Mathematics and Physical Reality

download Mathematics and Physical Reality

of 41

description

Cómo las matemáticas sirven para explicar el mundo físico en que se vive

Transcript of Mathematics and Physical Reality

  • Mathematics and Physical Reality

    Page 1 of 41

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: HINARI ElSalvador; date: 15 October 2015

    UniversityPressScholarshipOnlineOxfordScholarshipOnline

    MathematicswithoutNumbers:TowardsaModal-StructuralInterpretationGeoffreyHellman

    Printpublicationdate:1993PrintISBN-13:9780198240341PublishedtoOxfordScholarshipOnline:November2003DOI:10.1093/0198240341.001.0001

    MathematicsandPhysicalRealityGeoffreyHellman(ContributorWebpage)

    DOI:10.1093/0198240341.003.0004

    AbstractandKeywords

    Strategiesforextendingthemodalstructuralapproachtoapplicationsofmathematicsareexplored.Thebasicideaistoentertainwhatrelationshipswouldholdbetweenanonmathematicalsystemofinterestandnoninterferingadditionalhypotheticalobjectsthatmaybeneededtocarryrelevantmathematicalstructure.Usually,structuresforrealanalysissuffice,althoughstillmoreabstractstructuresmayariseinmodernphysics.Certaininterestingconnectionsbetweenthemodalstructuralapproachandaminimalscientificrealismareexposed(thelatteraidingtheformer),andcomparisonsaredrawnwithHartryField'snominalizationprogram.

    Keywords:analytic,appliedmathematics,modernphysics,scientificrealism,synthetic

    0.IntroductionAsisuniversallyrecognized,mathematicsthroughoutitshistoryhasbeenintimately

  • Mathematics and Physical Reality

    Page 2 of 41

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: HINARI ElSalvador; date: 15 October 2015

    boundupwithourinteractionswiththematerialworld,fromthemostmundanepracticalenterprisesofcountingandmeasuringtoourmostsophisticatedtheoreticaleffortstocomprehenditsworkingsastheunfoldingofphysicallaws.Fromahistoricalperspective,itwouldbenoexaggerationtosaythatphysicalapplicationhassustainedmathematicsasitsverylifeblood.

    Thisperspectiveisreflectedinphilosophyofmathematics.Surelyoneofthestrongestreasonsifperhapsnottheonlyreasonfortakingmathematicaltruthseriouslystemsfromtheapparentlyindispensablerolemathematicaltheoriesplayintheveryformulationofscientificdescriptionsofthematerialworldaroundus.Assoonasweundertaketoconveytheinformationthat,say,therearemorespidersthanapes,weseemtobecommittedtonumbers,orclassesandfunctions.Describingthebehaviourofthestarsandgalaxiesapparentlyinvolvesusinagooddealoftheapparatusofdifferentialgeometry.Andtoprobetheatomicstructureofmatterandtheunderpinningsofchemistryandbiology,weseemtobeinvolvedinthetheoryofHilbertspaceandageneralizedformofmeasuretheory.Whateverthedetailsofthisentanglementbetweenphysicsandmathematics,surelyapurelyformalistapproachtomathematicswouldseemfarmoreplausibleweretherenoentanglement.Ifwestrainourimaginationsandsuppose(perimpossible!)thatmathematicaltheoriesandstructureshadnomaterialapplicationsthattheycouldsomehowbeisolatedfromtheempiricalscienceswhatobjectionwouldwehavetotreatingmathematicsasapurelyformalgame?Forsuchamathematics,thequestionoftruthmightnotevenseemtoarise.

    Reflectionssuchastheseleadustoposethreeinterrelatedfundamentalquestionsconcerningmathematicsinitsapplications.Thefirstisthis:grantedthattheroleofmathematicsinordinaryandscientificapplicationsprovidessomegroundsfortakingmathematical(p.95) truthseriously(thatis,fortakingarealistasopposedtoaninstrumentaliststancetowardatleastsomemathematicaltheories),arethesetheexclusivegrounds,orarethereothers;and,ifthereareothers,whataretheyandhowpowerfularethey?Thesecondquestionreallyacompositeofquestionsaskshowmuchmathematicsisreallyindispensableforhowmuchscience?And,third,wemustask,justwhatdoessuchindispensabilitydemonstratewithregardtomathematicalobjectivityandmathematicalobjects?

    Havingnowperhapspiquedthereader'sinterestinthegeneralsubject,Imustofferadisappointingapologyinadvance:noneofthesequestionswillbeanswereddefinitively.Atbest,partialandtentativeanswerstothesecondandthirdquestionswillemerge.Astothefirst,weshallbelefthanging.

    Forthetaskthatdemandsimmediateattentionisthatofsketchinghowthemodalstructuralistframeworkalreadydevelopedforpuremathematicscanbeextendedtoappliedmathematics.How,inthefirstplace,arewetorepresentordinaryandscientificappliedmathematicalstatements?Whatarethemainassumptionsthatliebehindsucharepresentation?Havingsketchedthebasicideasandbroachedsomeofthemainproblems(in1),wemaythenturnourattentionbacktothebroaderquestionsconcerningindispensability.Asweshallsee(in2),thereisastrongcasethatmodern

  • Mathematics and Physical Reality

    Page 3 of 41

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: HINARI ElSalvador; date: 15 October 2015

    physicaltheoriesespeciallyGeneralRelativityandQuantumMechanicsrequire(thepossibilityof)mathematicalstructuressorichthateventhechancesofamodalnominalisminanyreasonablesensearedim.Thiscase,asweshallpresentit,dependsonaratherbroadinterpretationofappliedinthephraseappliedmathematics:questionsoftheoreticalphysicsofafoundationalcharacterareincluded.Butweseenorationalbasisforexcludingthem(e.g.bydrawingasharplinebetweenordinaryempiricalapplicationsandtheoreticalorevenmetatheoreticalapplications).And,itwouldbeironicindeediffoundationsofmathematicstookthestancethatfoundationsofphysicsneednotberespected!

    Infact,weshallfurtherseethatrecentworkontheimplicationsofhighersettheoryraisesthetantalizingprospectthatstrongerandstrongerabstractmathematicalprinciplesmayhaveconsequencesofphysicalsignificance,undecidableinweakertheories,suggestingthatitwouldbefutiletoseekanyaprioriglobalframeworkforappliedmathematics.(Thiswillbebroughtoutin3.)

    Aswehavealreadyseen,themodalstructuraltreatmentofpure(p.96) mathematicsinvokescounterfactualsofastrictkind:allrelevantconditionscanbestatedintheantecedents(asthecategoricityproofsshow,whereapplicable).Thus,thenotoriousproblemsconcerningwhatrelevantbackgroundconditionsaretobeunderstoodasheldfixedininterpretingordinarycounterfactuals(associatedwiththeproblemofcotenability,cf.above,Chapter2,1)didnotariseinthecontextofpuremathematics.Whenweturntoappliedmathematics,however,thereisasenseinwhichtheproblemreturnstohauntus,asweshallsoonsee.

    Inthefinalsections(4and5),variousapproachestothisproblemwillbeexplored.Howonereactstoit,infact,seemstodependonone'srealistcommitmentsconcerningnonmathematicalreality.Ifone'srealismissufficientlystrong,theproblemsseemstoevaporate.Butifthemsapproachseekstomaintainametaphysicalneutralityonsuchquestions,thornyproblemsariseintheveryformulationoftheappliedmathematicalcounterfactuals.Effortstoovercomethemraisesomeinterestingpointsofcomparisonwithrecentsyntheticapproachestophysicaltheories(motivatedbynominalistconcernsandaimedatchallengingtheallegedscientificindispensabilityofmathematicsentirely).1Asweshallsee,someofthetechnicalportionsofsuchwork(e.g.Fieldstylerepresentationtheorems)canbeofrelevancetoamsprogramme,butsuchtheoremsgobeyondwhatisrequiredincrucialways.And,fromourownperspective,thephenomenonofnonconservativenessofmathematicallyrichtheories(highlightedin3)tendstoundermineanysweepingchallengetotheindispensabilityofabstractmathematicaltheories.

    Ofnecessity,wehaveconcentratedhereonproblemsofformulationinvolvedinamstreatmentofappliedmathematics,andonsomeofthetechnicalandphilosophicalquestionsimmediatelysurroundingtheseproblems.However,thebroaderquestionsofjustificationoftheineliminablepostulatesofmsmathematicsespeciallythemodalexistenceaxiomsmustnotbeforgotten.Inthisconnection,appliedmathematicscanprovideacrucialepistemologicallink,muchasithasbeenthoughttoprovideunder

  • Mathematics and Physical Reality

    Page 4 of 41

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: HINARI ElSalvador; date: 15 October 2015

    familiarplatonisttreatments.ThepointhereistoadaptQuineanindispensabilityargumentstothemodalframework:ratherthancommitmenttocertainabstractobjectsreceivingjustificationviatheirroleinscientific(p.97) practice,itistheclaimsofpossibilityofcertaintypesofstructuresthataresojustified.Moreover,totheextentthatindispensabilityargumentscanbeadaptedtothemodalapproach,theirusualplatonistthrustisactuallyundermined:afixedrealmofabstractobjectsisnotreallyshowntobeindispensable;ratheritistheweakerclaimsofpossibilitythatoccupysuchaposition.

    1.TheLeadingIdeasMuchasinthecaseofpuremathematics,wemayattempttorepresentordinaryappliedmathematicalstatementsasellipticalformodalconditionalsofaspecifiedform.Suchconditionalsspelloutwhatwouldobtainwerethereanysuitablyrich(pure)mathematicalstructureinadditiontotheactualnonmathematicalobjectsorsystemstowhichweareapplyingmathematicalconceptsandtheories.Herethemodalityofthecounterfactualisalogicomathematicalone,justasinthetreatmentofpuremathematics.Althoughwemaybeapplyingmathematicstophysicalobjects,wearenotautomaticallyconstrainedtoholdphysicalornaturallawsfixedincontemplatingapurelymathematicalstructureinadditionforthepurposesofcarryingappliedmathematicalinformation.(Thus,forexample,wearefreetoentertainthepossibilityofadditionalobjectsevenphysicalobjectsofagiventype,toserveascomponentsofamathematicalstructure.Suchobjectscouldbeconceivedasoccupyingacertainregionofspacetimebutasnotsubjecttocertaindynamicallawsnormallystateduniversallyforobjectsofthattype.)Justwhatmustbeheldfixedisamattertowhichweshallreturnbelow.

    Buthow,itmaybeasked,cananadditionalstructureforpuremathematics(suchasansequenceoracompleteorderedseparablecontinuum)bebroughttobearonmaterialobjects?Imaginingsuchastructurewhetherthoughttooccupyspacetimeornotdoesnogoodunlesswecanalsospeakofrelationsbetweenthematerialsysteminquestionanditemsofthemathematicalstructure.Thus,torepresentsimplecounting,forexample,itdoeslittlegoodtoentertainthepossibilityofansequenceinadditiontotheactualobjectstobecountedunlesswecanalsospeakofcorrespondencesbetweenthoseobjectsandtheitemsservingasnumbersofthehypotheticalsequence.

    Onesolutiontothisproblemistomoveimmediatelytomodelsof(p.98) settheory,thatis,toentertainhypotheticallymodelsofasuitablesettheoryinwhichactualobjectsaretakenasurelements.Thenwehavetheoperationofsetformationappliedtothoseactualobjects,andtheusualapparatusofmappingsandnumbersystems(settheoreticallyconstrued)isavailable.Thismightbecalledtheglobalapproach,since,ifthesettheorychosenissufficientlyrich,itcanbeinvokedtohandlevirtuallyanypresentorforeseeableinstanceofappliedmathematics.

    Whilethereisagooddealtobesaidinfavourofsuchanapproach(especiallyconcerningitsintuitiveness,itspower,anditssimplicity),thereisalsoindependentinterestinpursuingapiecemealapproach,inwhichwelimitthehypotheticallyentertained(pure)mathematicalstructurestoalevelthatisactuallyneededforthepurposesoftheapplicationinquestion.Inpart,suchanapproachismotivatedbyanindependentinterest

  • Mathematics and Physical Reality

    Page 5 of 41

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: HINARI ElSalvador; date: 15 October 2015

    inthesecondleadingquestionposedabove(howmuchmathematicsforhowmuchscience),whichthepiecemealapproachisforcedtoface.Therearealsolegitimateconcernsovertheconsistencyofpowerfulsettheories,andovertheirabstractness.Dowereallyneedtoiteratethepowersetoperationbeyondanythingthatwecouldbesaidtoexperience,beyondsaythelevelofspacetimeregions?Ifso,howfarbeyondsuchalevelneedwego?2

    Ifwepursuethepiecemealapproach,howarewetobringahypotheticallyentertainedmathematicalstructuretobearonthematerialworld?Themoststraightforwardandgeneralwayissimplytocontinueemployingsecondorderformulationsaswehaveinthetreatmentofpuremathematics.Thisallowsustospeakofclassesofwhatevernonmathematicalobjectswerecognizeandofrelationsbetweensuchobjectsandthoseofahypotheticallyentertainedpuremathematicalstructure.Insuchaframework,therepresentationofagreatdealofappliedmathematicsisthenquitestraightforward.

    Toillustrate,letusconsiderasimplestatementofnumericalcomparison,say,Therearemorespidersthanapes(andadefinitefinitenumberofeach).(Theparentheticalclauseisaddedsothatsomeapparatusofnaturalnumbersisrequired.)Usingthesecondorder(p.99) formalismofChapters1and2,withourlanguageexpandedtoincludetherelevantnonmathematicalpredicates(inthiscase,justspider(S(x))andape(A(x)),wecanrepresentthestatementby,

    Xf[(X,f)nm(isa11correspondencebetweentheclassofallxsuchthatS(x)andthefpredecessorsofninX&isa11correspondencebetweentheclassofallxsuchthatA(x)andthefpredecessorsofminX&m

  • Mathematics and Physical Reality

    Page 6 of 41

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: HINARI ElSalvador; date: 15 October 2015

    wemuststipulatefromtheoutsetthattheonlypossibilitiesweentertaininemployingthearesuchastoleavetheactualworldentirelyintact.

    Ofcourse,inmostapplicationsofmathematics,onlyaportionoftheactualworldisinquestion,andinsuchcasesitwouldsufficetopermitabroaderinterpretationofthe,allowingworldswhich(p.100) differfromtheactualeveninmaterialrespectssolongassuchdifferencesoccuronlyoutsidetheregionofapplication.Insuchcases,thereisnoreasoninprinciplewhytheatomiccomponentsofhypotheticallyentertainedpuremathematicalstructurescouldnotthemselvesbetakentobematerialobjectsofthesamesortasoccuractually.Moreover,insuchcases,roomcanbeallowed(literally)forfurther(mutuallydiscrete)concreteobjectstoservetheroleoforderedktuplesofthehypotheticalmathematicalobjectstogetherwithwhateveractualobjectsarerecognized.AndthenthesecondordervariablescanbeinterpretednominalisticallyinthemannerofChapter1,6.Still,itwillbenecessarytostipulatethatwhateverextramaterialobjectsareentertainedforsuchpurposesarecausallyisolatedfromtheregionofactualitytowhichthemathematicsinquestionisbeingapplied.

    Obviouslytherearelimitstosuchanapproach,sinceappliedmathematicsmustalsomakeroomforcosmology,indeedforanyscienceinwhichthelargescalestructureofspacetimeisatissue.Insuchcases,itmaybenecessarytoentertainobjectsascomponentsofpuremathematicalstructureswhicharenotthemselvesinspacetime.Theoptionshereareboundupwithotherissuesconcerningtherealityofspacetime,and,atthispoint,wewishonlytoalertthereadertothequestion.Thetopicwillariseagainbelow,atwhichpointweshallhavemoretosayonit.

    Alreadyitshouldbeclearthateventhemostelementaryappliedmathematicsonthemodalapproachisintimatelyboundupwithconditionsstipulatingthatatleastpartof(perhapsthewholeof)theactualworldbeheldfixed,whenreasoningabouthypotheticallyentertainedmathematicalobjects.Sofar,wehavestatedsuchconditionsinrathergeneral,globalterms,bringinginexplicitreferencetotheactualworldortheactualconditionorstateof(somepartof)theactualworld.Astermssuchascausallyisolatedsuggest,conditionsoffixityornoninterference,thusphrased,appeartoembodysomeratherstrongassumptionsofphysicalrealism,especiallytheassumptionthatitevenmakessensetorefertotheactualworld,ortheconditionofthissystemofphysicalobjects,apartfromanyrelativizationtoalanguageortheoryorconceptualframework,etc.Thisraisesoneofthemostinterestingquestionsthataninquiryintoappliedmodalmathematicsuncovers:Isthisapparentdependenceofthecogencyofappliedmodalmathematicsonnontrivialassumptionsofphysicalrealismagenuinedependence,(p.101) orcanitinprinciplebeeliminated?And,ifeliminationprovestobeimpossible,justwhatconclusionshouldbedrawnastothenecessarycommitmentsofthemodalstructuralapproach?Weshallreturntothesequestionsbelow(4),afterhavingfirstdealtwiththerelativelymoretractableissuesconcerningthestrengthofsuitablemathematicalframeworks.

    Beforeproceeding,letusnoteafurtherassumptionimplicitinappliedmodalmathematics.Justasinthecaseofpuremathematics,theremustalsobeaxiomsofmodalexistenceof

  • Mathematics and Physical Reality

    Page 7 of 41

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: HINARI ElSalvador; date: 15 October 2015

    thepossibilityofstructuresfulfillingtheconditionsoftheantecedentsofthecounterfactuals.Withoutsuchaxioms,ofcourse,allcounterfactualswiththeantecedentinquestioncouldbevacuouslytrue,andthetranslationpatternwouldbreakdown.Here,andinwhatfollows,itshouldbeunderstoodthattheappropriatemodalexistencepostulatemustaccompanyafullyexplicitformalizationoftheappliedmodaltheory.(Itshouldbynowbeclearhowtowriteoutsuchpostulates,andwewillnotstoptodoso.)Duetotheincreasinguncertaintiesofsuchpostulatesaswemovefurtherfromtherealmofexperience,thereisanaturalmotivationonthemodalapproach,asontheplatonistforseekingtocarryoutasmuchappliedmathematicsaspossiblewithinaminimalmathematicalframework.Someaspectsofthiswillbeconsideredinthefollowingsections.

    Returningtoillustrations,letusconsiderscalarmagnitudessuchasmass(say,nonrelativistic,forsimplicity).Onstandardplatonisttreatments,suchaquantityisrepresentedasarealvaluedfunctiondefinedonadomainofobjects,eitherparticles,orspacetimepointsorregions,togetherwithagivenoperationallyspecifiedunit.Supposetheworst,thateachspacetimelocationistobeassignedarealmass(ordensity).Onthemodalstructuralapproach,itsufficestoentertainasingleseparableorderedcontinuum(asdefinedinChapter1,5),whoseelementsserveasrealnumbers.Thesenowcanservethedoubleroleofrepresentingspacetimepoints(viaapairingfunctionwhichallowsustospeakoforderedquadruplesofrealsintheusualway)andofrepresentingthevaluesofscalarquantities.Aquantitysuchasmassisthenasecondorderobjectandcanevenbetakenasasubsetofreals,eachsuchcodinganargumentandcorrespondingvalueviathefixedpairingfunction.Thus,torepresentastatement,ordinarilywrittenas

    (p.102) wheremisafunctionconstantintroducedasabbreviatingmass,wecanwrite(followingthenotationofChapter1,5):

    (3.2)wheretheclauseinquotesmustbespelledoutasfollows:

    (i)Ftakeson(withinlimitsofexperimentalaccuracy)allactuallymeasuredvaluesexperimentallydeterminedasvaluesofmass;(ii)Fagrees(withinexperimentallimits)withalltheoreticallypredictedvaluesofmassunderrealworldconditions(thetheorybeingNewtonianmechanics).

    Ifouroriginalsingularstatementisunderstoodasalowlevelempiricaloneonlylooselytiedtoatheory,asexpressedinclause(ii),theseconditionsareprobablyadequate.However,ifthestatementisunderstoodaspartofanapplicationofawholetheoryasitwouldbeinanysophisticatedapplicationofmathematics,thenafurtherconditionmustbeaddedtotheeffectthatthemassrepresenting(mathematical)objectsatisfiesthelawsofthetheory,orispartofamodelofthoselaws.(Whetheranintrinsicsecondorder

    m(x) = r,

    Xf[( ) F(FrepresentsmassRA2)X (

  • Mathematics and Physical Reality

    Page 8 of 41

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: HINARI ElSalvador; date: 15 October 2015

    statementofthisoveranRA2structurecanbegiven,orwhetherascenttoricherstructuresisrequired,willdependonthedetailedformulationofthetheoryinquestion.)Givensuchacondition,theutilityofnormalmathematicalapplicationsinpermittinginferencesastofurtherbehaviourofthesysteminquestionwillbeaccountedfor,muchasitisonfamiliarplatonist(modeltheoretic)treatments.

    Intuitively,(3.2)canberead,Werethereanyseparableorderedcontinuum(noninterferingwiththeactualmaterialworld),therewouldbeamassrepresentingfunctionassigningthevaluer(ofthecontinuum)topointx,wheremassrepresentingisspelledoutassuggested.Nowitshouldbenotedthatthereferenceintheseclausestomeasuredvaluesofmassandpredictedvaluesofmassmustbeinterpretedintermsofoperationalproceduresandsymboliccalculations.Sincetheseconditionsenterintothehypotheticalconditionalsdesignedtoreplaceapparentreferencetomathematicalobjects,clearlyvaluescannotbetakenasreferringtomathematicalobjects.(Hencethehyphensinvaluesofmass.)Rather,measuredvaluesshouldbeunderstoodintermsofconcretepointerreadings,(p.103) generallyassociatedwithcertainsymbolsforrealnumbers.(Morerealistically,theywouldbeassociatedwithsymbolsforrationalnumbers;and,insomeinstances,somesequenceofsuccessivelymoreandmoreaccuratemeasurementsmaybespecifiedforgeneratingarealnumber.)Calculationsmaybeinvolvedaswell(astheytypicallyareinanysophisticatedmeasurementprocedure),andthesegeneratenumbersymbolsaswell(e.g.decimalorbinaryrepresentations,etc.).Thesethentakeonadefinitemeaningwhenahypotheticalstructureforthereals)isentertainedinaconditionalsuchas(3.2).(Togetherwithanyseparableorderedcontinuumthereisanassociatedcorrespondencebetweennotationsusedinpracticeandthepointsofthecontinuum.Thisisinducedbyarepresentationofrationalswithinthecontinuum(cf.Chapter1,5).)

    Noristhisappealtooperationalproceduresandcorrespondencesbetweennotationsandvariouswaysofidentifyingrealnumbersandsoforthapeculiarityofamodalstructuraltreatment.Standardplatonisttreatmentsofappliedmathematicsimplicitlymustinvokequitesimilarmachinery,andmustrecognizearelativityofreferencetowaysoftakingnaturalnumbers,rationalnumbers,realnumbers,etc.Forthemostcommonformofplatonism,allsuchobjectsaresettheoreticconstructions,and,ofcourse,aninfinitevarietyofthesecanservethepurposesofmathematicalpracticeequallywell.Withinsettheory,ordinaryreferencetoarealnumber,say,isrelativetoaconstrualofthenaturalnumbersassets,toapairingfunction,toconstructionsofnegativeintegersandrationals,andtoconstructionsofreals(e.g.viaDedekindcuts,orCauchysequences,etc.).Themodalstructuralistmerelydoesallthisrelativityonebetterindispensingwithanyactualmathematicalobjectsatallintermsofwhichreferencetomathematicalobjectsisunderstood.

    Inanyparticularcase,whetherahypotheticallyentertainedmathematicalobjectrepresentsaphysicalmagnitudeistosomeextentavaguematter,duetotheneedtotakeintoaccounttheapproximatenatureofmeasurementproceduresinmostscientificapplications.Thisis,ofcourse,reflectedinthereferencestolimitsofexperimental

  • Mathematics and Physical Reality

    Page 9 of 41

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: HINARI ElSalvador; date: 15 October 2015

    accuracyintheaboveclauses.Thismeansthat,ingeneral,therewillbemultiple,extensionallydivergentmathematicalobjects(functions)thatqualifyequallywellasrepresentationsofamagnitude.Whether,forinstance,torepresentthepathofanobjectthroughspaceasacontinuousfunctionoftimeoras,say,apiecewisecontinuousone,orevenahighlydiscontinuousone,orwhetherevento(p.104) representtimeasacontinuuminthefirstplace,aremattersunderdeterminedbyanydirectexperimentalprocedures.Thus,choicesmustbemadeonothergrounds,andprobablythemostdecisivegroundsinmanycasesareconsiderationsofsimplicityandconvenienceconsiderationssuchasthatawelldevelopedmathematicaltheoryofcontinuousfunctionsexistsenablingustoperformvitalcalculations,andthat,onsuchpracticalgrounds,weseekatheorycouchedinmathematicaltermsthatwecanhandle.(AsChihara[1973]bringsout,itisjustthisslackthatraisestheprospectsofconstructivistsubstitutesforclassicalappliedmathematics.)This,inturn,raisesthornyquestionsconcerningtheconventionalityofourscientifictheories,questionsthatcertainlycannotberesolvedhere.Inmyownview,itseemsobviousthatanysophisticatedapplicationofmathematicstothematerialworldinvolvesasignificantdegreeofidealization,whichimpliesasignificantdegreeofconventionalchoicebasedonpragmaticconsiderations.Atthesametime,thisbynomeansunderminestheobjectivityofourscientifictheories,providedthatthatobjectivityisproperlyunderstood.While,ingeneral,wecannotsaythattherearesuchandsuchmagnitudesinnaturerepresentedpreciselywithinauniquemathematizedtheory,westillmaybeabletosaythatnatureissuchastopermitrepresentationwithinarangeofmathematicalmodels,andthatthisrangeincludessuchandsuchmathematicallyprecisedescription.Perhapsthisisalltheobjectivityweeverrequire.Inanycase,withoutpursuingthisfurtherhere,sufficeittosaythatanythoroughaccountofappliedmathematicsmustatsomestagecometogripswiththesequestions.Theyarebynomeanspeculiartoastructuralisttreatment.

    Withtheseessentialsoftheapproachinmind,letusnowturntothequestionofhowrich,mathematically,ourhypotheticalstructuresneedtobeinordertosupportapplicationsofourbestmodernphysicaltheories.

    2.CarryingtheMathematicsofModernPhysics:RA2asaFrameworkAshasalreadybeenindicated,theRA2frameworkisknowntobeaverypowerfultheorywithregardtotherequirementsofapplied(p.105) mathematics.4Moreover,aswillbebroughtoutbelow,thereisasenseinwhichitdefinesalimitofnominalism,alimittothemathematicalrichnessofwhatcanbeconceivedofasconcretestructures.Thus,therearespecialreasonsforfocusingontherepresentingpowersofRA2.Canitreallydojusticetomodernphysicaltheories,especiallyGeneralRelativityandQuantumMechanics?Afullscaletreatmentofthiswouldtakeustoofarafield;butabriefglimpsewillsufficetocallattentiontosomeofthefascinatingissuesthatariseinthisarea.

    InthecaseofGeneralRelativity,mattersarecomplicatedbythefactthatthetheoryisstandardlypresentedintwoverydifferentways.Ontheonehand,thereistheextrinsicpresentationfamiliartophysicistsinwhicheverythingiscarriedoutexplicitlyintermsofcoordinatesystemsandtransformationsamongthem;ontheother

  • Mathematics and Physical Reality

    Page 10 of 41

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: HINARI ElSalvador; date: 15 October 2015

    handthereistheintrinsicorinvariantpresentationintermsofabstractgeometricobjectsmakingnoreferencetocoordinatesystems.5Now,itistheintrinsicpresentationthatismathematicallymoreelegantand,moreover,canbearguedtoprovideaclearerideaofthecontentofthetheoryandofsuchmattersashowitcompareswithotherspacetimetheories(e.g.Newtoniangravitation).However,ordinaryphysicalapplicationsmakeuseofcoordinatesystems,sothatarepresentationoftheextrinsicpresentationmayberegardedasadequateformostpurposes.

    Solongasweremainwiththeextrinsicpresentation,thereislittledoubtthatthesystemRA2ispowerfulenoughtoexpressandderivewhatisnormallyrequired.(Thatis,say,standardtextscouldbesystematicallytranslatedintoRA2andallresultsderived.)Geometricobjectsvectors,tensors,etc.aretreatedintermsoftheircomponentsinacoordinatesystemandtherulesfortransformingthemtootheradmissiblecoordinatesystems.Coordinatesystemscanbeviewedas11mapsfromregionsofspacetimeto4;andthecomponentsofageometricobjectaregivenbysuitablycontinuousrealvaluedfunctions.(Forexample,thecomponentsofatangent(p.106) vectorfieldTtocurve(=(u)beingasmoothmapfromanintervaloftospacetime),relativetocoordinatesxiconsistinfourfunctions, ,i=0,1,2,3.)Anysuchfunctioncangenerallybecodedbyasinglereal,beingdeterminedbyitsbehaviouronacountablesubdomain.6(Thinkofthesimplestcaseofacontinuousfunctionfromto:arealcancodeitsbehaviouratrationalarguments.Evencountablymanydiscontinuitiescanbeallowed.Inthecaseof,say,tensorfieldson(aregionof)spacetime,acountablesubdomainof4,asdescribedinagivencoordinatesystem,sufficestodeterminethefield.Solongasweremainwithinasinglecoordinatesystem,itmakesnodifferencewhetherweregardthefieldasdefinedon(partof)spacetimeoron(partof)4itself,viathecoordinatefunctions.Inaninvariant,coordinatefreepresentation,however,thedistinctionbecomessignificant,andinsomecasesleadstogreaterabstractness,sincewethenmustineffectkeeptrackofallcoordinatesystemsatonce.)Thetransformationsdetermining,say,ageneraltensoroperateonfinitelymanycomponentfunctions,hence,bycoding,onfinitelymanyreals,andyieldrealscodingtransformedfunctionsasvalues,clearlywithinRA2.And,asjustsuggested,a(suitablycontinuous)tensorfieldcanbedescribed,relativetoacoordinatesystem,byafunctionwhichgivesthecomponentfunctionsasvaluesonacountabledensesubdomainof4.Hence,atensorfieldcanbecodedasasinglerealnumber!Andalltheusualoperationsonsuchfields,includingcovariantdifferentiation,canbeintroducedasfunctionsfromrealstoreals,withinRA2(which,recall,includesthefullsecondordercomprehensionscheme).ThismuchshouldatleastmakeplausibletheclaimthatallthemathematicsactuallyrequiredinanyordinaryphysicalapplicationofGeneralRelativitycanbecarriedoutwithouttranscendingthirdordernumbertheory(equivalentlyRA2).(And,bymakingsufficientrelianceonapproximatingfunctions,agreatdealcanprobablybecarriedoutinapredicativesubsystemofanalysis,i.e.ofPA2.)7

    Forordinaryapplications,thestorycouldendhere.However,notallapplicationsneedbeordinary.Thisforcesustoraiseadifficult(p.107) question:istheintrinsicformulationreallydispensableinfavouroftheextrinsicforallscientificpurposes?Evenif

    d( )xidu

  • Mathematics and Physical Reality

    Page 11 of 41

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: HINARI ElSalvador; date: 15 October 2015

    alltheusualsortsofapplicationsinvolvingspecificcalculationscanbecarriedoutinRA2orinsomeweakersystem,thisdoesnotsettlethematter,fortherearequestionsoftheoreticalimportancethatgobeyondsuchapplications,butwhichamathematicalframeworkoughttobecapableofrepresentingifitistodojusticetothescientificenterprise.Asacaseinpoint,relevantinthepresentcontext,considerthewholeissueofrelativityprinciplesandrequirementsofgeneralcovariance,thoughtbymany(includingEinstein)todistinguishGeneralRelativityfromflatspacetimetheories.Remainingatthelevelofcoordinatebasedformulations,onecanreadilybemisledintothinkingthatGeneralRelativitydiffersfromflatspacetimetheoriesinsatisfyingsuchaprinciple,sinceoneconsiderstransformationsamonggeneralcurvilinearcoordinatesratherthanaprivilegedclassofinertialsystems.However,ifoneconsidersintrinsicformulations,itbecomesevidentthatthisismistaken,andthatthedemandofgeneralcovariancethatdynamicallawsretaintheirformunderarbitrarytransformationsamongcoordinatesystemsreallycomestonothingmorethanthedemandthatthoselawsbegivenanintrinsiccoordinateindependentformulation,somethingthatispossibleforflataswellascurvedspacetimetheories.8Infact,ifonelooksatspacetimetheoriesmodeltheoretically,oneseesthatextrinsicformulationsintermsofequationsinvolvingcoordinatespickoutawelldefinedclassofmodelsonlyrelativetoachoiceofcoordinates.Inadifferentsystemofcoordinates,thesamedifferentialequations(e.g.onelookinglikeageodesicequation)willpickoutadifferentclassofgeometricobjects(e.g.tangentvectorfields),henceadifferentclassofmodels.9Intrinsicformulationsautomaticallyovercomesuchproblems.

    Now,ifweunderstandappliedmathematicsbroadlyenoughto(p.108) includethetheoreticalinsightthatsuchcomparisonsyield,whatevermathematicsisrequiredintheabstractintrinsicformulationcannotreadilybedismissedasdispensable.Granted,thisisanunusuallybroadinterpretationofappliedmathematics.Butthetheoreticalunderstandinginquestionisattheheartofthesciences,and,ifadispensabilityargument(totheeffectthatmathematicalstructuresricherthanXarenotneededtodonaturalscience)istocarryphilosophicalforce,suchconsiderationsmustbetakenintoaccount.

    Thus,wecannotavoidconsideringtheproblemofrepresentingthemathematicsoftheintrinsicpresentation.Whilethemattercannotbedefinitivelysettledhere,thesituationseemstobethis:theabstracttheoryofmanifoldstranscendstheRA2framework,butessentiallyonlyattheearlieststages,namelyintheabstractcharacterizationofmanifoldsthemselves.Oncegivenamanifold,itappearsthat,infact,withsufficientrelianceoncodingdevices,thesystemRA2iscapableofrepresentingtherestofthemathematicalsuperstructureofabstractdifferentialgeometryemployedintheintrinsicpresentationofGeneralRelativity.Moreover,agreatmanyparticularmanifoldsactuallyencounteredinspacetimephysicscanbeintroducedexplicitlyinRA2,makinguseofsecondorderlogic.

    Theintrinsicformulationbeginswiththeideathat,atleastlocally,spacetimehasthestructureofan4dimensionalsmooth(C)manifold.AnndimensionalCmanifoldconsistsinanarbitrarynonemptysetMtogetherwithamaximalsystemofcharts11

  • Mathematics and Physical Reality

    Page 12 of 41

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: HINARI ElSalvador; date: 15 October 2015

    mapsfromsubsetsUofMtoopensetsofnsuitablyinterrelatedsoastoinducethelocalsmoothnessstructureofEuclideannspaceonM.10Moreprecisely,annchartisapair(U,f)whereUMandfisa11mapfromUontoanopensetofn;annsubatlasonMisafamilyofnchartssuchthat(1)theycoverM,i.e.theunionofthedomainsofthechartsisM;(2)foranytwodistinctpointsp,qofM(p.109) therearecharts(U1,f),(U2,g)withpinU1,qinU2andU1U2=(Hausdorffproperty);and(3)anytwocharts(U1,f),(U2,g)ofthefamilyarecompatible,meaningthatfg1andgf1aresmooth(C),wheneverdefinedonopendomains.Finally,annatlasisobtainedfromannsubatlasbyaddingallnchartscompatiblewithallthoseofthensubatlas.MtogetherwithannatlasonMisanndimensionalCmanifold.

    Notethat,whilewecouldperfectlywelltakeMtobe,i.e.toconsistofpointslabelledasrealnumbersforthepurposesofacodinginalogicalformalism(whilestillabstractingfromanyundefinedmetricortopologicalstructure),andwhilewecanalwayscodethecompositemapsfg1,etc.asreals(beingdeterminedbytheirbehaviouronacountabledensesubsetofn),wehavenomeansofcodingthefofthechartsasreals.ChartsaresecondorderRA2objects.Thismakesmaximalfamiliesofcharts(atlases)essentiallythirdorderoverthereals,whichiswhythegeneralnotionofmanifoldtranscendsRA2.

    Moreover,whenwedevelopcalculusonmanifolds,itappearsthatwearebeyondRA2onceandforall,for,onceweleavecoordinatesbehind,theverynotionofavectorbecomesapparentlytooabstract:Avectorisstandardlytakenasaderivativeoperator(derivation),i.e.asamapfromallrealvaluedsmoothfunctionsaboutamanifoldpointmtothereals,meetingtherequirementsoflinearity((f+g)=(f)+(g),(af)=ay(f))andtheLeibnizianproperty((fg)=(f)g(m)+f(m)(g)).Assuchvectorsarethirdorderobjectsoverthereals,beyondRA2,andthentensorsandmoregeneralderivativeoperatorsareatleastasabstract.However,withoutappealingtocoordinates,wecanequivalentlytakevectorstobetangentvectorstosmoothcurves(fromaconnectedintervalIoftothemanifolddomainM).Givenasmoothcurveands0Iwith(s0)=p,atangentvector|ptoatpcanbeintroducedvia

    forallsmoothrealvaluedfunctionsfonaneighbourhoodofp.(N.B.ThenotionsofsmoothnessformapsfromtoMorMouttoareintroducedviathesmoothnessofcompositemapsfromtonorfromntogivenbythechartfunctionsandtheirinverses.)Now,fisasmoothfunctionfromto,andthuscanbecodedbyareal.Moreover,thederivativeoperatorontherightiscontinuousso(p.110) it,too,canbecodedbyareal.Thus,abstractvectorsarebroughtdowntotheleveloffirstorderRA2objects.(TheproofthateveryoriginalabstractvectorcanbetakenasatangentvectortoasmoothcurveinMisstandard,but,unfortunatelyfortheRA2reductionist,itcannotbestatedinRA2.)

    Butnow,tangentspaces,dualspaces,tensors,tensorfields,covariantderivativeoperatorsinsum,allthefurtherapparatusneededtocarryouttheintrinsicformulation

    (f) = (f ) ,pdds

    s0

  • Mathematics and Physical Reality

    Page 13 of 41

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: HINARI ElSalvador; date: 15 October 2015

    ofGeneralRelativitycomewithinthescopeofRA2.ThetangentspaceVmatapointmofthemanifoldisthesetofalltangentvectorsatm,andisavectorspace(ofdimensionn)overthereals.Itcanbetakenasasetofrealsviathecodingofvectorsjustindicated.ThedualspaceVm*oflinearrealvaluedmapsonVmisthenalsoidentifiableasasetofreals:eachinVm*isdetermined,bylinearity,byitsactiononfinitelymanybasisvectorsinVm(whichcanbechosenarbitrarilyfromanycoordinatesystemaboutm);hencecanbecodedbyareal.Next,ageneraltensorasamultilinearmapTfromfinitecrossproductsoftheformVmVm...VmVm*Vm*...Vm*intoRisdeterminedbyitsactiononbasisvectorsinthecomponentspacesmakingupthedomainofT;henceTitselfcanbecodedasasinglereal.Thus,smoothvectorandtensorfieldsmapsassigningvectorsortensors,respectively,topointsofopensubsetsofMcomewithinthepurviewofRA2,assetsofreals.(HerewemakeuseofreallabelsofthepointsofM.Thenafieldcanbecodedasasetoforderedpairsofreals,henceasasetofreals.)

    Withonemorestepwehaveessentiallyallthatisneeded:wemusthaveawayoftalkingabout(quantifyingover)covariantderivativeoperators,orconnectionsonM.SuchaconnectionDisintroducedasanoperatorassigningtoCfieldsXandY,withadomainA,aCfieldDxYwithdomainA,obeyingfourconditions(ensuringappropriatelinearityandLeibnizianbehaviour).Primafacie,suchoperatorsarethirdorderoverthereals,andbeyondRA2byonelevel.However,theconditionsonDimplythatitisuniquelydeterminedinanyopendomainbyitsactionDeiejonafixedfinitebasefielde1...enofindependentCvectors.11Sincetheei(asfields)are(p.111) codedassetsofreals,thismeansthat,onthedomainofthesefields,Dcanberepresentedasasetofrealscodingathreeplacerelation(thatis,eiejDeiej).Now,ifoneassumes(asoneusuallydoesinthecontextofGeneralRelativity)thatthemanifoldMisseparablei.e.thatitcanbecoveredbycountablymanychartdomainsthencountablymanysuchthreeplacerelations,codableasasinglesuch,sufficetorepresentDthroughoutthemanifoldM.Inthismanner,evenquantificationoverconnectionsisbroughtwithinthescopeofRA2.

    Still,remarkableasallthismaybe,wearenotabletostatemuchlessproveinRA2fundamentalgeneraltheoremsonmanifolds,suchasthetheoremthatthereexistsauniqueRiemannianconnectionona(semi)Riemannianmanifold,orthetheoremthatametrictensorgabonamanifolddeterminesauniquegeneralderivativeoperatorcompatiblewiththismetric.ForrecallthatthegeneralnotionofmanifoldisnotavailableinRA2.Thebestwecandoisintroduceparticularmanifoldse.g.themanifoldn,orthenspheremanifold,etc.byexplicitlyaxiomatizingasystemofcharts.(Forinstance,insecondorderlogic,wecanwritedownanexplicitdefinitionofthepredicateisachartofthenmanifoldatlas:wesimplyspecifytheidentityfunctionsonopensetsofn(asapointsetwiththeusualtopology),whichgivesaCsubatlas;thenwespecifythatanychartcompatiblewithallthoseofthesubatlasarechartsofthenmanifoldatlas.)Again,forordinaryapplications,suchproceduresareprobablyadequate.Butwithoutfundamentaltheoremsondifferentiablemanifoldsofthesortmentioned,wecanhardlyclaimtodojusticetotheintrinsicviewpoint.

  • Mathematics and Physical Reality

    Page 14 of 41

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: HINARI ElSalvador; date: 15 October 2015

    (p.112) Ourdiscussion,thusfar,haspresupposed,forthesakeofargument,thatvariouscodingdevicesarelegitimateinreducingmathematicalmachinerytolowlevelsofabstractionoverthenaturalnumbers.However,itshouldberecognizedthatdelicateproblemsofjustificationariseinconnectionwithsuchdevices.Thesepertaintothestatusofthemathematicalknowledgeemployedintheintroductionofacodinginthefirstplace,e.g.whenonesaysthatanabstractoperatorisuniquelydeterminedbyitsactiononfinitelymanyorcountablymanyargumentsofacertainsort,andthereforecanberepresentedby,say,arealnumberorasetofreals,etc.Inwhatsenseofcouldcouldamathematicalphysicistcarryoutallrelevantderivationsandcalculationswithinthecodingframework,withouteversteppingoutsideinordertoberemindedofwhatonearthisreallygoingon?Sinceournonreductionistconclusionscanbebasedonthemoredecisivecasethat,evenwithcoding,relevantmathematicsgoesbeyondeventhefullpowerofRA2,wehavepreferredtodevelopthatcasewithoutexaminingthedelicateepistemicproblemsraisedbyappealstocoding.But,webelieve,thoseproblemsaregenuineanddeservefurtherinvestigation.

    WhenwecometoQuantumMechanics,thesituationisatleastasproblematicasinthecaseofGeneralRelativity.Inmanyordinaryapplications,agreatdealofthemathematicscancertainlybecarriedoutwithintheframeworkofRA2,butonceweconsidermoretheoreticalandfoundationalmatters,weseemtorequiremoreabstractstructures.Instandardcases,quantumstatescanberepresentedassquareintegrablecomplexvaluedfunctionsonanunderlyingrealspace,andmoreoveracountablecollectionofcontinuousfunctionsservesasabasisintheHilbertspaceofsuchfunctions.12Thus,arbitraryquantumstatesinsuchaspacecanberepresentedbyacountablesequenceofbasisfunctions,eachcodableasareal,hencebyareal.Linearoperatorsonsuchfunctionsarethen,primafacie,atthelevelofsecondorderRA2variables,asarethe(closed)subspacesoftheHilbertspace(identifiablewiththeprojectionoperators).Ifwenowconsiderprobabilitymeasurescountablydisjointlyadditive[01]valuedfunctionalsonthesubspacesoftheHilbertspacerepresentingthesystem(where,heredisjointnessofsubspacesmeanstheyareorthogonal)wehave,primafacie,climbedpast(p.113)RA2.However,givenseparabilityoftheHilbertspace,13eachsubspaceScanitselfbeidentifiedwithacountablecollectionfi=CofbasisvectorssuchthatCspansSandCisdenseinS.And,giventhateachofthefiiscodableasareal,soiseachsubspace.Andthen,anyprobabilitymeasurecanberepresentedasafunctionfromrealstoreals,i.e.atthesecondorderinRA2.

    Infact,duetoanimportanttheoremofGleason[1957],allmeasuresonthesubspacesofaHilbertspaceofdimension3aregivenbythequantummechanicalalgorithm,thatis,theyareinducedbythepureandmixedquantumstatestogetherwiththeusualrulesforcalculatingprobabilities.Hence,againundertheaboveassumptions(separabilityoftheHilbertspaceandrealcodabilityofbasisfunctions),themeasuresthemselvescanbetakenasreals(i.e.codingthedensitymatriceswhichrepresentthepureandmixedstatesontheusualpresentationofthetheory).Thus,reasoninginvolvingprobabilitymeasuresinthevastpreponderanceofordinaryapplicationsofquantummechanicscanbecarriedoutinRA2,andprobablyevenintheoriesconsiderablyweakerthanRA2.

  • Mathematics and Physical Reality

    Page 15 of 41

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: HINARI ElSalvador; date: 15 October 2015

    However,inordertoarriveatthisconclusion,weassumedthattheHilbertspacerepresentingthephysicalsystembeseparable.And,furthermore,totakeadvantageofGleason'stheorem(permittingtherepresentationofmeasuresasrealsratherthansetsofreals),weimplicitlymadeuseofenoughmathematicstoproveGleason'stheorem.Infact,theproofofGleason'stheoremservesasaniceillustrationofthepotentialphysicalsignificanceofmathematicsthattranscendsRA2.

    AsatheoremaboutprobabilitymeasuresonthesubspacesofseparableHilbertspaces(ofdimension3),Gleason'stheoremcansurelybeprovedinRA2.AllthehardworkintheprooftakesplaceinEuclideanthreedimensionalspace;moreover,everyinfinitedimensionalseparableHilbertspaceisisomorphicto2,thespaceofinfinitesequences(x1,x2...,xk,...)ofcomplexnumberssuchthat(p.114) k=1|xk|2isfinite,withtheinnerproductof(ak)and(bk)givenbyk=1ak*bk.(ThisfactcanbeprovedinRA2itself,makinguseofanintrinsicsecondorderstatementofwhatitistobeaninfinitedimensionalseparableHilbertspace,onexactlytheplanofthesecondorderlogicaldescriptionofmathematicalstructureswehavebeenusingthroughout.Secondorderlogicsufficeshere,takingvectorsinaHilbertspacetobefirstorderobjects.)Andeverythingweneedtosayaboutmeasuresonthesubspacesof2canbesaidwithinRA2alongthelinesalreadyindicated.

    However,whathappensiftheassumptionofseparabilityisdropped?Theaboverepresentationviacodingthenclearlybreaksdown.Yet,thereisageneralizationofGleason'stheorem,provedinanabstractsetting,whichappliestononseparableaswellasseparableHilbertspaces.14Thistheoremprovestheexistenceofauniquefunctionw(p,b)definedontheatomspandpropositionsbofanarbitraryquantumpropositionsystem(representedbythelattice𝒮(H)ofclosedsubspacesofanarbitraryHilbertspaceofdimension3),wherew(p,b)satisfies:

    (i)0w(p,b)1,(ii)p0,thereisanfisuchthat

    wherethenormisdefinedbythescalarproductonHvia

    Forfurtherdetailsonthemathematicalformalismofquantummechanics,seee.g.Jauch[1968].

    (14)SeePiron[1976],pp.7381.Apreludetothisisanelaboraterepresentationtheoremtotheeffectthatanarbitraryquantumpropositionsystemcanberepresentedbyafamilyoflatticesofclosedlinearvarieties(subspaces)overabstractHilbertspaces,whichneednotbeseparable.Whatwouldserveasaminimalframeworkforprovingthisrepresentation?Sinceitsphysicalsignificanceisunclear,wehavepreferredtoconcentrateonGleason'stheorem,someofwhosephysicalcontentiseasiertospecify.Incidentally,thissourceprovidesaquitereadableproofoftheextremalcaseofGleason'stheorem.

    (15)AnoncontextualhiddenvariablestheorycanbeunderstoodasdemandingdispersionfreemeasuresonthesubspacesofHilbertspace,i.e.measuresrepresentingstateswhichassignprobabilityeither0or1toeverystatementoftheformquantummagnitudeA(pertainingtothesystemrepresentedbythegivenHilbertspace)hasavalueinBorelsetS.Suchahiddenvariablesprogrammeiscallednoncontextualbecauseittreatsthequantummagnitudes(representedbylinearHermitianoperatorsontheHilbertspace)astheystand,withoutrelativizingthemtoexperimentalcontext(ortomaximalcompatiblesetsofoperators,etc.).ItisanimmediatecorollarytoGleason'stheoremthat,iftheHilbertspacehasdimension3,therecanbenodispersionfreemeasures(asquantumstatesalwaysexhibitdispersionforsomemagnitudes,astheyrespecttheHeisenberguncertaintyrelations).Forfurtherinformationonthetopicofhiddenvariablesandnohiddenvariablesproofs,seee.g.Belinfante[1973],Clauserand

    f < ,fi

    g = (g,g). 2

  • Mathematics and Physical Reality

    Page 37 of 41

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: HINARI ElSalvador; date: 15 October 2015

    Shimony[1978],andreferencescitedtherein.

    (16)Thereisstillthepossibilitythatphysicaltheoriescanbenominalizedwithinapurelyrelational(synthetic)spacetimeframeworkemployingthemethodsofField[1980].Weshallhavemoretosayaboutthisbelow(4).ButnoteherethatFieldworkedoutasingleexampleNewtoniangravitationand,aswenotedabove,inthiscase,spacetimepointsandregionssufficeforrepresentingthemathematicsofthetheory.Infact,asourremarksaboveimply,itisnotevennecessarytointroduceapurelyrelationalspacetimeversionofthetheory;onecanreinterpretthemathematicsdirectlyviacoding.AndthenonebypassesthesortofrepresentationtheoremthatFieldhighlighted.(Theuseofsuchatheoremconfrontstechnicaldifficulties,tobereviewedbelow,4.)Moreover,onerespectsthemathematicsandneednotadoptaninstrumentaliststance.ButmoreimportantinthepresentcontextthereseemtobeseriousobstaclesinthewayofField'sprogrammeasastrategyfornominalizingmodernphysicaltheories,especiallyquantummechanics,inwhichthedomainsofthemodelsarealreadyhighlyabstract,andwhichdonotlendthemselvesreadilytoaspacetimereformulation.(Inthisconnection,seeMalament[1982].)Whethertheprogrammecanbemadetoworkevenfornonflatspacetimetheories,e.g.GeneralRelativity,is,Ibelieve,anopenquestion.

    (17)AswassuggestedinPutnam[1967].

    (18)Forasurveyofrecentresults,seeHarringtonetal.[1985].

    (19)AtheoryT2isconservativeoverT1iffeverysentenceSinthelanguageofT1thatisprovableinT2isalsoprovableinT1.If,inaddition,everytheoremofT1isatheoremofT2,T2iscalledaconservativeextensionofT1.

    (20)SeeGdel[1947].

    (21)Forasurveyofresults,seeNerodeandHarrington,inHarringtonetal.[1985],pp.110.Anexampleofanintuitivemathematicalstatementthatrequiresuncountableiterationsofthepowersetoperationtoprove(specifically,thatisprovableinZFCbutnotinZC)isthestatement,EverysymmetricBorelsubsetoftheunitsquarecontainsorisdisjointfromthegraphofaBorelfunction.

    AseriesofresultsisbasedonanalysingCantor'sdiagonalargumentthattheunitintervalIisuncountable.ThatargumentproducesaBoreldiagonalizationfunctionF:IIsuchthatnoF(y)isacoordinateofy.ButCantor'sFdependsontheorderinwhichthecoordinatesofyaregiven.IfFisrequiredtobeinvariantinthesensethatF(y)=F(y)wheneveryandyhavethesamecoordinates,thenthestatementIfF:IIisinvariant,thensomeF(x)isacoordinateofx,isprovableinZCbutnotinZFCwiththepowersetaxiomdeleted.VariousmodificationsofthisidealeadtoexamplesofsimilarstatementsthatareprovableinZFC+alargecardinalaxiom,butnotinZFC.AndthereareevenexamplesofstatementsofthissortwhichareprovableinZFC+thereisameasurablecardinalbutnotinZFC+thereisaRamseycardinal!Thus,evenattheleveloflarge,largecardinals(incompatiblewiththeAxiomofConstructibility,as

  • Mathematics and Physical Reality

    Page 38 of 41

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: HINARI ElSalvador; date: 15 October 2015

    Ramseycardinalsalreadyare),itisnecessarytogoevenfurthertoprovecertainnaturalmathematicalstatements.

    (22)NB.TheindependenceproofsofCohen[1966]canbeadaptedtosecondorderaxiomatizationsofsettheory.SeeChuaqui[1972].

    (23)Itwouldbebettertosayrealnonmathematicalsituation,sincepresumablytheproblemshereariseindependentlyofcommitmenttoamaterialistontology.Dualists,phenomenalists,etal.,mayseektoapplymathematicsinvariousways,andtheytoowouldneedtoinvokeanassumptionofnoninterferenceorfixityofthenonmathematicalworldrecognized.Hereandbelow,thisshouldbeunderstood,thoughforbrevityweshallsometimesspeakofmaterialconditions,etc.

    (24)SomethinglikesuchastipulationliesbehindHorgan's[1987]reasonablesolutiontoarelatedproblemraisedbyHaleandResnik[1987]concerningHorgan'suseofcounterfactuals[1984]tonominalizeappliedmathematics.Theobjectionwasthatordinarypatternsofexplanationofmathematicsfreestatements,O(e.g.observationstatements),wouldbeupsetunderacounterfactualinterpretation,becauseinthemodalizedtheoryonewoulddeduce,notO,butsomethingoftheform(AO)(whereAisanappropriateantecedentinvolvingmathematicalaxioms).Horgan'ssolutionis,insuchcases,toaddasanaxiom,

    onthegroundsthat,ifOweretoholdundertheconditionsenvisionedinA,thenitholdsinfact.ThisisreasonablebecauseinentertainingA,weentertainnoalterationofnonmathematicalmattersoffact.

    (25)SeeespeciallyrecentwritingsofGoodman[1978]andPutnam[1981].

    (26)IreferheretoworkofField[1980]andBurgess[1984]towhichwewillreturnbelow.

    (27)Asthetermindependentisquiteambiguous,thissortofstatement(oritsnegation,favouredbyvariousantirealisms)mustbearticulatedwithsomecare.Infact,itisnontrivialtofindnotionsofmindindependencethatcanbeusedeventodifferentiaterealistandinstrumentalistpositionsfromoneanother.Foranattemptinthisdirectionandadiscussionofsomeoftheproblems,seeHellman[1983].

    (28)ThismaybeconsideredapartialresponsetoGoodman[1978]whichemphasizestheemptinessofreferencetoauniqueworldunderlyingourownconstructions.Itisnotbyanymeanssuggestedherethattheroleofsuchreferenceinappliedmodalmathematicsisitsonlyorprincipaluse.

    (29)Goodman[1972]and[1978].

    (30)TheabovesketchofarealistpositionhasinterestingaffinitieswithPutnam'sOn

    ((A O)) O,

  • Mathematics and Physical Reality

    Page 39 of 41

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: HINARI ElSalvador; date: 15 October 2015

    Properties(in[1970]),reflectinganearlierrealistperspective.

    (31)Ifthereisafiniteupperboundonthenumberofplacesrequiredinthepredicatesofasyntheticdeterminationbase,thenasyntheticapparatusoforderedtuplescanbedispensedwithinfavouroffinitelymanyk+1arytrueofpredicates,oftheform

    inwhichtheorderofplacesisbuiltintothepredicate.Thepresumptionwouldbethatfinitelymanysuchdesignationrelationsarelearnableonebyone.

    (32)DeterminationprinciplesofroughlythisgeneralformwereintroducedinHellmanandThompson[1975]asameansofexplicatingakindofphysicalismnotcommittedtostrongclaimsofreducibility(definabilityofdeterminedbydeterminingvocabulary).Relatedprinciples,knownassupervenienceprinciples,havebeendevelopedandappliedinavarietyofcontexts.SeeespeciallyKim[1984].Forasurvey,seeTeller[1983].SeealsoPost[1987]andHellman[1985]andreferencestherein.Thepresentsortofdeterminationprinciplediffersfromtheusualinthat,here,oneisexpandinguponawellworkedouttheoryforthehigherlevel,ratherthanforthelower.

    Notethattherestrictiontomathematicallystandard(full)modelsobviatesanautomaticcollapsetoexplicitdefinability(ofdeterminedbydeterminingvocabulary)viatheBethdefinabilitytheorem.(Cf.e.g.Shoenfield[1967]foraprecisestatementandproofofthetheorem;fordiscussion,seeHellmanandThompson[1975].)

    Notefurtherthat(vertical)determinationclaimsarecompatiblewith(horizontal)indeterminismintemporalevolution:theymerelyimplythatwhatevertemporalbranchingispossibleinthehigher(determined)levelmustalreadybereflectedincorrespondingbranchingatthelower(determining)level.

    Finally,notethatitisnotrequiredthatthesyntheticvocabularyherebeobservationalinanyrestrictivesense.Itmay,initsownright,countashighlytheoretical;and,ifthedeviceoftrueofsemanticpredicatesisallowed,theoreticalvocabularyoftheoriginalappliedmathematicaltheorymaybeadaptedtothesyntheticlevelbyuseofcountablymanyinstancesinvolvingrationalvalues,assuggestedabove(cf.theexamplethatfollowsbelow).

    (33)Cf.Quine[1969].

    (34)ThisontologicalreductiopatternisthebackbonestructureofField[1980]:therepresentationtheoremisatheoremofmodeltheory,accessibletotheplatonist,butnottothenominalist(atleast,notwithoutfurtherargument,whichwasnotprovidedinField[1980]).Itshouldbepointedout,however,thatsuchreductioreasoningisproblematicinacertainsense:howcanitconvinceonewhostartsoutwiththeassumptionthatplatonistreferencetomodels,etc.,isunintelligible?Foroneinthatposition,thereductioargumentitselfshouldbeunintelligible.Buthow,then,couldanominalistscientistbecomeconvinced(byFieldtheoreticreasoning)thatthestandardplatonistreasoning(which,of

    istrueof , , , ,Pk x1 x2 xk

  • Mathematics and Physical Reality

    Page 40 of 41

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: HINARI ElSalvador; date: 15 October 2015

    course,thenominalistscientistemployseveryday)isjustashortcut?Onepossibleanswerhereinvolvesdistinguishingbetweenanonconstructivenominalistpositionwhichholdsplatonistontologicalcommitmentstobefalse,butnotunintelligibleandastricterconstructivenominalistposition,whichdoesholdthosecommitmentstobeunintelligible.ThenperhapsweshouldsaythatonlythelatterisbarredfromfollowingFieldtheoreticreasoning.

    (35)Craig'sobservationthatanyrecursivelyenumerabletheoryhasarecursiveaxiomatizationisinCraig[1953].Foradiscussionandcritiqueofitsuseinphilosophyofscience,seePutnam[1965].ItshouldbenotedthatField[1980],p.47,explicitlyeschewsaCraigianreplacementofplatonisticappliedmathematics(i.e.arecursiveaxiomatizationofitsnominalisticconsequences)asevenacandidateforanominalization,ongroundsofitsobviousunattractivenessasatheory.

    (36)AsinKrantzetal.[1971].

    (37)Fordetailsonrepresentationtheorems,seeField[1980],Ch.7;seealsoMalament[1982].InoursketchbelowwefollowthenotationofMalament'sreview(whichconcentratedontheelegantexampleoftheKleinGordonfield).

    (38)TheprooftheoreticconservativenessclaimisnaturallyreadastherelevantclaimthatField[1980]soughttoestablish.However,Field[1985]emphasizesthatitisthesemanticconservativenessofmathematicalphysicsoversyntheticphysicsthatshouldbetheaimoftheprogramme.(Hetherewrites,WhatIshouldhavesaidisthatmathematicsisusefulbecauseitisofteneasiertoseethatanominalisticclaimfollowsfromanominalistictheoryplusmathematicsthantoseethatitfollowsfromthenominalistictheoryalone(p.241).)AsIwillhaveoccasiontoremarkbelow,Idonotthinkthatthisaimreallycomestogripswiththeissueofindispensabilityofhighermathematicsindispensabilityinitsprincipalroleofprovingtheorems.Ironically,this(sofarasweknow,indispensable)roleappearstobeconcededbyField[1985]inhisveryargumentthatsemanticconservativenessclaimscanbeputtousedespitethelackofacompleteproofprocedure(seeField[1985],p.252).

    (39)SeeespeciallyShapiro[1983b]andBurgess[1984].Field[1980]acknowledgesthedifficultyatpp.104ff.,creditingMoschovakisandBurgesswiththeobservationthatGdelsentencesariseascounterexamplestotheconservativenessofToverTsyn.Hereweemphasizethepointthatincreasinglypowerfulmathematicaltheoriesmaywellberelevantforprovingphysicallymeaningfulsyntheticassertions.Thefactthat,asaxiomatizedtheories,thesemorepowerfulsystemshavetheirownundecidables,is,fromthepresentperspective,ifanything,areasonforthinkingthatwemayalwayshavetoconsiderstrongerandstrongertheories.

    (40)Otherobjectionstoappealstosemanticconservativenesshavebeenraised,inparticularthatthenominalistshouldnotbeabletounderstandsemanticconsequenceintherelevant(full,secondorder)sense,sinceitinvolvesquantificationoverabstractmodels(cf.Malament[1982]).Primafacie,thisseemstelling.However,bymeansof

  • Mathematics and Physical Reality

    Page 41 of 41

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: HINARI ElSalvador; date: 15 October 2015

    codingdevices,agooddealofabstractmodeltheory(fortheoriessuchasPAandRA)canbecarriedoutnominalistically(cf.Ch.1,6),i.e.inmonadicsecondordersystems,especiallywheninterpretedoverspacetime.

    Anotherpointintheresponsetotheunintelligibilityobjectionwouldbethatappealstosemanticconservativenessarepartoftheoverallreductioargument,whichmakesfreeuseofplatonistconstructions,asdoestherepresentationtheoremitself.Ourremarksabove,n.34,wouldthenapplyhereaswell.

    (41)Fordetails,seeBurgess[1984].

    (42)Cf.Shapiro[1983b].Where(r,p)abbreviatesthesyntheticstatementthatrisasumofequallyspaced,linearlyorderedpointswithinitialpointp(andhencecanservetomodelthenaturalnumbers),andwhereConTsyn(r,p)abbreviatesasyntheticstatementoftheconsistencyofTsyn,inTextitcannotbeprovedthat

    (whereConTsyn(,0)abbreviatestheordinaryabstractmathematicalstatementofTsyn'sconsistency.For,sinceTextcanproveConTsyn(,0),if(*)wereTextprovable,(r,p)ConTsyn(r,p)wouldbealso.Butbyconservativeness,thislatterwouldthenbeprovableinTsynalso,contrarytoGdel's(second)incompletenesstheorem.

    (43)Cf.Malament[1982].

    (44)SeeEarmanandNorton[1987].

    (45)SeeBohm[1957].

    Accessbroughttoyouby: HINARIElSalvador

    (r,p) [ (r,p) (,0)]Con Tsyn Con Tsyn