inverse Trigonometric function - cos–1 x

Domain of cos –1x

( value which x can take ) is [-1,1]

Range of cos –1 x

(values which cos–1x can take ) is [0, ]

X-1 1

/2

-

Y

Inverse Trigonometric function - tan–1 x

Domain of tan –1x

( value which x can take ) is (- , )

Range of tan –1 x

(values which sec–1x can take ) is (-/2, /2)

X

/2

-/2

-

Inverse Trigonometric function - sec–1 x

Domain of sec –1x ( value which x can take ) is (- -1] U [1, )

Range of sec –1 x

(values which sec–1x can take ) is [0, ] excl. x = /2

Y

X

/2

-/2

-

1-1

Inverse Trigonometric function - cot–1 x

Domain of cot –1x

( value which x can take ) is (- , )

Range of cot –1 x

(values which cot–1x can take ) is (0, )

Y

X

/2

-/2

-

Inverse Trigonometric function - Domain and Range

Function Domain Range

sin-1x [-1,1] [-/2, /2]

cos-1x [-1,1] [0, ]

tan-1x (- , ) (-/2, /2)

sec-1x (-, -1] U [1, ) [0, ] excl. /2

cosec-1x (-, -1] U [1, ) [-/2, /2] excl. 0

cot-1x (- , ) (0, )

Function Domain Range

Inverse Trigonometric function – Properties

Always remember to keep the constraint of domain and range , while solving inverse trigonometric functions.

sin( sin-1 x) = x and cos (cos-1 x) = x if x is in [-1,1]

tan( tan-1 x) = x x if x is in ( -, )

sin-1 ( sin x) = x if x is in [-/2, /2]

cos-1 ( cos x) = x if x is in [0, ]

sec-1 ( sec x) = x if x is in [0, ] excl. x = /2

Inverse Trigonometric function – Properties

cos-1 (-x) = - cos-1x if x is in [-1,1]

sin-1 (-x) = -sin-1 (x) if x is in [-1,1]

tan-1(-x) = - tan-1x if x is in ( -, )

cot-1(-x) = - cot-1x if x is in (-,)

cosec-1(-x) = - cosec-1x if x is in (-,-1] U [1,)

sec-1(-x) = - sec-1x if x is in (-,-1] U [1,)

Inverse Trigonometric function – Properties

Always remember to keep the constraint of domain and range , while solving inverse trigonometric functions.

sin-1 (-x) = -sin-1 (x) if x is in [-1,1]

Let y = sin-1(-x) ; constraint : y is in [-/2, /2]

sin y = - x x = - sin y = sin ( -y )

sin-1(-x) = sin-1 ( sin (-y))

sin-1(-x) = -y

sin-1(-x) = -sin-1 x

Class Exercise - 1

Find the principal value of

1 2sin sin

3

Solution : 1 2

Let sin sin3

2sin sin where ,

3 2 2

3sin

2

3

Class Exercise - 2

Find the principal value of sin –1 ( sin 5 )

Let y = sin-1(sin 5).Hence y is in [-/2,/2]

5 Wrong

Now , sin 5 = sin [(5/). ] = sin ( 1.59)

= - sin (2 - 1.59)

= sin ( 1.59 -2)

in [-/2, /2]

sin 5 = sin ( 5 - 2 )

sin-1(sin 5) = sin-1 ( sin ( 5 - 2 ))

= 5 - 2

Solution :

Other important properties

1 1 1 x ytan x tan y tan

1 xy

If x > 0 , y > 0 and xy < 1

1 1 1 x ytan x tan y tan

1 xy

If x > 0 , y > 0 and xy > 1

1 1 1 x ytan x tan y tan

1 xy

If x<0,y<0 and xy < 1

sin-1 x+ cos-1 x = /2 ;

if x is in [-1,1]

Class Exercise - 5

Find the value of

1 11 1tan tan

2 3

Solution :

1 11 1Let tan and tan

2 3

1 1

tan and tan and , ,2 3 2 2

1 12 3Now tan1 1

1 .2 3

tan 1

Class Exercise - 5

Find the value of

1 11 1tan tan

2 3

tan 1 Solution :

4

5why

4

Class Exercise - 9

In triangle ABC if A = tan-12 and B = tan-1 3 , prove that C = 450

Solution : For triangle ABC , A+B+C =

tan A B tan C

tanA tanBtanC

1 tanA.tanB

tanA 2; tanB 3

3 2tanC

1 3.2

1 tanC tanC 1

Inverse Trigonometric function – Conversion

To convert one inverse function to other inverse function :

1. Assume given inverse function as some angle ( say )

2. Draw a right angled triangle satisfying the angle. Find the third un known side

3. Find the trigonometric function from the triangle in step 2. Take its inverse and we will get = desired inverse function

Conversion - Illustrative Problem

The value of cot-1 3 + cosec-1 5 is

(a) /3 (b) /2 ( c) /4 (d) none

Step 1

Assume given inverse function as some angle ( say )

Let cot-1 3 + cosec-1 5 = x + y,

Where x = cot-13 ; cot x = 3 and

y = cosec-1 5 ; cosec y = 5

Conversion - Illustrative Problem

The value of cot-1 3 + cosec-1 5 is

(a) /3 (b) /2 ( c) /4 (d) none

Step 2

Draw a right angled triangle satisfying the angle. Find the third unknown side

x1

3

10

y 5 1

2

cot x = 3 , tan x = 1/3

cosec y = 5 , tan y = 1/2

Conversion - Illustrative Problem

The value of cot-1 3 + cosec-1 5 is

(a) /3 (b) /2 ( c) /4 (d) none

Step 3

Find the trigonometric function from the triangle in step 2. Take its inverse and we will get = desired inverse function

ytanxtan1ytanxtan)yxtan(

21.

31121

31

)yxtan(

tan ( x+ y) = 1

x + y = /4

tan x = 1/3 ,tan y = 1/2

Conversion - Illustrative Problem

Prove that

sin cot-1 tan cos-1 x = x

Step 1

Assume given inverse function as some angle ( say )

Let y = sin cot-1 tan cos-1 x

And cos-1 x = , cos = x

Hence , y = sin cot-1 tan

Solution :

Conversion - Illustrative Problem

Prove that sin cot-1 tan cos-1 x = x

Step 2

Draw a right angled triangle satisfying the angle. Find the third unknown side

1

x

2x1 cos = x, tan =xx1 2

Hence , y = sin cot-1

xx1 2

y = sin cot-1 tan

Conversion - Illustrative Problem

Prove that sin cot-1 tan cos-1 x = x

Step 2

Draw a right angled triangle satisfying the angle. Find the third unknown side

1 x

2x1 and y = sin

From the adjoining triangle , sin = x

Let cot-1 = , cot =xx1 2

xx1 2

Hence y = x = R.H.S.

y = sin cot-1

xx1 2

Class Exercise - 3

Find the value of

1 1tan 2tan

3

Solution : 1 1Let 2 tan

3

1

tan2 3

2

12.2 tan 32As tan , tan

11 tan 1

2 9

3tan

4

Class Exercise - 4

Find the value of

11 5tan cos

2 3

Solution : 11 5 5

cos cos22 3 3

2

511 cos2 3tan

1 cos2 51

3

2 3 5tan

3 5

223 5

tan4

3 5tan

2

Class Exercise - 6

Prove that

1 1 1 2tan x cot x 1 tan x x 1

Class Exercise - 6

Prove that

1 1 1 2tan x cot x 1 tan x x 1

Solution :

1 1Let tan x and cot x 1

1tan x and cot x 1 tan

x 1

And L.H.S. of the given identity is +

1

x tan tanx 1tan as tan1 1 tan .tan1 x.

x 1

Class Exercise - 6

Prove that

1 1 1 2tan x cot x 1 tan x x 1

Solution : given identity is +

1

xx 1and tan

11 x.

x 1

2x x 1

tanx 1 1

2tan x x 1

1 2tan x x 1

Class Exercise - 7

Solve the equation

1 15 12sin sin

x x 2

Solution : 1 15 12

Let sin and sinx x

5 12sin and sin

x x

given equation is2

cos 0 cos .cos sin .sin

Class Exercise - 7

Solve the equation 1 15 12

sin sinx x 2

Solution :

cos 0 cos .cos sin .sin

2

2

5 25 xAs sin cos

x x

12 144 xand sin cos

x x

2 225 x 144 x 5 12. .

x x x x

Class Exercise - 7

Solve the equation 1 15 12

sin sinx x 2

Solution : 2 225 x 144 x 5 12

. .x x x x

2 225 x . 144 x 60 22 225 x . 144 x 60

4 2x 169x 0 x 0, 13 , x 0

Now If x 13 , , 0, hence x 13

Class Exercise - 8

If sin-1 x + sin-1 (1- x) = cos-1x,

the value of x could be

(a) 1, 0 (b) 1,1/2 (c) 0,1/2 (d) 1, -1/2

Class Exercise - 8If sin-1 x + sin-1 (1- x) = cos-1x,

the value of x could be

(a) 1, 0 (b) 1,1/2 (c) 0,1/2 (d) 1, -1/2

Solution :

1 1Let sin x and sin 1 x

sin x and sin 1 x

and given equation is + = cos-1x cos (+) = x

2

2 2

As sin x cos 1 x

and sin 1 x cos 1 1 x 2x x

Class Exercise - 8If sin-1 x + sin-1 (1- x) = cos-1x,

the value of x could be

(a) 1, 0 (b) 1,1/2 (c) 0,1/2 (d) 1, -1/2

Solution : cos (+) = x

2 2sin x , cos 1 x , sin 1 x , cos 2x x

2 21 x . 2x x x. 1 x x

2 2 21 x . 2x x 2x x

22 2 21 x . 2x x 2x x

2 2 22x x 1 x 2x x 0

Class Exercise - 8If sin-1 x + sin-1 (1- x) = cos-1x,

the value of x could be

(a) 1, 0 (b) 1,1/2 (c) 0,1/2 (d) 1, -1/2

Solution : 2 2 22x x 1 x 2x x 0

x. 2 x 1 2x 0

1x 0, ,2

2

x 2 as x sin 1

x 0,2

Class Exercise - 10

If cos-1 x + cos-1 y + cos-1z = ,

Then prove that x2+y2+z2 = 1 - 2xyz

1 1 1Let cos x A , cos y B and cos z C

Solution :

cos A x, cosB y and cosC z and given : A+B+C =

Now, L.H.S. = cos2A + cos2B +cos2C

= cos2A + 1- sin2B +cos2C

= 1+(cos2A - sin2B) +cos2C

Class Exercise - 10

If cos-1 x + cos-1 y + cos-1z = ,

Then prove that x2+y2+z2 = 1 - 2xyz

Solution : Given : A+B+C =

L.H.S. = 1+(cos2A - sin2B) +cos2C

= 1+ cos(A+B).cos(A–B) +cos2C

= 1+ cos( – C).cos(A–B) +cos2C

= 1+ cosC [– cos(A–B) +cosC ]

= 1+ cosC [– cos(A–B) – cos(A+B)]

Class Exercise - 10

If cos-1 x + cos-1 y + cos-1z = ,

Then prove that x2+y2+z2 = 1 - 2xyz

Solution : Given : A+B+C =

L.H.S. = 1+ cosC [– cos(A–B) – cos(A+B)]

= 1– cosC [ cos(A–B) + cos(A+B)]

= 1– cosC [2cos A. cos B]

= 1– 2xyz = R.H.S.

Thank you