MATHEMATICS - Institute of Education

25
CALCULUS NOTES Β© H Dorgan IOE Maths HL 1 Name: MATHEMATICS Hilary Dorgan Leaving Certificate Higher Level 2020 - 2021 C A L C U L U S N O T E S

Transcript of MATHEMATICS - Institute of Education

Page 1: MATHEMATICS - Institute of Education

CALCULUS NOTES

Β© H Dorgan IOE Maths HL 1

Name:

MATHEMATICS

Hilary Dorgan Leaving Certificate

Higher Level

2020 - 2021

C A L C U L U S

N O T E S

Page 2: MATHEMATICS - Institute of Education

CALCULUS NOTES

Β© H Dorgan IOE Maths HL 2

CONTENTS

Syllabus Page 3

Limits Page 4

Trigonometrical Limits Page 5

Differentiation from First Principles Page 5

Rules of Differentiation (Product, Quotient, Chain) Page 6

Practising the Rules of Differentiation Page 7

Differentiating Trig, Exponential & Log Functions Page 8

Differentiating Inverse Sine & Inverse Tan Functions Page 9

Second Derivatives Page 10

Applications of Calculus Page 11

Slope of a Tangent to a Curve Page 12

Finding Maxima, Minima and Points of Inflection Page 13

Curve Sketching Page 14

Displacement, Velocity, Acceleration Page 14

Rates of Change Page 16

Maxima & Minima Page 17

Sketching Derivative Curves Page 21

Implicit Differentiation Page 22

Points to Remember Page 23

Page 3: MATHEMATICS - Institute of Education

CALCULUS NOTES

Β© H Dorgan IOE Maths HL 3

Differential Calculus Paper 1 SYLLABUS

Functions and Calculus

Page 4: MATHEMATICS - Institute of Education

CALCULUS NOTES

Β© H Dorgan IOE Maths HL 4

Limits

Example 1: What is π’π’Šπ’Žπ’™β†’πŸ“

(πŸπ’™ + πŸ‘)?

This is equivalent to asking, β€œwhat happens the value of 2π‘₯ + 3 as the value of π‘₯ gets closer and

closer to 5”?

Solution 1: Substitute β€œ5” for π‘₯, giving an answer 2(5) + 3 = 13.

Example 2: What is π’π’Šπ’Žπ’™β†’πŸ•

π’™βˆ’πŸ•

π’™πŸβˆ’πŸ’πŸ—?

Solution 2: Substituting β€œ7” for π‘₯, gives an indeterminate answer, 0

0. (There is no answer to this.)

But we can factorise, giving us: π’π’Šπ’Žπ’™β†’πŸ•

π’™βˆ’πŸ•

(π’™βˆ’πŸ•)(𝒙+πŸ•) = π’π’Šπ’Ž

π’™β†’πŸ•

𝟏

(𝒙+πŸ•) =

𝟏

πŸπŸ’

The laws of Limits: [Looks complicated, but all fairly obvious anyway, don’t learn off or anything , just understand]

π’π’Šπ’Žπ’™β†’π’‚

[𝒇(𝒙) Β± π’ˆ(𝒙)] = π’π’Šπ’Žπ’™β†’π’‚

𝒇(𝒙) Β± π’π’Šπ’Žπ’™β†’π’‚

π’ˆ(𝒙)

π’π’Šπ’Žπ’™β†’π’‚

[𝒇(𝒙). π’ˆ(𝒙)] = π’π’Šπ’Žπ’™β†’π’‚

𝒇(𝒙) . π’π’Šπ’Žπ’™β†’π’‚

π’ˆ(𝒙)

π’π’Šπ’Žπ’™β†’π’‚

[𝒇(𝒙)

π’ˆ(𝒙)] =

π’π’Šπ’Žπ’™β†’π’‚

𝒇(𝒙)

π’π’Šπ’Žπ’™β†’π’‚

π’ˆ(𝒙)

Example 3: What is π’π’Šπ’Žπ’™β†’πŸπŸ“

π’™πŸ βˆ’ πŸ”πŸπŸ“

βˆšπ’™βˆ’πŸ“?

Solution 3: (Substituting β€œ25” for π‘₯, gives an indeterminate answer, 0

0. We need another method!)

π’π’Šπ’Žπ’™β†’πŸπŸ“

π’™πŸβˆ’ πŸ”πŸπŸ“

βˆšπ’™βˆ’πŸ“ = π’π’Šπ’Ž

π’™β†’πŸπŸ“

(π’™βˆ’πŸπŸ“)(𝒙+πŸπŸ“) (βˆšπ’™+πŸ“)

(βˆšπ’™βˆ’πŸ“) (βˆšπ’™+πŸ“) [Multiplying above and below by conjugate of below]

= π’π’Šπ’Žπ’™β†’πŸπŸ“

(π’™βˆ’πŸπŸ“)(𝒙+πŸπŸ“) (βˆšπ’™+πŸ“)

π’™βˆ’πŸπŸ“ [Denominator is equal to the difference of two squares]

= π’π’Šπ’Žπ’™β†’πŸπŸ“

(𝒙+πŸπŸ“) (βˆšπ’™+πŸ“)

𝟏 =

(πŸπŸ“+πŸπŸ“) (βˆšπŸπŸ“+πŸ“)

𝟏 = (πŸ“πŸŽ)(𝟏𝟎) = πŸ“πŸŽπŸŽ.

It is interesting to check limit results by substituting a value very close to the given value, e.g. 24.9 or 24.99 in

this case.

Using 24.9: πŸπŸ’.πŸ—πŸβˆ’ πŸ”πŸπŸ“

βˆšπŸπŸ’.πŸ—βˆ’πŸ“ =

βˆ’πŸ’.πŸ—πŸ—

βˆ’πŸŽ.𝟎𝟏𝟎𝟎𝟏 = πŸ’πŸ—πŸ”. πŸ“. Using 24.99:

πŸπŸ’.πŸ—πŸ—πŸβˆ’ πŸ”πŸπŸ“

βˆšπŸπŸ’.πŸ—πŸ—βˆ’πŸ“ =

βˆ’πŸŽ.πŸ’πŸ—πŸ—πŸ—

βˆ’πŸŽ.𝟎𝟎𝟏𝟎𝟎𝟎𝟏 = πŸ’πŸ—πŸ—. πŸ–πŸ“

Example 4: What is π’π’Šπ’Žπ’™β†’πŸ

π’™πŸ

(πŸ–βˆ’πŸπŸπ’™)βˆ’ (πŸβˆ’π’™)πŸ‘ ?

Solution 4: π’π’Šπ’Žπ’™β†’πŸ

π’™πŸ

(πŸ–βˆ’πŸπŸπ’™)βˆ’ (πŸβˆ’π’™)πŸ‘ = π’π’Šπ’Žπ’™β†’πŸ

π’™πŸ

(πŸ–βˆ’πŸπŸπ’™)βˆ’(πŸ–βˆ’πŸπŸπ’™+πŸ”π’™πŸβˆ’π’™πŸ‘) = π’π’Šπ’Ž

π’™β†’πŸ

π’™πŸ

π’™πŸ‘βˆ’πŸ”π’™πŸ = π’π’Šπ’Žπ’™β†’πŸ

𝟏

π’™βˆ’πŸ” =

βˆ’πŸ

πŸ“

[Note: Substituting 0.99 for x, 𝟎.πŸ—πŸ—πŸ

(πŸ–βˆ’πŸπŸ(𝟎.πŸ—πŸ—))βˆ’ (πŸβˆ’πŸŽ.πŸ—πŸ—)πŸ‘ = 𝟎.πŸ—πŸ–πŸŽπŸ

βˆ’πŸ’.πŸ—πŸπŸŽ = βˆ’πŸŽ. πŸπŸ—πŸ—πŸ” β‰ˆ βˆ’πŸŽ. 𝟐]

Page 5: MATHEMATICS - Institute of Education

CALCULUS NOTES

Β© H Dorgan IOE Maths HL 5

Trigonometric Limits

𝜽 (in degrees) 𝜽 (in radians) Sin 𝜽 π‘Ίπ’Šπ’ 𝜽

𝜽

10o

0.1745329252

0.1736481777 0.9949307662

1o

0.01745329252

0.01745240644

0.9999492312

0.1o

0.001745329252 0.001745328366

0.9999994923

0.01o

0.0001745329252 0.0001745329243 0.9999999949

0.001o

0.00001745329252 0.00001745329252 0.9999999999

This table shows that as the angle πœƒ (in radians) gets smaller and smaller and closer and closer to 0, then the ratio

of the Sine of the angle to the angle gets closer and closer to 1.

(This topic is also dealt with in Trigonometry notes (see page 19, Trigonometry Notes.)

Mathematically, we write this important result as: 0

sinlim 1

β†’= .

Differentiation from First Principles

Example 5: Find dy

dxfrom first principles if 𝑦 = 2π‘₯2 + 5π‘₯.

Solution 5: 𝑓(π‘₯) = 2π‘₯2 + 5π‘₯

𝑓(π‘₯ + β„Ž) = 2(π‘₯ + β„Ž)2 + 5 ( π‘₯ + β„Ž)

= 2π‘₯2 + 4β„Žπ‘₯ + 2β„Ž2 + 5π‘₯ + 5β„Ž

β‡’ 𝑓(π‘₯ + β„Ž) – 𝑓(π‘₯) = (2π‘₯2 + 4β„Žπ‘₯ + 2β„Ž2 + 5π‘₯ + 5β„Ž) βˆ’ (2π‘₯2 + 5 π‘₯)

= 4β„Žπ‘₯ + 2β„Ž2 + 5β„Ž

⇒𝑓(π‘₯ + β„Ž) – 𝑓(π‘₯)

β„Ž = 4π‘₯ + 2β„Ž + 5 [Dividing both sides of equation by β„Ž]

But dy

dx =

0limh→

𝑓(π‘₯ + β„Ž) – 𝑓(π‘₯)

β„Ž =

0limh→

(4π‘₯ + 2β„Ž + 5) = 4π‘₯ + 5

Page 6: MATHEMATICS - Institute of Education

CALCULUS NOTES

Β© H Dorgan IOE Maths HL 6

The Rules of Differentiation

Example 6: Prove by induction that if 𝑓(π‘₯) = π‘₯𝑛, then 𝑑𝑓

𝑑π‘₯ = 𝑛 π‘₯π‘›βˆ’1 for 𝑛 ∈ 𝑁.

Solution 6: (i) If 𝑛 = 1: If 𝑓(π‘₯) = π‘₯1, is 𝑑𝑓

𝑑π‘₯ = 1 π‘₯1βˆ’1 = π‘₯0 = 1? (i.e. Is the differential of π‘₯ = 1?)

We know that the differential of π‘₯ is 1 and therefore the proposition is true for 𝑛 = 1.

[But, this would have to be proved separately using first principles. Why?]

(ii) We now assume that the proposition is true for 𝑛 = π‘˜.

If 𝑛 = π‘˜: If 𝑓(π‘₯) = π‘₯π‘˜, then 𝑑𝑓

𝑑π‘₯ = π‘˜π‘₯π‘˜βˆ’1.

We must now prove that the proposition is true for 𝑛 = π‘˜ + 1.

If 𝑛 = π‘˜ + 1: To prove: If 𝑓(π‘₯) = π‘₯π‘˜+1, then 𝑑𝑓

𝑑π‘₯ = (π‘˜ + 1) π‘₯π‘˜.

𝑓(π‘₯) = π‘₯π‘˜+1 = (π‘₯)(π‘₯)π‘˜

Using product rule: LHS = 𝑑𝑓

𝑑π‘₯ = (π‘₯)(π‘˜π‘₯π‘˜βˆ’1) + (π‘₯)π‘˜ 1 [Using proposition k, already assumed]

= π‘˜π‘₯π‘˜ + π‘₯π‘˜ = π‘₯π‘˜ (π‘˜ + 1) = (π‘˜ + 1)π‘₯π‘˜ = RHS

(iii) But, proposition 1 is true and therefore, by induction, the proposition is true for all 𝑛 ∈ 𝑁.

The general rule for differentiation in example 6 above ( if 𝑓(π‘₯) = π‘₯𝑛, then 𝑑𝑓

𝑑π‘₯ = 𝑛 π‘₯π‘›βˆ’1 ), is in fact true for

𝑛 ∈ 𝑅 (but we only need to be able to prove it for 𝑛 ∈ 𝑁).

It is a really important rule and we use it very often to differentiate functions by rule, rather than by first

principles, which is far too tedious, unless specifically asked for.

For instance, if 𝑓(π‘₯) = 7 then it can also be said that 𝑓(π‘₯) = 7π‘₯0 β‡’ 𝑑𝑓

𝑑π‘₯ 𝑂𝑅 𝑓′(π‘₯) = 0 (7)(π‘₯)βˆ’1 = 0

Thus, the 𝑑

𝑑π‘₯ (π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘) = 0 π΄πΏπ‘Šπ΄π‘Œπ‘†.

If 𝑓(π‘₯) = 𝑒(π‘₯) + 𝑣(π‘₯), then df du dv

dx dx dx= + [The differential of a sum is the sum of the differentials of each]

If 𝑓(π‘₯) = 𝑒(π‘₯)𝑣(π‘₯), then df dv du

u vdx dx dx

= + [The differential of a Product]

Differential of a Product = πΉπ‘–π‘Ÿπ‘ π‘‘ Γ— π·π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘‘π‘–π‘Žπ‘™ π‘œπ‘“ π‘†π‘’π‘π‘œπ‘›π‘‘ + π‘†π‘’π‘π‘œπ‘›π‘‘ Γ— π·π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘‘π‘–π‘Žπ‘™ π‘œπ‘“ πΉπ‘–π‘Ÿπ‘ π‘‘

If 𝑓(π‘₯) = 𝑒(π‘₯)

𝑣(π‘₯), then

2

du dvv u

df dx dx

dx v

βˆ’

= [The differential of a Quotient]

Differential of a Quotient = (π΅π‘œπ‘‘π‘‘π‘œπ‘š) (π·π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘‘π‘–π‘Žπ‘™ π‘œπ‘“ π‘‡π‘œπ‘) βˆ’ (π‘‡π‘œπ‘) (π·π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘‘π‘–π‘Žπ‘™ π‘œπ‘“ π΅π‘œπ‘‘π‘‘π‘œπ‘š)

(π΅π‘œπ‘‘π‘‘π‘œπ‘š)2

The CHAIN rule of differentiation (next page): If 𝑦 = [𝑓(π‘₯)]𝑛 β‡’ 𝑑𝑦

𝑑π‘₯ = 𝑛 [𝑓(π‘₯)]π‘›βˆ’1 [𝑓′(π‘₯)] [Chain Rule]

Page 7: MATHEMATICS - Institute of Education

CALCULUS NOTES

Β© H Dorgan IOE Maths HL 7

PRACTISING the Rules of Differentiation

Example 7: If 𝑦 = π‘₯2(7π‘₯3 βˆ’ 2π‘₯ + 3), find 𝑑𝑦

𝑑π‘₯ . [The Product Rule]

Solution 7:

π’…π’š

𝒅𝒙 = (First) Γ— (Differential of Second) + (Second) Γ— (Differential of First)

= (π‘₯2) (21π‘₯2 βˆ’ 2) + (7π‘₯3 βˆ’ 2π‘₯ + 3)(2π‘₯)

= 21π‘₯4 βˆ’ 2π‘₯2 + 14π‘₯4 βˆ’ 4π‘₯2 + 6π‘₯

= 35π‘₯4 βˆ’ 6π‘₯2 + 6π‘₯

Alternative: 𝑦 = π‘₯2(7π‘₯3 βˆ’ 2π‘₯ + 3) β‡’ 𝑦 = 7π‘₯5 βˆ’ 2π‘₯3 + 3π‘₯2

β‡’ 𝑑𝑦

𝑑π‘₯ = 35π‘₯4 βˆ’ 6π‘₯2 + 6π‘₯

Example 8: If 𝑦 = 5π‘₯2 βˆ’ 7π‘₯

2π‘₯ + 11 , find

𝑑𝑦

𝑑π‘₯ . [The Quotient Rule]

Solution 8:

π’…π’š

𝒅𝒙 =

(π΅π‘œπ‘‘π‘‘π‘œπ‘š) (π·π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘‘π‘–π‘Žπ‘™ π‘œπ‘“ π‘‡π‘œπ‘) βˆ’ (π‘‡π‘œπ‘) (π·π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘‘π‘–π‘Žπ‘™ π‘œπ‘“ π΅π‘œπ‘‘π‘‘π‘œπ‘š)

(π΅π‘œπ‘‘π‘‘π‘œπ‘š)2

= (2π‘₯ + 11) (10π‘₯ βˆ’ 7) βˆ’ (5π‘₯2 βˆ’ 7π‘₯) (2)

(2π‘₯ + 11)2 = 20π‘₯2 βˆ’ 14π‘₯ + 110π‘₯ βˆ’ 77 βˆ’ 10π‘₯2 + 14π‘₯

(2π‘₯ + 11)2

= 10π‘₯2 + 110π‘₯ βˆ’ 77

(2π‘₯ + 11)2

The CHAIN rule of differentiation: If 𝑦 = [𝑓(π‘₯)]𝑛 β‡’ 𝑑𝑦

𝑑π‘₯ = 𝑛 [𝑓(π‘₯)]π‘›βˆ’1 [𝑓′(π‘₯)]

Example 9: Differentiate (i) √7π‘₯ βˆ’ 11 , (ii) √π‘₯2βˆ’1

2π‘₯+1

3

Solution 9: (i) 𝑓(π‘₯) = √7π‘₯ βˆ’ 11 = (7π‘₯ βˆ’ 11)1

2 [Always re-write question in calculus friendly form]

β‡’ 𝑓′ (π‘₯) = 1

2 (7π‘₯ βˆ’ 11)

βˆ’1

2 (7) [β€œ7” is the differential of what is in the brackets]

= 7

2 √7π‘₯βˆ’11

(ii) 𝑓(π‘₯) = √π‘₯2βˆ’ 1

6π‘₯ + 1

3 = (

π‘₯2βˆ’ 1

6π‘₯ + 1 )

1

3 [Always re-write question in calculus friendly form]

β‡’ 𝑓′ (π‘₯) = 1

3 (

π‘₯2βˆ’1

6π‘₯+1)

βˆ’2

3 Γ— (differential of what is in the brackets)

= 1

3 (

π‘₯2βˆ’ 1

6π‘₯+ 1)

βˆ’2

3 [

(6π‘₯+1) (2π‘₯)βˆ’(π‘₯2βˆ’1)(6)

(6π‘₯+1)2 ]

= 1

3 (

π‘₯2βˆ’ 1

6π‘₯+ 1)

βˆ’2

3 [

12π‘₯2 + 2π‘₯ βˆ’ 6π‘₯2+ 6

(6π‘₯+1)2 ]

= 1

3 (

π‘₯2βˆ’ 1

6π‘₯ + 1)

βˆ’2

3 [

6π‘₯2+2π‘₯+6

(6π‘₯ + 1)2 ] = 2

3 (

π‘₯2βˆ’ 1

6π‘₯ + 1)

βˆ’2

3 [

3π‘₯2 + π‘₯ + 3

(6π‘₯ + 1)2 ]

Page 8: MATHEMATICS - Institute of Education

CALCULUS NOTES

Β© H Dorgan IOE Maths HL 8

Differentiating trigonometric functions

Example 10: If 𝑦 = 𝑠𝑖𝑛 (π‘₯3 βˆ’ 5π‘₯2 + 3), find 𝑑𝑦

𝑑π‘₯.

Solution 10: 𝑑𝑦

𝑑π‘₯= π‘π‘œπ‘  (π‘₯3 βˆ’ 5π‘₯2 + 3) (3π‘₯2 βˆ’ 10π‘₯) = (3π‘₯2 βˆ’ 10π‘₯) π‘π‘œπ‘  (π‘₯3 βˆ’ 5π‘₯2 + 3).

Example 11: If 𝑦 = 1βˆ’π‘π‘œπ‘  2π‘₯

7+ 𝑠𝑖𝑛 3π‘₯, find

𝑑𝑦

𝑑π‘₯ at π‘₯ = 0.

Solution 11: 𝑑𝑦

𝑑π‘₯=

(7+ 𝑠𝑖𝑛 3π‘₯)(2 𝑠𝑖𝑛 2π‘₯) βˆ’ (1 βˆ’ π‘π‘œπ‘  2π‘₯) (3 π‘π‘œπ‘  3π‘₯)

(7 + 𝑠𝑖𝑛 3π‘₯)2

𝑑𝑦

𝑑π‘₯ at π‘₯ = 0:

(7 + 0)(0) βˆ’ (0)(3)

49 = 0

Example 12: If 𝑓(π‘₯) = π‘‘π‘Žπ‘›5π‘₯

3π‘₯βˆ’1 find 𝑓′(π‘₯) at π‘₯ = 1.

Solution 12: 𝑓′(π‘₯) = 𝑠𝑒𝑐2 (5π‘₯

3π‘₯βˆ’1 ) Γ—

(3π‘₯ βˆ’ 1) (5) βˆ’ (5π‘₯) (3)

(3π‘₯ βˆ’ 1)2

β‡’ 𝑓′(1) = 𝑠𝑒𝑐2 (5

3 βˆ’ 1 ) Γ—

(3βˆ’1) (5) βˆ’ (5) (3)

(3 βˆ’ 1)2 = 𝑠𝑒𝑐2 (5

2 ) Γ—

10 βˆ’ 15

4 =

βˆ’5

4 𝑠𝑒𝑐2 (

5

2) β‰ˆ βˆ’0.80

Differentiating exponential functions

Example 13: If 𝑓(π‘₯) = 17π‘’βˆ’2π‘₯2 find 𝑓′(π‘₯).

Solution 13: 𝑓′(π‘₯) = (17 π‘’βˆ’2π‘₯2 ) Γ— (βˆ’4π‘₯) = βˆ’68π‘₯π‘’βˆ’2π‘₯2 .

Example 14: If 𝑦 = π‘₯5 π‘’βˆ’3π‘₯ find 𝑑𝑦

𝑑π‘₯ at π‘₯ = 2.

Solution 14: 𝑑𝑦

𝑑π‘₯= (π‘₯5) (π‘’βˆ’3π‘₯) (βˆ’3) + (π‘’βˆ’3π‘₯) (5π‘₯4) = π‘’βˆ’3π‘₯(βˆ’3π‘₯5 + 5π‘₯4)

𝑑𝑦

𝑑π‘₯ at π‘₯ = 2: π‘’βˆ’6(βˆ’3(2)5 + 5(2)4) = π‘’βˆ’6(βˆ’96 + 80) = βˆ’16

𝑒6⁄

Example 15: Differentiate 𝑒2π‘₯

3π‘₯2⁄ with respect to π‘₯.

Solution 15: 𝑓′(π‘₯) = (3π‘₯2) (2 𝑒2π‘₯)βˆ’ (𝑒2π‘₯)(6π‘₯)

(3π‘₯2)2 = (6π‘₯2βˆ’ 6π‘₯)(𝑒2π‘₯)

9π‘₯4

Differentiating logarithmic functions

Example 16: If 𝑦 = π‘™π‘œπ‘”π‘’(2 𝑠𝑖𝑛 3π‘₯), find 𝑑𝑦

𝑑π‘₯ at π‘₯ =

πœ‹

12.

Solution 16: 𝑑𝑦

𝑑π‘₯=

𝑓′(π‘₯)

𝑓(π‘₯) =

2 (3) π‘π‘œπ‘  3π‘₯

2 𝑠𝑖𝑛 3π‘₯ =

3

π‘‘π‘Žπ‘› 3π‘₯

𝑑𝑦

𝑑π‘₯ at π‘₯ =

πœ‹

12:

3

π‘‘π‘Žπ‘› πœ‹

4

= 3

1 = 3

Example 17: If 𝑓(π‘₯) = [𝑙𝑛 (13π‘₯ βˆ’ 5)]3 , find (i) 𝑓′(π‘₯) and (ii) 𝑓′(2) correct to two places of decimal.

Solution 17: (i) 𝑓′(π‘₯) = 3 [𝑙𝑛 (13π‘₯ βˆ’ 5)]2 (13

(13π‘₯βˆ’5)) =

39 [𝑙𝑛 (13π‘₯βˆ’5)]2

13π‘₯βˆ’5

(ii) 𝑓′(2) = 39 [𝑙𝑛 (26βˆ’5)]2

26βˆ’5 =

39 [𝑙𝑛 (21)]2

21 =

13 (3.044522)2

21 =

13 (9.26912)

21 β‰ˆ 5.74

Page 9: MATHEMATICS - Institute of Education

CALCULUS NOTES

Β© H Dorgan IOE Maths HL 9

Example 18: Differentiate π‘™π‘œπ‘”π‘’ √2π‘₯2

π‘₯2+1

Solution 18: 𝑦 = π‘™π‘œπ‘”π‘’ √2π‘₯2

π‘₯2+1 β‡’ 𝑦 =

1

2 π‘™π‘œπ‘”π‘’

2π‘₯2

π‘₯2+1 =

1

2 [π‘™π‘œπ‘”π‘’(2π‘₯2) βˆ’ π‘™π‘œπ‘”π‘’(π‘₯2 + 1)]

[Using rules of logs]

𝑑𝑦

𝑑π‘₯ =

1

2 [

4π‘₯

2π‘₯2 βˆ’ 2π‘₯

π‘₯2+1 ] =

1

2 [

2

π‘₯ βˆ’

2π‘₯

π‘₯2+1 ] =

1

π‘₯ βˆ’

π‘₯

π‘₯2+1

= [ (1)(π‘₯2+1) βˆ’ (π‘₯)(π‘₯)

(π‘₯) (π‘₯2+1) ]

= (π‘₯2+ 1) βˆ’ (π‘₯2)

(π‘₯) (π‘₯2+1)

= 1

(π‘₯) (π‘₯2+1)

Differentiating inverse trigonometric functions like π’”π’Šπ’βˆ’πŸ 𝒙 and π’•π’‚π’βˆ’πŸ 𝒙

Page 25 of the Mathematical Tables tell us that if 𝑓(π‘₯) = π‘ π‘–π‘›βˆ’1 π‘₯

π‘Ž then 𝑓′(π‘₯) =

1

βˆšπ‘Ž2βˆ’ π‘₯2 , where π‘Ž is a constant.

It also tells us that if 𝑓(π‘₯) = π‘‘π‘Žπ‘›βˆ’1 π‘₯

π‘Ž then 𝑓′(π‘₯) =

1

π‘Ž2 + π‘₯2 , where π‘Ž is a constant.

𝑑

𝑑π‘₯ (π‘ π‘–π‘›βˆ’1

π‘₯

π‘Ž) =

1

βˆšπ‘Ž2βˆ’ π‘₯2

𝑑

𝑑π‘₯ (π‘‘π‘Žπ‘›βˆ’1

π‘₯

π‘Ž) =

π‘Ž

π‘Ž2 + π‘₯2

If 𝑦 = π‘ π‘–π‘›βˆ’1 𝑓(π‘₯), 𝑑𝑦

𝑑π‘₯=

1

√1βˆ’[𝑓(π‘₯)]2 Γ— 𝑓′(π‘₯) AND If 𝑦 = π‘‘π‘Žπ‘›βˆ’1 𝑓(π‘₯),

𝑑𝑦

𝑑π‘₯=

1

1 + [𝑓(π‘₯)]2 Γ— 𝑓′(π‘₯)

Example 19: If (π‘₯) = π‘‘π‘Žπ‘›βˆ’1 π‘₯

3 , find 𝑓′(π‘₯).

Solution 19: Method 1: 𝑓′(π‘₯) = 3

32 + π‘₯2 = 3

9 + π‘₯2 [Because π‘₯ has been replaced by β€œ3”]

Method 2: 𝑓′(π‘₯) = 1

1 +( π‘₯

3)2

Γ— 1

3 =

9

9 + π‘₯2 Γ— 1

3=

3

9 + π‘₯2

Example 20: If (π‘₯) = (π‘ π‘–π‘›βˆ’1 3π‘₯)5 , find 𝑓′(π‘₯).

Solution 20: 𝑓′(π‘₯) = 5(π‘ π‘–π‘›βˆ’1 3π‘₯)4 Γ— 1

√1βˆ’ (3π‘₯)2 Γ— 3 =

15(π‘ π‘–π‘›βˆ’1 3π‘₯)4

√1βˆ’ (3π‘₯)2

Example 21: If (π‘₯) = π‘‘π‘Žπ‘›βˆ’1 ( 3π‘₯

2π‘₯βˆ’7 ) , show that 𝑓′(0) =

βˆ’ 3

7 .

Solution 21: 𝑓′(π‘₯) = 1

1+(3π‘₯

2π‘₯βˆ’7)2

Γ— (2π‘₯βˆ’7)(3)βˆ’(3π‘₯)(2)

(2π‘₯βˆ’7)2 = (2π‘₯βˆ’7)2

(2π‘₯βˆ’7)2+(3π‘₯)2 Γ— 6π‘₯βˆ’21βˆ’6π‘₯

(2π‘₯βˆ’7)2

= βˆ’21

(2π‘₯βˆ’7)2+(3π‘₯)2 = βˆ’21

4π‘₯2βˆ’28π‘₯+49+9π‘₯2

= βˆ’21

13π‘₯2βˆ’28π‘₯+49

β‡’ 𝑓′(0) = βˆ’21

49 =

βˆ’ 3

7

Page 10: MATHEMATICS - Institute of Education

CALCULUS NOTES

Β© H Dorgan IOE Maths HL 10

Second Derivatives

If 𝑦 = 𝑓(π‘₯), then 𝑑2𝑦

𝑑π‘₯2 = 𝑑

𝑑π‘₯ (

𝑑𝑦

𝑑π‘₯ ) = 𝑓′′ (π‘₯).

Example 22: If 𝑦 = 𝑒4π‘₯, show that 𝑑2𝑦

𝑑π‘₯2 βˆ’ 8 𝑑𝑦

𝑑π‘₯ + 16𝑦 = 0.

Solution 22: 𝑑𝑦

𝑑π‘₯ =

𝑑

𝑑π‘₯(𝑒4π‘₯) = 4𝑒4π‘₯

β‡’ 𝑑2𝑦

𝑑π‘₯2 = 𝑑

𝑑π‘₯ (

𝑑𝑦

𝑑π‘₯ ) =

𝑑

𝑑π‘₯(4𝑒4π‘₯ ) = 16𝑒4π‘₯.

∴ 𝐿𝐻𝑆 = 𝑑2𝑦

𝑑π‘₯2 βˆ’ 8 𝑑𝑦

𝑑π‘₯ + 16𝑦

= 16𝑒4π‘₯ βˆ’ (8)(4𝑒4π‘₯) + 16 (𝑒4π‘₯)

= 𝑒4π‘₯(16 βˆ’ 32 + 16)

= (𝑒4π‘₯) 0 = 0 = 𝑅𝐻𝑆

Example 23: Given that 𝑦 = π‘₯𝑒3π‘₯, find the value of (𝑑𝑦

𝑑π‘₯)

2βˆ’ 𝑒3π‘₯

𝑑2𝑦

𝑑π‘₯2 when π‘₯ = 0.

Solution 23: 𝑦 = π‘₯𝑒3π‘₯ β‡’ 𝑑𝑦

𝑑π‘₯ = (π‘₯)(3𝑒3π‘₯) + (𝑒3π‘₯)(1)

= 𝑒3π‘₯(3π‘₯ + 1)

β‡’ 𝑑2𝑦

𝑑π‘₯2 = 𝑑

𝑑π‘₯ [𝑒3π‘₯(3π‘₯ + 1)]

= (𝑒3π‘₯)(3) + (3π‘₯ + 1) (3𝑒3π‘₯)

= (3𝑒3π‘₯) (1 + 3π‘₯ + 1)

= (3𝑒3π‘₯) (3π‘₯ + 2)

∴ (𝑑𝑦

𝑑π‘₯)

2

βˆ’ 𝑒3π‘₯ 𝑑2𝑦

𝑑π‘₯2 = [𝑒3π‘₯(3π‘₯ + 1)]2 βˆ’ (𝑒3π‘₯)(3𝑒3π‘₯)(3π‘₯ + 2)

∴ (𝑑𝑦

𝑑π‘₯)

2βˆ’ 𝑒3π‘₯

𝑑2𝑦

𝑑π‘₯2 at π‘₯ = 0:

= [1(1)]2 βˆ’ (1)(3)(2)

= 1 βˆ’ 6 = βˆ’5

Page 11: MATHEMATICS - Institute of Education

CALCULUS NOTES

Β© H Dorgan IOE Maths HL 11

Finding the slope and equation of a tangent to a curve

A vital application of differentiation is the following:

𝑑𝑦

𝑑π‘₯ is the slope of a tangent to a curve at any point on the curve.

To find the equation of a tangent to a curve at a given point (π‘₯1, 𝑦1) on the curve, take the following steps:

1) Find 𝑑𝑦

𝑑π‘₯

2) Evaluate 𝑑𝑦

𝑑π‘₯ at π‘₯ = π‘₯1 [This gives π‘š, the slope of the tangent to the curve at (π‘₯1, 𝑦1) ]

3) Use equation 𝑦 βˆ’ 𝑦1 = π‘š (π‘₯ βˆ’ π‘₯1) to find the equation of the tangent to the curve at (π‘₯1, 𝑦1)

Example 24: Find the equation of the tangent to the curve 𝑦 = 10 βˆ’ π‘π‘œπ‘  π‘₯ at the point ( πœ‹

2 , 0 )

Solution 24: 𝑦 = 10 βˆ’ π‘π‘œπ‘  π‘₯

β‡’ 𝑑𝑦

𝑑π‘₯ = 0 + 𝑠𝑖𝑛 π‘₯

𝑑𝑦

𝑑π‘₯ @π‘₯ =

πœ‹

2 = 𝑠𝑖𝑛

πœ‹

2 = 1 [This gives π‘š, the slope of the tangent to the curve at (

πœ‹

2 , 0 )]

β‡’ Eqn of tangent: 𝑦 βˆ’ 𝑦1 = π‘š (π‘₯ βˆ’ π‘₯1)

β‡’ Eqn of tangent: 𝑦 βˆ’ 0 = 1 (π‘₯ βˆ’ πœ‹

2 ) β‡’ 𝑦 = π‘₯ βˆ’

πœ‹

2

Example 25: The equation of a curve is 𝑦 = π‘Žπ‘₯3 + 𝑏π‘₯2 + 𝑐π‘₯ + 𝑑, where π‘Ž, 𝑏, 𝑐, 𝑑 ∈ 𝑍.

The curve passes through the points (0, 15) and (2, βˆ’15) and at these points the slopes of the

tangents are both βˆ’13.

(i) Find the values of π‘Ž, 𝑏, 𝑐, and 𝑑

(ii) Show that the graph cuts the π‘₯ βˆ’ π‘Žπ‘₯𝑖𝑠 at the point π‘₯ = 5.

(iii) Find the coordinates of the other two points where the curve cuts the π‘₯ βˆ’ π‘Žπ‘₯𝑖𝑠.

(iv) Hence, sketch the curve.

Solution 25: (i) (0, 15) ∈ 𝑦 = π‘Žπ‘₯3 + 𝑏π‘₯2 + 𝑐π‘₯ + 𝑑 β‡’ 15 = 0 + 0 + 0 + 𝑑 β‡’ 𝒅 = πŸπŸ“

(2, βˆ’15) ∈ 𝑦 = π‘Žπ‘₯3 + 𝑏π‘₯2 + 𝑐π‘₯ + 𝑑 β‡’ βˆ’15 = 8π‘Ž + 4𝑏 + 2𝑐 + 15

β‡’ 8π‘Ž + 4𝑏 + 2𝑐 = βˆ’30

β‡’ 4π‘Ž + 2𝑏 + 𝑐 = βˆ’15 … eqn 1

Page 12: MATHEMATICS - Institute of Education

CALCULUS NOTES

Β© H Dorgan IOE Maths HL 12

𝑑𝑦

𝑑π‘₯ = 3π‘Žπ‘₯2 + 2𝑏π‘₯ + 𝑐

𝑑𝑦

𝑑π‘₯ @π‘₯ = 0: 0 + 0 + 𝑐 = βˆ’13 β‡’ 𝒄 = βˆ’πŸπŸ‘

𝑑𝑦

𝑑π‘₯ @π‘₯ = 2: 3π‘Ž(2)2 + 2𝑏(2) + (βˆ’13) = 12π‘Ž + 4𝑏 + (βˆ’13) = βˆ’13

β‡’ 12π‘Ž + 4𝑏 = 0 β‡’ 3π‘Ž + 𝑏 = 0 … eqn 2

From eqn 1: 4π‘Ž + 2𝑏 βˆ’ 13 = βˆ’15 β‡’ 2π‘Ž + 𝑏 = βˆ’1

Using 3π‘Ž + 𝑏 = 0 and 2π‘Ž + 𝑏 = βˆ’1

β‡’ βˆ’π’‚ = βˆ’πŸ β‡’ 𝒂 = 𝟏 and 𝒃 = βˆ’πŸ‘

(ii) If 𝒙 = πŸ“: 𝑦 = π‘Žπ‘₯3 + 𝑏π‘₯2 + 𝑐π‘₯ + 𝑑 β‡’ 𝑦 = 1π‘₯3 βˆ’ 3π‘₯2 βˆ’ 13π‘₯ + 15

β‡’ If 𝒙 = πŸ“: β‡’ 𝑦 = 1(5)3 βˆ’ 3(5)2 βˆ’ 13(5) + 15 = 125 βˆ’ 75 βˆ’ 65 + 15 = 140 βˆ’ 140 = 0

β‡’ the graph cuts the π‘₯ βˆ’ π‘Žπ‘₯𝑖𝑠 at (5, 0).

(iii) 𝒇(πŸ“) = 𝟎 β‡’ 𝒙 βˆ’ πŸ“ is a factor

(π‘₯3 βˆ’ 3π‘₯2 βˆ’ 13π‘₯ + 15) Γ· (π‘₯ βˆ’ 5) = π‘₯2 + 2π‘₯ βˆ’ 3 = (π‘₯ βˆ’ 1) (π‘₯ + 3)

β‡’ other two points where the curve cuts the π‘₯ βˆ’ π‘Žπ‘₯𝑖𝑠 ∢ (1, 0) and (βˆ’3, 0).

(iv) Sketch

Page 13: MATHEMATICS - Institute of Education

CALCULUS NOTES

Β© H Dorgan IOE Maths HL 13

Finding maxima, minima and points of inflection of a curve

Local Maximum At local maximum: 𝑑𝑦

𝑑π‘₯= 0 and

𝑑2𝑦

𝑑π‘₯2 < 0.

At local minimum: 𝑑𝑦

𝑑π‘₯= 0 and

𝑑2𝑦

𝑑π‘₯2 > 0.

At point of inflection: 𝑑2𝑦

𝑑π‘₯2 = 0.

Point of Inflection Curves are increasing when 𝑑𝑦

𝑑π‘₯> 0.

Curves are decreasing when 𝑑𝑦

𝑑π‘₯< 0.

At turning points, the slope of the tangent to

the curve is parallel to the x-axis, i.e. 𝑑𝑦

𝑑π‘₯= 0.

Local Minimum

Example 26: Find the local maximum, the local minimum and a point of inflection of the curve

𝑦 = βˆ’ π‘₯3 + 6π‘₯2 βˆ’ 9π‘₯ + 3. Use this information to sketch the curve.

Solution 26: If 𝑦 = βˆ’ π‘₯3 + 6π‘₯2 βˆ’ 9π‘₯ + 3

β‡’ 𝑑𝑦

𝑑π‘₯ = βˆ’3π‘₯2 + 12π‘₯ βˆ’ 9 Local Max (3, 3)

To find turning points, we must solve 𝑑𝑦

𝑑π‘₯= 0

∴ βˆ’3π‘₯2 + 12π‘₯ βˆ’ 9 = 0 β‡’ π‘₯2 βˆ’ 4π‘₯ + 3 = 0

∴ (π‘₯ βˆ’ 3)(π‘₯ βˆ’ 1) = 0

β‡’ π‘₯ = 3 π‘œπ‘Ÿ π‘₯ = 1 β‡’ Turning points @ (3, 3) & (1, –1) Point of Inflection (2, 1)

𝑑2𝑦

𝑑π‘₯2 = βˆ’6π‘₯ + 12 [𝑦 coordinate is calculated from original equation]

𝑑2𝑦

𝑑π‘₯2 @ π‘₯ = 3: βˆ’ 6(3) + 12 = βˆ’6 < 0 β‡’ Max (3, 3)

𝑑2𝑦

𝑑π‘₯2 @ π‘₯ = 1: βˆ’ 6(1) + 12 = + 6 > 0 β‡’ Min (1, –1)

If 𝑑2𝑦

𝑑π‘₯2 = 0: β‡’ βˆ’6π‘₯ + 12 = 0 β‡’ π‘₯ = 2 , 𝑦 = 1 Local Min (1, – 1)

∴ Point of inflection @ (2, 1)

Example 27: Find the coordinates of the one turning point of the curve 𝑦 = βˆ’ 𝑒2π‘₯ + 2 𝑒π‘₯ and determine

whether this turning point is a maximum or a minimum.

Solution 27: If 𝑦 = βˆ’ 𝑒2π‘₯ + 2𝑒π‘₯ , then 𝑑𝑦

𝑑π‘₯= βˆ’ 2𝑒2π‘₯ + 2𝑒π‘₯.

Turning point when 𝑑𝑦

𝑑π‘₯= βˆ’ 2𝑒2π‘₯ + 2𝑒π‘₯ = 0 β‡’ 2𝑒2π‘₯ βˆ’ 2𝑒π‘₯ = 0.

β‡’ 𝑒2π‘₯ βˆ’ 𝑒π‘₯ = 0 β‡’ 𝑒π‘₯ (𝑒π‘₯ βˆ’ 1) = 0

β‡’ 𝑒π‘₯ = 0 or 𝑒π‘₯ = 1

𝑒π‘₯ = 0 has no solution and if 𝑒π‘₯ = 1, then π‘₯ = 0.

∴ Turning point at (0, 1) [If π‘₯ = 0, 𝑦 = βˆ’ 𝑒2(0) + 2𝑒(0) = βˆ’1 + 2 = 1]

𝑑2𝑦

𝑑π‘₯2 = βˆ’4 𝑒2π‘₯ + 2𝑒π‘₯

∴ 𝑑2𝑦

𝑑π‘₯2 @ π‘₯ = 0: βˆ’ 4 𝑒2(0) + 2𝑒(0) = βˆ’4 + 2 = βˆ’2 < 0 β‡’ turning point (0, 1) is a Maximum.

Page 14: MATHEMATICS - Institute of Education

CALCULUS NOTES

Β© H Dorgan IOE Maths HL 14

Sketching Curves with the help of calculus

Example 28: 𝑦 = π‘₯ βˆ’ 1

π‘₯ βˆ’ 2 is a curve.

(i) Find the equation of the vertical asymptote of this curve.

(ii) Find the equation of the horizontal asymptote of this curve.

(iii) Prove that the curve has no turning points

(iv) Sketch the curve.

(v) If the slopes of the tangents to this curve at (π‘₯1, 𝑦1) and (π‘₯2, 𝑦2) are parallel and π‘₯1 β‰ 

π‘₯2, prove that π‘₯1 + π‘₯2 = 4 .

Solution 28:

(i) Vertical asymptote is found by letting the denominator = 0.

∴ π‘₯ βˆ’ 2 = 0 β‡’ 𝒙 = 𝟐 [This is the equation of vertical asymptote].

(ii) Horizontal asymptote is found by letting 𝑦 = π‘™π‘–π‘šπ‘₯β†’βˆž

𝑓(π‘₯).

𝑦 = π‘™π‘–π‘šπ‘₯β†’βˆž

𝑓(π‘₯) β‡’ 𝑦 = π‘™π‘–π‘šπ‘₯β†’βˆž

π‘₯βˆ’1

π‘₯βˆ’2 .

To find the limit as π‘₯ β†’ ∞, divide above and below by highest power of π‘₯.

∴ 𝑦 = π‘™π‘–π‘šπ‘₯β†’βˆž

1 βˆ’ 1π‘₯⁄

1 βˆ’ 2 π‘₯⁄ =

1 βˆ’ 0

1 βˆ’ 0 = 1

∴ Equation of horizontal asymptote: π’š = 𝟏.

(iii) 𝑑𝑦

𝑑π‘₯ =

(π‘₯βˆ’2)(1)βˆ’(π‘₯βˆ’1)(1)

(π‘₯βˆ’2)2 = βˆ’ 1

(π‘₯βˆ’2)2

There is no value of π‘₯ which will make 𝑑𝑦

𝑑π‘₯= 0 β‡’ No turning points. asymptotes

(iv) Find coordinates of points to the left and right of π‘₯ = 2.

(0, 1

2 ), (1, 0) (3, 2) and (4,

3

2 ) are on the curve. [Graph paper should be used when sketching the curve (see graph)]

(v) The slope (π‘š1)of the tangent to the curve at (π‘₯1, 𝑦1) = 𝑓′(π‘₯1). But, 𝑓′(π‘₯1) = βˆ’ 1

(π‘₯1βˆ’2)2 .

The slope (π‘š2) of the tangent to the curve at (π‘₯2, 𝑦2) = 𝑓′(π‘₯2). But, 𝑓′(π‘₯2) = βˆ’ 1

(π‘₯2βˆ’2)2 .

But, (π‘š1) = (π‘š2) β‡’ (π‘₯1 βˆ’ 2)2 = (π‘₯2 βˆ’ 2)2 [But, π‘₯1 β‰  π‘₯2 β‡’ (π‘₯1 βˆ’ 2) β‰  (π‘₯2 βˆ’ 2)]

∴ π‘₯1 βˆ’ 2 = βˆ’(π‘₯2 βˆ’ 2) β‡’ π‘₯1 + π‘₯2 = 4.

Displacement, Velocity and Acceleration

We often use the letter 𝑠 to represent displacement (distance travelled in a certain direction).

Velocity (𝑣)is the rate of change of displacement with respect to time.

In calculus, we can write the previous sentence as 𝑣 = 𝑑𝑠

𝑑𝑑 .

Similarly, acceleration (π‘Ž) is the rate of change of velocity with respect to time.

In calculus, we can write the previous sentence as π‘Ž = 𝑑𝑣

𝑑𝑑 .

Thus, π‘Ž =𝑑𝑣

𝑑𝑑 =

𝑑2𝑠

𝑑 𝑑2 or, in English, acceleration is the second differential of displacement with respect to time.

Note: In calculus, if the β€œrate of change” of something is mentioned and there is no β€œwith respect to …”, then it can

always be assumed that it is with respect to β€œtime”. That is, β€œtime” is the default if nothing else is mentioned.

Page 15: MATHEMATICS - Institute of Education

CALCULUS NOTES

Β© H Dorgan IOE Maths HL 15

Example 29: An object moves in a straight line such that its distance from a fixed point, 𝐴 , is given by

s = 𝑑3 βˆ’ 12𝑑2 + 21𝑑 + 5 , where 𝒔 is in metres and 𝒕 is in seconds.

(i) Find the displacement from the point 𝐴 at the start of the motion.

(ii) Find the greatest displacement of the object from 𝐴 (i.e. find local maximum)

(iii) When does the object come to instantaneous rest?

(iv) Find the speed of the object when 𝑑 = 10 seconds.

(v) Find the minimum velocity of the object.

(vi) Find the acceleration of the particle after five seconds.

Solution 29:

(i) Finding 𝑠, @ 𝑑 = 0:

s = 𝑑3 βˆ’ 12𝑑2 + 21𝑑 + 5

∴ 𝑠 @ 𝑑 = 0: = (0)3 βˆ’ 12(0)2 + 21(0) + 5 = 5 m

(ii) Displacement is greatest when 𝑑𝑠

𝑑𝑑= 0

𝑑𝑠

𝑑𝑑= 3𝑑2 βˆ’ 24𝑑 + 21 = 0

β‡’ 𝑑2 βˆ’ 8𝑑 + 7 = 0

β‡’ (𝑑 βˆ’ 7) (𝑑 βˆ’ 1) = 0

β‡’ 𝑑 = 7 or 𝑑 = 1 s

Note: 𝑑2𝑠

𝑑𝑑2 = 6𝑑 βˆ’ 24

At 𝑑 = 7: 𝑑2𝑠

𝑑𝑑2 = 6(7) βˆ’ 24 = 18 m/s > 0 β‡’ Minimum displacement at 𝑑 = 7

At 𝑑 = 1: 𝑑2𝑠

𝑑𝑑2 = 6(1) βˆ’ 24 = βˆ’18 m/s < 0 β‡’ Maximum displacement at 𝑑 = 1

When 𝑑 = 1, 𝑠 = (1)3 βˆ’ 12(1)2 + 21(1) + 5 = 15 m

(iii) Instantaneous rest β‡’ 𝑣 = 0.

As in part (ii) above, 𝑣 = 𝑑𝑠

𝑑𝑑= 0 when 𝑑 = 1 and when 𝑑 = 7 s.

(iv) Finding 𝑣, @ 𝑑 = 10

𝑣 = 𝑑𝑠

𝑑𝑑 = 3𝑑2 βˆ’ 24𝑑 + 21

β‡’ 𝑣, @ 𝑑 = 10: 3(10)2 βˆ’ 24(10) + 21 = 81 m/s

(v) Velocity is minimum (or lowest) when 𝑑𝑣

𝑑𝑑 =

𝑑2𝑠

𝑑𝑑2 = 6𝑑 βˆ’ 24 = 0

β‡’ Velocity is minimum when 𝑑 = 4 s

[obviously a minimum rather than a maximum here as the second differential = +6 > 0]

𝑣 = 3𝑑2 βˆ’ 24𝑑 + 21

β‡’ π‘£π‘šπ‘–π‘› = 3(4)2 βˆ’ 24(4) + 21 = βˆ’27 m/s

(vi) Acceleration (π‘Ž) = 𝑑𝑣

𝑑𝑑 = 6𝑑 βˆ’ 24

β‡’ π‘Ž , @ 𝑑 = 5 = 6(5) βˆ’ 24

β‡’ π‘Ž = 6 m/s2

Page 16: MATHEMATICS - Institute of Education

CALCULUS NOTES

Β© H Dorgan IOE Maths HL 16

Rates of Change

There are many examples in life where one quantity changes with another. The rate of how one quantity (like sale

of ice creams) varies with another (like temperature) is a very important application of Calculus.

Many problems on rates of change involve displacement, velocity and acceleration that we have seen above.

Velocity (or speed) is the rate of change of displacement, i.e. 𝑣 = 𝑑𝑠

𝑑𝑑 . It is measured in m/s.

Acceleration is the rate of change of velocity, i.e. π‘Ž = 𝑑𝑣

𝑑𝑑 =

𝑑2𝑠

𝑑𝑑2 . It is measured in m/s2.

Example 30: A ball is fired straight up in the air. The height, β„Ž, of the ball above the ground is given

by β„Ž = 30𝑑 βˆ’ 5𝑑2 where 𝑑 is the time in seconds after the ball was fired.

(i) After how many seconds does the ball hit the ground?

(ii) Find the speed of the ball after 2 seconds.

(iii) Find the maximum height reached by the ball.

(iv) Find the constant deceleration of the ball.

(v) When is the speed of the ball equal to 15 m/s?

Solution 30: (i) When the ball hits the ground, β„Ž = 0.

β„Ž = 30𝑑 βˆ’ 5𝑑2 β‡’ 0 = 30𝑑 βˆ’ 5𝑑2 β‡’ 5𝑑2 βˆ’ 30 𝑑 = 0

β‡’ 5𝑑 (𝑑 βˆ’ 6) = 0 β‡’ 𝑑 = 0 𝑂𝑅 𝑑 = 6 seconds Answer: 𝒕 = πŸ” seconds

(ii) Speed of ball at any time = 𝑣 = π‘‘β„Ž

𝑑𝑑 = 30 βˆ’ 10 𝑑

∴ Speed of the ball after 2 seconds, 𝑣 or π‘‘β„Ž

𝑑𝑑 at 𝑑 = 2: 30 βˆ’ 10(2) = 30 βˆ’ 20 = 𝟏𝟎 m/s.

(iii) Height is maximum when 𝑣 or π‘‘β„Ž

𝑑𝑑 = 0 , i.e. 30 βˆ’ 10 𝑑 = 0 β‡’ 𝑑 = 3 seconds

Maximum height = β„Ž at 𝑑 = 3: β„Ž = 30𝑑 βˆ’ 5𝑑2

= 30(3) βˆ’ 5(3)2 = 90 βˆ’ 45 = πŸ’πŸ“ m

(iv) Acceleration = 𝑑𝑣

𝑑𝑑 or

𝑑2𝑠

𝑑𝑑2 = 𝑑

𝑑𝑑(30 βˆ’ 10 𝑑) = βˆ’10 m/s2

∴ Deceleration = 𝟏𝟎 m/s2.

(v) Speed of ball at any time = 𝑣 = π‘‘β„Ž

𝑑𝑑 = 30 βˆ’ 10 𝑑

Speed of ball = 15 m/s when = 𝑣 = π‘‘β„Ž

𝑑𝑑 = 30 βˆ’ 10 𝑑 = 15

β‡’ 15 = 10 𝑑 β‡’ 𝑑 = 𝟏. πŸ“ s

Example 31: A stone was dropped in a pond. The radius of a circle (or wave) produced increased at a rate of 75 cm/s.

Find the rate at which the area inside the circle increased when the radius of the circle was 5 m.

Solution 31: Given: π‘‘π‘Ÿ

𝑑𝑑 = 0.75 [We cannot have a mixture of units, so bring lengths to metres]

Required to Find: 𝑑𝐴

𝑑𝑑 @ π‘Ÿ = 5

Express one variable in terms of the other: 𝐴 = πœ‹ π‘Ÿ2 [Formula for area of a disc/circle]

βˆ΄π’…π‘¨

𝒅𝒕 =

𝑑𝐴

π‘‘π‘Ÿ Γ—

π‘‘π‘Ÿ

𝑑𝑑 = 2πœ‹π‘Ÿ Γ— 0.75 [Differentiating using chain rule and

𝑑

π‘‘π‘Ÿ(πœ‹ π‘Ÿ2) = 2πœ‹π‘Ÿ ]

βˆ΄π’…π‘¨

𝒅𝒕 @ π‘Ÿ = 5: 1.5 πœ‹(5) =

15πœ‹

2 m2/s.

Page 17: MATHEMATICS - Institute of Education

CALCULUS NOTES

Β© H Dorgan IOE Maths HL 17

Example 32: A large spherical balloon is being blown up and its radius is increasing at the rate of 5 cm/s.

When the radius of the balloon is 30 cm, find the rate of increase of (i) its volume and (ii) its surface area.

Solution 32: (i) Given: π‘‘π‘Ÿ

𝑑𝑑 = 5 [All lengths are in cm, so there is no need to convert to metres]

Required to Find: 𝑑𝑉

𝑑𝑑 @ π‘Ÿ = 30

Express one variable in terms of the other: 𝑉 =4

3 πœ‹ π‘Ÿ3 [Formula for volume of a sphere]

βˆ΄π’…π‘½

𝒅𝒕 =

𝑑𝑉

π‘‘π‘Ÿ Γ—

π‘‘π‘Ÿ

𝑑𝑑 = 4πœ‹π‘Ÿ2 Γ— 5 = 20πœ‹π‘Ÿ2 . [Differentiating using chain rule and

𝑑

π‘‘π‘Ÿ(

4

3 πœ‹ π‘Ÿ3) = 4πœ‹ π‘Ÿ2]

βˆ΄π’…π‘½

𝒅𝒕 @ π‘Ÿ = 30: 20 πœ‹(30)2 = 18 000 πœ‹ cm3/s.

(ii) Given: π‘‘π‘Ÿ

𝑑𝑑 = 5 [All lengths are in cm, so there is no need to convert to metres]

Required to Find: 𝑑𝐴

𝑑𝑑 @ π‘Ÿ = 30

Express one variable in terms of the other: 𝐴 = 4 πœ‹ π‘Ÿ2 [Formula for surface area of a sphere]

βˆ΄π’…π‘¨

𝒅𝒕 =

𝑑𝐴

π‘‘π‘Ÿ Γ—

π‘‘π‘Ÿ

𝑑𝑑 = 8πœ‹π‘Ÿ Γ— 5 = 40πœ‹π‘Ÿ . [Differentiating using chain rule and

𝑑

π‘‘π‘Ÿ(4 πœ‹ π‘Ÿ2) = 8πœ‹π‘Ÿ]

βˆ΄π’…π‘¨

𝒅𝒕 @ π‘Ÿ = 30: 40 πœ‹ (30) = 1200 πœ‹ cm2/s.

Maximum and Minimum Problems

The procedure for tackling maximum and minimum problems can be summarized as follows:

(1) Draw a diagram representing the problem (if appropriate) and label all the relevant details.

(2) Find a formula or equation for the quantity that is to be maximized or minimized.

(3) Express the quantity to be maximized (or minimized) in terms of one variable, using the conditions given

in the problem, if necessary, to eliminate any other variable(s).

(4) Differentiate once to find where 𝑑𝑦

𝑑π‘₯= 0 (i.e. maximum or minimum point).

(5) Differentiate a second time to distinguish between the maximum and the minimum.

Example 33: A farmer wishes to enclose a rectangular section in the middle of a field.

She uses all of πŸ’πŸŽπŸŽ m of an electric fence to construct the enclosure.

(a) If one side of the rectangular enclosure is 𝒙 metres long, what is the length of the adjacent side?

(b) Find, in terms of 𝒙, the area of the enclosure.

(c) Find the value of 𝒙 that makes the area of the enclosure a maximum.

(d) If the farmer constructs a circular enclosure instead of a rectangular one (as above), find the radius

of the enclosure correct to 2 decimal places, assuming she uses all πŸ’πŸŽπŸŽ m of the electric fence to

form the enclosure.

(e) Find the area of the circular enclosure to the nearest square metre.

(f) If the farmer wants the area of the enclosure to be a maximum (using exactly πŸ’πŸŽπŸŽ m of electric

fencing), should she construct a circular or a rectangular enclosure?

Page 18: MATHEMATICS - Institute of Education

CALCULUS NOTES

Β© H Dorgan IOE Maths HL 18

Solution 33: (a) 𝑦

𝑦 = 1

2 (400 βˆ’ 2π‘₯)

π‘₯ = 200 βˆ’ π‘₯

[using info given to express one variable in terms of the other]

(b) To be maximized: Area(A) = length Γ— breadth = π‘₯(200 βˆ’ π‘₯) = 200π‘₯ βˆ’ π‘₯2

(c) 𝒅𝑨

𝒅𝒙 = 𝟐𝟎𝟎 βˆ’ πŸπ’™ , which is a maximum when

𝒅𝑨

𝒅𝒙 = 𝟐𝟎𝟎 βˆ’ πŸπ’™ = 𝟎 β‡’ 𝒙 = 𝟏𝟎𝟎.

𝑑2𝐴

𝑑π‘₯2 = βˆ’2 < 0 β‡’ Maximum @ π‘₯ = 100

(d) circumference length= 2πœ‹π‘Ÿ β‡’ 400 = 2πœ‹π‘Ÿ

β‡’ π‘Ÿ = 400

2πœ‹ =

200

πœ‹ = 63.66 m π‘Ÿ

(e) Area = πœ‹π‘Ÿ2 = πœ‹ (63.66)2 = 12 732 m2

(f) Maximum rectangular area = 100 Γ— 100 = 10 000 m2

β‡’ biggest area formed by circle

Example 34: If two natural numbers add to give πŸ‘πŸŽ, find the maximum product of these two numbers. Solution 34: Let the two numbers be π‘₯ and 𝑦. But, 𝑦 = 30 βˆ’ π‘₯ [using info given to express one variable in terms of the other] To be maximized: Product (𝑃) = π‘₯ Γ— (30 βˆ’ π‘₯) = 30π‘₯ βˆ’ π‘₯2

𝑑𝑃

𝑑π‘₯ = 30 βˆ’ 2π‘₯ , which is a maximum when

𝑑𝑃

𝑑π‘₯ = 30 βˆ’ 2π‘₯ = 0 β‡’ π‘₯ = 15.

𝑑2𝐴

𝑑π‘₯2 = βˆ’2 < 0 β‡’ Maximum @ π‘₯ = 15

Maximum product π‘₯𝑦 = 15(30 βˆ’ 15) = 225

Example 35: A cylindrical can is used to hold πŸ‘πŸ‘πŸŽ cm3 of orange drink. π‘Ÿ

(i) Find the height (β„Ž) of the can in terms of the radius (π‘Ÿ).

(ii) Find the dimensions of the can that will use the least amount

of metal in its manufacture.

β„Ž

Solution 35: (i) Volume of cylinder= 330 = πœ‹π‘Ÿ2β„Ž β‡’ β„Ž = 330

πœ‹π‘Ÿ2

(ii) To be minimized: Surface Area (𝐴) = 2πœ‹π‘Ÿβ„Ž + 2(πœ‹π‘Ÿ2)

= 2πœ‹π‘Ÿ330

πœ‹π‘Ÿ2 + 2πœ‹π‘Ÿ2

= 660

π‘Ÿ + 2πœ‹π‘Ÿ2 = 660π‘Ÿβˆ’1 + 2πœ‹π‘Ÿ2

∴ 𝑑𝐴

π‘‘π‘Ÿ = βˆ’660 π‘Ÿβˆ’2 + 4πœ‹π‘Ÿ, which is a maximum when

𝑑𝐴

π‘‘π‘Ÿ = βˆ’660 π‘Ÿβˆ’2 + 4πœ‹π‘Ÿ = 0

β‡’ 660

π‘Ÿ2 = 4πœ‹π‘Ÿ

β‡’ 660 = 4πœ‹π‘Ÿ3

β‡’ π‘Ÿ = √660

4πœ‹

3 = √

165

πœ‹

3 = 3.745 cm

Note: 𝑑2𝐴

π‘‘π‘Ÿ2 = 1320

π‘Ÿ3 + 4πœ‹ which is > 0 when π‘Ÿ = 3.745 β‡’ Minimum @ π‘Ÿ = 3.745.

When π‘Ÿ = 3.745: β„Ž = 330

πœ‹π‘Ÿ2 = 330

πœ‹(3.745)2 = 330

44.06 = 7.49 cm

Page 19: MATHEMATICS - Institute of Education

CALCULUS NOTES

Β© H Dorgan IOE Maths HL 19

Example 36: An equilateral triangle of length πŸ– cm has a rectangle inscribed in it.

(a) Find β„Ž, the height of the triangle. πŸ– cm β„Ž

(b) Show that π’š = βˆšπŸ‘ 𝒙.

(c) Find, in terms of 𝒙 the area of the rectangle. 𝑦

(d) Hence, find the maximum possible area of this rectangle.

(e) What percentage of the triangle is occupied by the maximum π‘₯ π‘₯

sized rectangle? 8

Solution 36: (a) By Pythagoras’ theorem: β„Ž2 = 82 βˆ’ 42 = 64 βˆ’ 16 = 48

β‡’ β„Ž = √48 π‘œπ‘Ÿ 4√3 cm

(b) π‘‘π‘Žπ‘› 60π‘œ = 𝑦

π‘₯ β‡’ √3 =

𝑦

π‘₯ β‡’ 𝑦 = √3 π‘₯

(c) Area of Rectangle (𝐴) = (8 βˆ’ 2π‘₯) (𝑦)

= (8 βˆ’ 2π‘₯) (√3 π‘₯)

= 8 √3 π‘₯ βˆ’ 2√3 π‘₯2 cm2

(d) 𝑑𝐴

𝑑π‘₯ = 8 √3 βˆ’ 4√3 π‘₯,

∴ Area is a maximum when 𝑑𝐴

𝑑π‘₯ = 8 √3 βˆ’ 4√3 π‘₯ = 𝟎

β‡’ π‘₯ = 8 √3

4 √3 = 2

But, 𝑑2𝐴

𝑑π‘₯2 = βˆ’ 4√3 < 0 β‡’ Maximum @ π‘₯ = 2

∴ π΄π‘šπ‘Žπ‘₯ = 8 √3 (2) βˆ’ 2√3 (2)2

= 16 √3 βˆ’ 8 √3

= 8 √3 cm2

(e) Area of Triangle = 1

2 (8)(4√3)

= 16 √3 cm2

∴ % Area occupied by maximum rectangle = 8 √3

16 √3 Γ—

100

1

= 50%

Page 20: MATHEMATICS - Institute of Education

CALCULUS NOTES

Β© H Dorgan IOE Maths HL 20

Example 37: 𝑨𝑩π‘ͺ𝑫 is a rectangular ploughed field πŸ‘πŸπŸŽ m long and 𝟏𝟐𝟎 m wide with a path around its sides.

Tom can run at a speed of πŸπŸ‘πŸ‘β„ m/s along the path

and at a speed of πŸ“ πŸ‘β„ m/s across the ploughed field. 𝑫 310 π‘ͺ

Tom wants to reach point π‘ͺ from the point 𝑨 as quickly as possible.

He runs from 𝑨 to a point 𝑬 along the path and from 𝑬 to π‘ͺ across 120

the field.

(a) If |𝑬𝑩| = 𝒙, express in terms of 𝒙 : 𝑨 𝑬 𝒙 𝑩

(i) |𝑨𝑬|

(ii) |𝑬π‘ͺ|

(iii) the total time taken to travel from 𝑨 to π‘ͺ

(b) Find the value of 𝒙 for which the time is a minimum.

(c) Calculate the minimum time to travel from 𝑨 to π‘ͺ (in seconds).

Solution 37: (a) (i) |𝑨𝑬| = 310 βˆ’ π‘₯

(ii) |𝑬π‘ͺ|2 = π‘₯2 + 1202

β‡’ |𝑬π‘ͺ| = √π‘₯2 + 1202

(iii) time taken = π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’

𝑠𝑝𝑒𝑒𝑑

= (3) (310 βˆ’ π‘₯)

13 +

(3)√π‘₯2 + 1202

5

(b) To be minimized: time = 𝑑 = (3) (310 βˆ’ π‘₯)

13 +

(3)√π‘₯2+ 1202

5

β‡’ 𝒅𝒕

𝒅𝒙 =

βˆ’πŸ‘

πŸπŸ‘ +

πŸ‘

πŸ“ 𝟏

𝟐 (π’™πŸ + 1202)

βˆ’πŸ

𝟐 (πŸπ’™) = 𝟎 [when time is a minimum]

β‡’ πŸ‘

πŸπŸ‘ =

πŸ‘

πŸ“

𝒙

√π‘₯2+ 1202

β‡’ πŸπŸ‘π’™ = πŸ“ √π‘₯2 + 1202

β‡’ πŸπŸ”πŸ—π’™πŸ = πŸπŸ“ (π’™πŸ + 1202)

β‡’ πŸπŸ’πŸ’π’™πŸ = πŸπŸ“ (1202)

β‡’ πŸπŸπ’™ = Β± πŸ“ (120)

β‡’ 𝒙 = Β± πŸ“ (10) = Β± πŸ“πŸŽ

β‡’ 𝒙 = πŸ“πŸŽ

∴ time is a minimum when 𝒙 = πŸ“πŸŽ m

(c) Minimum time = (3) (310 – π‘₯)

13 +

(3)√π‘₯2+ 1202

5

= (3) (310 βˆ’ 50)

13 +

(3)√502+ 1202

5

= 60 + (3)130

5

= 60 + 78

= 138 s

Page 21: MATHEMATICS - Institute of Education

CALCULUS NOTES

Β© H Dorgan IOE Maths HL 21

Sketching Derivative Curves

If we are given the graph of a curve 𝑦 = 𝑓(π‘₯), we can sketch the graph of its derivative, 𝑑𝑦

𝑑π‘₯ π‘œπ‘Ÿ 𝑓′(π‘₯),

by examining the sign of the derivative and how the slope of the tangent is changing.

The diagram below shows a cubic function 𝑦 = 𝑓(π‘₯), with turning points at (0, 8) and (1.1, 6).

Also shown are the functions 𝑓′(π‘₯) and 𝑓′′(π‘₯).

Note: 1) At a maximum or minimum of one curve, the derivative curve will cut the π‘₯-axis

i.e. 𝑑𝑦

𝑑π‘₯= 0 at a maximum and at a minimum

2) At a point of inflection of one curve, the derivative curve will have a turning point

and the second derivative curve will cut the π‘₯ βˆ’axis.

i.e. 𝑑𝑦

𝑑π‘₯ = 0 and

𝑑2𝑦

𝑑π‘₯2 = 0 at a point of inflection

3) After that, check whether the slope of the original is positive or negative

and whether it is increasing or decreasing.

Minimum at (1.1, 6) β‡’ 𝑓′(1.1) = 0 β‡’ (1.1, 0) is on the derivative curve 𝑓′(π‘₯).

Maximum at (0, 8) β‡’ 𝑓′(0) = 0 β‡’ (0, 0) is on the derivative curve 𝑓′(π‘₯).

A point of inflection at π‘₯ = 0.55 on 𝑦 = 𝑓(π‘₯) β‡’ turning point at π‘₯ = 0.55 on 𝑓′(π‘₯)

AND (0.55, 0) is on the second derivative curve 𝑓′′(π‘₯)

Maximum at π‘₯ = 0 on 𝑦 = 𝑓(π‘₯) β‡’ (0, 0) is on the derivative curve, 𝑦 = 𝑓′(π‘₯).

Slope of 𝑦 = 𝑓′(π‘₯) is negative but decreasing negatively to the left of π‘₯ = 0.55, but is positive and increasing

to the right of π‘₯ = 0.55 β‡’ 𝑦 = 𝑓′′(π‘₯) has a positive slope, cutting π‘₯-axis at (0.55, 0).

Page 22: MATHEMATICS - Institute of Education

CALCULUS NOTES

Β© H Dorgan IOE Maths HL 22

Implicit Differentiation (2015+)

[Syllabus Addition (2015): Use differentiation to find the slope of a tangent to a circle]

It is easy to find 𝑑 (π‘₯2)

𝑑π‘₯ . The answer is 2π‘₯. But, what if we are asked to find

𝑑 (𝑦2)

𝑑π‘₯ .

The technique for doing this is known as implicit differentiation. We have to use the Chain Rule to help us out.

𝑑 (𝑦2)

𝑑π‘₯=

𝑑 𝑦2

𝑑𝑦 𝑑𝑦

𝑑π‘₯ ( i.e. multiply above and below by 𝑑𝑦) (not forgetting the sideways kick). The answer is: 2𝑦

𝑑𝑦

𝑑π‘₯ .

Examples: (i) 𝑑 (7𝑦3)

𝑑π‘₯ =

𝑑 (7𝑦3)

𝑑𝑦 𝑑𝑦

𝑑π‘₯ = 21𝑦2

𝑑𝑦

𝑑π‘₯

(ii) 𝑑 (βˆšπ‘¦)

𝑑π‘₯ =

𝑑 (βˆšπ‘¦)

𝑑𝑦 𝑑𝑦

𝑑π‘₯ =

1

2π‘¦βˆ’1/2

𝑑𝑦

𝑑π‘₯ =

1

2βˆšπ‘¦ 𝑑𝑦

𝑑π‘₯

Example 38: A circle has an equation π‘₯2 + 𝑦2 βˆ’ 4π‘₯ + 2𝑦 βˆ’ 20 = 0 .

Using differentiation, find the equation of the tangent to this circle at the point (5, βˆ’5).

Solution38:

Step 1: Differentiate both sides of the equation with respect to π‘₯.

2π‘₯ + 2𝑦 𝑑𝑦

𝑑π‘₯ βˆ’ 4 + 2

𝑑𝑦

𝑑π‘₯ βˆ’ 0 = 0

Step 2: Gather up all the terms with 𝑑𝑦

𝑑π‘₯ on one side of the equation and isolate

𝑑𝑦

𝑑π‘₯.

2𝑦 𝑑𝑦

𝑑π‘₯ + 2

𝑑𝑦

𝑑π‘₯ = 4 βˆ’ 2π‘₯

β‡’ (2𝑦 + 2) 𝑑𝑦

𝑑π‘₯ = 4 βˆ’ 2π‘₯

β‡’ 𝑑𝑦

𝑑π‘₯ =

4 βˆ’ 2π‘₯

2𝑦 + 2

Step 3: Find the slope of the tangent at the given point [find 𝑑𝑦

𝑑π‘₯ at (π‘₯, 𝑦) = (5, βˆ’5)]

𝑑𝑦

𝑑π‘₯ at (π‘₯, 𝑦) = (5, βˆ’5) is:

4 βˆ’ 2(5)

2(βˆ’5) + 2 =

βˆ’6

βˆ’8 =

3

4

Step 4: Find the equation of the tangent, given a point on it (π‘₯1 , 𝑦1) and its slope (π‘š):

𝑦 βˆ’ 𝑦1 = π‘š(π‘₯ βˆ’ π‘₯1)

β‡’ 𝑦 βˆ’ (βˆ’5) = 3

4(π‘₯ βˆ’ 5)

β‡’ 𝑦 + 5 = 3

4(π‘₯ βˆ’ 5)

β‡’ 4𝑦 + 20 = 3π‘₯ βˆ’ 15

β‡’ 3π‘₯ βˆ’ 4𝑦 βˆ’ 35 = 0

Page 23: MATHEMATICS - Institute of Education

CALCULUS NOTES

Β© H Dorgan IOE Maths HL 23

POINTS TO REMEMBER

1) If 𝑦 = 𝑓(π‘₯), then 𝑑𝑦

𝑑π‘₯= 𝑓′(π‘₯).

𝑑𝑦

𝑑π‘₯ or 𝑓′(π‘₯) has many names. It can be called the differential of π’š with

respect to 𝒙, the derivative of π’š or 𝒇(𝒙), the derived function of 𝑓(π‘₯), the differential coefficient of 𝑓(π‘₯), the

slope of the tangent to the curve at (π‘₯, 𝑦) or (π‘₯, 𝑓(π‘₯)), the gradient. [Note: 𝑓′(2) is the value of 𝑓′(π‘₯) when π‘₯ = 2]

2) π’π’Šπ’Žπ’™β†’π’‚

[𝒇(𝒙) Β± π’ˆ(𝒙)] = π’π’Šπ’Žπ’™β†’π’‚

𝒇(𝒙) Β± π’π’Šπ’Žπ’™β†’π’‚

π’ˆ(𝒙)

3) π’π’Šπ’Žπ’™β†’π’‚

[𝒇(𝒙). π’ˆ(𝒙)] = π’π’Šπ’Žπ’™β†’π’‚

𝒇(𝒙) . π’π’Šπ’Žπ’™β†’π’‚

π’ˆ(𝒙)

4) π’π’Šπ’Žπ’™β†’π’‚

[𝒇(𝒙)

π’ˆ(𝒙)] =

π’π’Šπ’Žπ’™β†’π’‚

𝒇(𝒙)

π’π’Šπ’Žπ’™β†’π’‚

π’ˆ(𝒙)

5) 0

sinlim 1

β†’=

6) dy

dx =

0limh→

𝑓(π‘₯ + β„Ž) – 𝑓(π‘₯)

β„Ž where 𝑦 = 𝑓(π‘₯).

7) If 𝑦 = 𝑓(π‘₯) = π‘₯𝑛, then 𝑑𝑦

𝑑π‘₯ or 𝑓′(π‘₯) = 𝑛 π‘₯π‘›βˆ’1. (*)

8) 𝑦 = π‘˜ 𝑓(π‘₯),𝑑𝑦

𝑑π‘₯= π‘˜ 𝑓′(π‘₯), where π‘˜ is a constant. [Multiplying constants can be brought outside and left there.]

Example: If 𝑦 = 3π‘₯5,𝑑𝑦

𝑑π‘₯= 3 𝑓′(π‘₯5) = 3 (5π‘₯4) = 15π‘₯4

9) If 𝑓(π‘₯) = 𝑒(π‘₯) + 𝑣(π‘₯), then df du dv

dx dx dx= + .

Example: If 𝑦 = 3π‘₯9 + 5π‘₯2 , 𝑑𝑦

𝑑π‘₯= 27π‘₯8 + 10π‘₯.

10) If 𝑓(π‘₯) = 𝑒(π‘₯)𝑣(π‘₯), then d f dv duu v

dx dx dx= + . (*)

Example: If 𝑦 = (5π‘₯ + 2)π‘₯3 , 𝑑𝑦

𝑑π‘₯= (5π‘₯ + 2)3π‘₯2 + (π‘₯3)(5) β‡’

𝑑𝑦

𝑑π‘₯ = 20π‘₯3 + 6π‘₯2.

11) If 𝑓(π‘₯) = 𝑒(π‘₯)

𝑣(π‘₯), then

2

du dvv u

df dx dx

dx v

βˆ’

= . (*)

Example: If 𝑓(π‘₯) = π‘₯2βˆ’ 5

7π‘₯ ,

𝑑𝑦

𝑑π‘₯=

(7π‘₯)(2π‘₯) βˆ’ (π‘₯2βˆ’5)(7)

(7π‘₯)2 β‡’ 𝑑𝑦

𝑑π‘₯=

7π‘₯2 + 35

49π‘₯2

12) If 𝑦 = [𝑓(π‘₯)]𝑛 β‡’ 𝑑𝑦

𝑑π‘₯ = 𝑛 [𝑓(π‘₯)]π‘›βˆ’1 [𝑓′(π‘₯)].

Example: If 𝑦 = (4π‘₯3 βˆ’ 5π‘₯ + 1)7 ,𝑑𝑦

𝑑π‘₯ = 7(4π‘₯3 βˆ’ 5π‘₯ + 1)6 (12π‘₯2 βˆ’ 5) = (84π‘₯2 βˆ’ 35) (4π‘₯3 βˆ’ 5π‘₯ + 1)6

13) If 𝑦 = 𝑠𝑖𝑛 π‘₯, 𝑑𝑦

𝑑π‘₯= π‘π‘œπ‘  π‘₯. If 𝑦 = 𝑠𝑖𝑛 (𝑓(π‘₯)),

𝑑𝑦

𝑑π‘₯ = [π‘π‘œπ‘ (𝑓(π‘₯)] [𝑓′(π‘₯)].

Example: If 𝑦 = 𝑠𝑖𝑛 14π‘₯2 ,𝑑𝑦

𝑑π‘₯= (π‘π‘œπ‘  14π‘₯2) (28π‘₯).

14) If 𝑦 = π‘π‘œπ‘  π‘₯, 𝑑𝑦

𝑑π‘₯= βˆ’π‘ π‘–π‘› π‘₯. If 𝑦 = π‘π‘œπ‘  (𝑓(π‘₯)) ,

𝑑𝑦

𝑑π‘₯ = [βˆ’π‘ π‘–π‘›(𝑓(π‘₯)] [𝑓′(π‘₯)].

Example: If 𝑦 = π‘π‘œπ‘  5π‘₯ ,𝑑𝑦

𝑑π‘₯= (βˆ’π‘ π‘–π‘› 5π‘₯) (5) or βˆ’5 𝑠𝑖𝑛 5π‘₯.

15) If 𝑦 = π‘‘π‘Žπ‘› π‘₯, 𝑑𝑦

𝑑π‘₯= 𝑠𝑒𝑐2 π‘₯. If 𝑦 = π‘‘π‘Žπ‘› (𝑓(π‘₯)) ,

𝑑𝑦

𝑑π‘₯ = [𝑠𝑒𝑐2(𝑓(π‘₯)] [𝑓′(π‘₯)].

Example: If 𝑦 = π‘‘π‘Žπ‘› 8π‘₯ ,𝑑𝑦

𝑑π‘₯= (𝑠𝑒𝑐2 8π‘₯) (8) or 8 𝑠𝑒𝑐2 8π‘₯ .

16) If 𝑦 = π‘ π‘–π‘›βˆ’1 π‘₯,𝑑𝑦

𝑑π‘₯=

1

√1 βˆ’ π‘₯2 . 𝐼𝑓 𝑦 = π‘ π‘–π‘›βˆ’1 𝑓(π‘₯),

𝑑𝑦

𝑑π‘₯=

1

√1βˆ’[𝑓(π‘₯)]2 Γ— 𝑓′(π‘₯).

Example: If 𝑦 = π‘ π‘–π‘›βˆ’1 √π‘₯ , 𝑑𝑦

𝑑π‘₯=

1

√1 βˆ’ (√π‘₯ )2

Γ— 1

2 (π‘₯)

βˆ’1

2 = 1

√1βˆ’π‘₯ Γ—

1

2√π‘₯ =

1

2√π‘₯ √1βˆ’π‘₯ =

1

2 √π‘₯βˆ’π‘₯2

Page 24: MATHEMATICS - Institute of Education

CALCULUS NOTES

Β© H Dorgan IOE Maths HL 24

17) If 𝑦 = π‘ π‘–π‘›βˆ’1 π‘₯

π‘Ž,

𝑑𝑦

𝑑π‘₯=

1

βˆšπ‘Ž2 βˆ’ π‘₯2 .

Example: If 𝑦 = π‘ π‘–π‘›βˆ’1 5π‘₯3

4,

𝑑𝑦

𝑑π‘₯=

1

√16 βˆ’ (5π‘₯3)2 Γ— 15π‘₯2

18) If 𝑦 = π‘‘π‘Žπ‘›βˆ’1 π‘₯,𝑑𝑦

𝑑π‘₯=

1

1 + π‘₯2 . 𝐼𝑓 𝑦 = π‘‘π‘Žπ‘›βˆ’1 𝑓(π‘₯),𝑑𝑦

𝑑π‘₯=

1

1 + [𝑓(π‘₯)]2 Γ— 𝑓′(π‘₯).

Example: If 𝑦 = π‘‘π‘Žπ‘›βˆ’1(7π‘₯ βˆ’ 3) , 𝑑𝑦

𝑑π‘₯=

1

1 + (7π‘₯βˆ’3)2 Γ— 7 = 7

1 + (7π‘₯βˆ’3)2 = 7

49π‘₯2βˆ’ 42π‘₯ + 10

19) If 𝑦 = π‘‘π‘Žπ‘›βˆ’1 π‘₯

π‘Ž,

𝑑𝑦

𝑑π‘₯=

π‘Ž

π‘Ž2+ π‘₯2 .

Example: If 𝑦 = π‘‘π‘Žπ‘›βˆ’1 5π‘₯3

4,

𝑑𝑦

𝑑π‘₯=

4

(16 + (5π‘₯3)2 Γ— 15π‘₯2 or 60π‘₯2

16 +25π‘₯6 .

20) If 𝑦 = 𝑒π‘₯ ,𝑑𝑦

𝑑π‘₯= 𝑒π‘₯. If 𝑦 = 𝑒𝑓(π‘₯) ,

𝑑𝑦

𝑑π‘₯= 𝑒𝑓(π‘₯) Γ— 𝑓′(π‘₯).

Example: If 𝑦 = π‘’βˆ’9π‘₯+5 , 𝑑𝑦

𝑑π‘₯= π‘’βˆ’9π‘₯+5 Γ— βˆ’9 = βˆ’9 π‘’βˆ’9π‘₯+5

21) If = π‘™π‘œπ‘”π‘’ π‘₯ ,𝑑𝑦

𝑑π‘₯=

1

π‘₯ . If 𝑦 = π‘™π‘œπ‘”π‘’ 𝑓(π‘₯) ,

𝑑𝑦

𝑑π‘₯=

𝑓′(π‘₯)

𝑓(π‘₯) . [i.e. the differential of the function over the function]

Example: If 𝑦 = π‘™π‘œπ‘”π‘’(2π‘₯5 βˆ’ 6π‘₯ + 7), 𝑑𝑦

𝑑π‘₯=

10π‘₯4 βˆ’ 6

2π‘₯5βˆ’ 6π‘₯ + 7 .

22) If 𝑦 = 𝑓(π‘₯), then 𝑑2𝑦

𝑑π‘₯2 = 𝑑

𝑑π‘₯ (

𝑑𝑦

𝑑π‘₯ ) = 𝑓′′ (π‘₯).

Example: If 𝑓(π‘₯) = π‘₯2 βˆ’ 4π‘₯ + 7 β‡’ 𝑓′(π‘₯) = 2π‘₯ βˆ’ 4 β‡’ 𝑓′′(π‘₯) = 2.

23) Before attempting to differentiate difficult log functions, check if the question be made a easier by applying the

rules of logs.

24) 𝑑𝑦

𝑑π‘₯ is the slope of a tangent to a curve at any point on the curve.

25) To find a turning point on a graph , use 𝑑𝑦

𝑑π‘₯ = 0 and solve the resulting equation.

26) At local maximum: 𝑑𝑦

𝑑π‘₯= 0 and

𝑑2𝑦

𝑑π‘₯2 < 0

27) At local minimum: 𝑑𝑦

𝑑π‘₯= 0 and

𝑑2𝑦

𝑑π‘₯2 > 0

28) At point of inflection: 𝑑𝑦

𝑑π‘₯= 0 and

𝑑2𝑦

𝑑π‘₯2 = 0

29) Curves are increasing when 𝑑𝑦

𝑑π‘₯> 0. Curves are decreasing when

𝑑𝑦

𝑑π‘₯< 0.

30) In reciprocal graphs such as π’š = 𝒑𝒙+𝒒

𝒄𝒙+𝒅 , the vertical asymptote is got by letting the denominator = 0 β‡’ 𝒙 =

βˆ’π’…

𝒄 .

Horizontal asymptotes are got by letting 𝑦 = π‘™π‘–π‘šπ‘₯β†’βˆž

𝑓(π‘₯) and dividing above and below by highest power of π‘₯.

Here, horizontal asymptote is: = π‘™π‘–π‘šπ‘₯β†’βˆž

𝑓(π‘₯) = π‘™π‘–π‘šπ‘₯β†’βˆž

𝑝+ π‘ž

π‘₯

𝑐+ 𝑑

π‘₯

= 𝒑+𝟎

𝒄+𝟎 β‡’ π’š =

𝒑

𝒄 .

31) If 𝑠 = distance travelled or displacement, 𝑣 = 𝑑𝑠

𝑑𝑑 = speed or velocity and π‘Ž =

𝑑𝑣

𝑑𝑑 =

𝑑2𝑠

𝑑𝑑2 = acceleration.

32) With questions on rates of change of one variable with respect to another, always write down the β€œgimme”,

(e.g. π‘‘π‘Ÿ

𝑑𝑑 = 0.75) , then write down what you are trying to find (e.g.

𝑑𝐴

𝑑𝑑 @ π‘Ÿ = 5), do the sideway kick

(e.g. 𝑑𝐴

𝑑𝑑 =

𝑑𝐴

π‘‘π‘ŸΓ—

π‘‘π‘Ÿ

𝑑𝑑 , then express one variable in terms of the other (e.g. 𝐴 = πœ‹ π‘Ÿ2) and differentiate

(e.g. 𝑑𝐴

π‘‘π‘Ÿ= 2πœ‹π‘Ÿ).

Finally, put in the β€œat” value given.

33) Familiarise yourself with formulae available on pages 25 and 27 of Mathematical Formulae and Tables.

Page 25: MATHEMATICS - Institute of Education

CALCULUS NOTES

Β© H Dorgan IOE Maths HL 25