Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

43
Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates Weizhu Bao Department of Mathematics & Center of Computational Science and Engineering National University of Singapore Email: [email protected] URL: http://www.math.nus.edu.sg/~bao

description

Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates. Weizhu Bao Department of Mathematics & Center of Computational Science and Engineering National University of Singapore Email: [email protected] URL: http://www.math.nus.edu.sg/~bao. Outline. - PowerPoint PPT Presentation

Transcript of Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Page 1: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Weizhu Bao

Department of Mathematics& Center of Computational Science and Engineering

National University of SingaporeEmail: [email protected]

URL: http://www.math.nus.edu.sg/~bao

Page 2: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Outline

Motivation & theoretical predicationGross-Pitaevskii equation (GPE)Stationary, ground & central vortex statesMethods & results for ground statesMethods & results for dynamics Extension to rotation frame & multi-componentConclusions & Future challenges

Page 3: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Motivation

• Bose-Einstein condensation: – Bosons at nano-Kevin temperature– many atoms occupy in one obit (at quantum mechanical ground state)– `super-atom’– new matter of wave. i.e., the fifth matter of state

• Theoretical predication: Bose & Einstein– Bose, Z. Phys., 26 (1924) 82– Einstein, Sitz. Ber. Kgl. Preuss. Adad., Wiss. 22 (1924) 261

• Experimental realization: JILA 1995– Anderson et al., Science, 269 (1995), 198: JILA Group; Rb – Davis et al., Phys. Rev. Lett., 75 (1995), 3969: MIT Group; Rb– Bradly et al., Phys. Rev. Lett., 75 (1995), 1687, Rice Group; Li

Page 4: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Experimental Results

JILA (95’,Rb,5,000) ETH (02’,Rb, 300,000)

Page 5: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Motivation

• 2001 Nobel prize in physics:– C. Wiemann: U. Colorado; E. Cornell: NIST & W. Ketterle: MIT

• Mathematical models: – Gross-Pitaevskii equation (mean field theory)– Quantum Boltzmann master equation (kinetic)

• Mathematical analysis– Existence, dynamical laws, soliton-like solution, damping effect, etc.

• Numerical Simulations– Numerical methods – Guiding and predicting outcome of new experiments

Page 6: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Possible applications

Quantized vortex for studying superfluidity

Test quantum mechanics theoryBright atom laser: multi-componentQuantum computingAtom tunneling in optical lattice trapping, …..

Square Vortex lattices in spinor BECs

Giant vortices

Vortex latticedynamics

Page 7: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Gross-Pitaevskii equation

Gross-Pitaevskii Equation (GPE)

Normalization condition

Two extreme regimes:– Weakly interacting condensation– Strongly repulsive interacting condensation

),(|),(|),()(),(2

1),( 22 txtxtxxVtxtx

ti dd

.1|),(| 2

R xdtx

d

1|| d

1d

Page 8: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Gross-Pitaevskii equation

Conserved quantities– Normalization of the wave function

– Energy

Chemical potential

d

NxdtxtNR

2 1))0((|),(|))((

2 2 4

R

1( ( )) [ | ( , ) | ( )| ( , ) | | ( , ) | ]

2 2( (0))

d

ddt x t V x x t x t dxE

E

xdtxtxxVtxt ddd

]|),(||),(|)(|),(|

2

1[))(( 422

R

Page 9: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Semiclassical scaling

When , re-scaling

With

Leading asymptotics (Bao & Y. Zhang, Math. Mod. Meth. Appl. Sci., 05’)

1d1/ 2 / 4 2 /( 2)1/d d

dx x

),(|),(|),()(),(2

),( 222

txtxtxxVtxtxt

i d

)1(]||2

1||)(||

2[)( 422

R

2

OxdxVE dd

1 1 2/( 2)

1 1 2/( 2)

( ) ( )

( ) ( )

dd

dd

E E O O

O O

Page 10: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Quantum Hydrodynamics

Set

Geometrical Optics: (Transport + Hamilton-Jacobi)

Quantum Hydrodynamics (QHD): (Euler +3rd dispersion)

)2/(2/ /1,,, dd

iS vJSve

22

t

( ) 0,

1 1( )

2 2

t

d

S

S S V x

2

2

( ) 0

( ) ( ) ( ) ( ln )4

( ) / 2

t

t d

v

J JJ P V

P

Page 11: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Stationary states

Stationary solutions of GPE

Nonlinear eigenvalue problem with a constraint

Relation between eigenvalue and eigenfunction

)(),( xtx eti

1|)x(|

R),(|)(|)()()(2

1)(

2

R

22

xd

xxxxxVxx

d

ddd

xdEd

d 4

R|)x(|

2)()(

Page 12: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Ground state

Ground state:

Existence and uniqueness of positive solution :– Lieb et. al., Phys. Rev. A, 00’

Uniqueness up to a unit factor

Boundary layer width & matched asymptotic expansion– Bao, F. Lim & Y. Zhang, Trans. Theory Stat. Phys., 06’

4gR|| || 1

( ) min ( ), ( ) ( ) | ( ) |2 d

dg g g gE E E x dx

0d

00with any constant i

g g e

Page 13: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Numerical methods for ground states

Runge-Kutta method: (M. Edwards and K. Burnett, Phys. Rev. A, 95’)

Analytical expansion: (R. Dodd, J. Res. Natl. Inst. Stan., 96’)

Explicit imaginary time method: (S. Succi, M.P. Tosi et. al., PRE, 00’)

Minimizing by FEM: (Bao & W. Tang, JCP, 02’)

Normalized gradient flow: (Bao & Q. Du, SIAM Sci. Comput., 03’)

– Backward-Euler + finite difference (BEFD)– Time-splitting spectral method (TSSP)

Gauss-Seidel iteration method: (W.W. Lin et al., JCP, 05’) Spectral method + stabilization: (Bao, I. Chern & F. Lim, JCP, 06’)

( )E

Page 14: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Imaginary time method

Idea: Steepest decent method + Projection

– The first equation can be viewed as choosing in GPE– For linear case: (Bao & Q. Du, SIAM Sci. Comput., 03’)

– For nonlinear case with small time step, CNGF

.1||)(|| with )x()0,(

,2,1,0,||),(||

),(),(

,||)(2

1)(

2

1),(

00

1

11

122

xx

nx

xtx

tttxVE

tx

ttn

nn

nnt

))0(.,())(.,())(.,( 0010 EtEtE nn

it

0

1

2 1̂

??)()(

)()ˆ(

)()ˆ(

01

11

01

EE

EE

EE

g

Page 15: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Normalized gradient glow

Idea: letting time step go to 0 (Bao & Q. Du, SIAM Sci. Comput., 03’)

– Energy diminishing

– Numerical Discretizations• BEFD: Energy diminishing & monotone (Bao & Q. Du, SIAM Sci. Comput., 03’)

• TSSP: Spectral accurate with splitting error (Bao & Q. Du, SIAM Sci. Comput., 03’)

• BESP: Spectral accuracy in space & stable (Bao, I. Chern & F. Lim, JCP, 06’)

2 22

0 0

( (., ))1( , ) ( ) | | , 0,

2 || (., ) ||

( ,0) ( ) with || ( ) || 1.

t

tx t V x t

t

x x x

0,0))(.,(,1||||||)(.,|| 0 ttEtd

dt

Page 16: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Ground states

Numerical results (Bao&W. Tang, JCP, 03’; Bao, F. Lim & Y. Zhang, TTSP, 06’)

– In 1d• Box potential: • Harmonic oscillator potential:

– In 2d • In a rotational frame• With a fast rotation

– In 3d• With a fast rotation next

otherwise;100)( xxV

2/xV(x) 2

Page 17: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

back

Page 18: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

back

Page 19: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

back

Page 20: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

back

Page 21: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

back

Page 22: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Dynamics of BEC

Time-dependent Gross-Pitaevskii equation

Dynamical laws – Time reversible & time transverse invariant– Mass & energy conservation– Angular momentum expectation– Condensate width– Dynamics of a stationary state with its center shifted

)()0,(

),(|),(|),()(),(2

1),(

0

22

xx

txtxtxxVtxtxt

i dd

Page 23: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Angular momentum expectation

Definition:

Lemma Dynamical laws (Bao & Y. Zhang, Math. Mod. Meth. Appl. Sci, 05’)

For any initial data, with symmetric trap, i.e. , we have

Numerical test next

0,)(**:)( txdxyixdLtLdd R

yx

R

zz

0,|),(|)()( 222 txdtxxy

dt

tLd

dR

yxz

yx

,0 ,0 0( ) (0), ( ) ( ), 0.z zL t L E E t

Page 24: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

back

Angular momentum expectation

Energy

Page 25: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Dynamics of condensate width

Definition:

Dynamic laws (Bao & Y. Zhang, Math. Mod. Meth. Appl. Sci, 05’)

– When for any initial data: – When with initial data Numerical Test– For any other cases:

xdtxtxdtxyxtdd RR

r

22222 |,(|)(,|,(|)()(

22

02

( )4 ( ) 4 ( ), 0r

x r

d tE t t

dt

yxd &2

yxd &2 imerfyx )(),(0

0),(2

1)()( tttt ryx

22

02

( )4 ( ) 4 ( ) ( ), 0

d tE t f t t

dt

next

Page 26: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

back

Symmetric trap Anisotropic trap

Page 27: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Dynamics of Stationary state with a shift

Choose initial data as: The analytical solutions is: (Garcia-Ripoll el al., Phys. Rev. E, 01’)

– In 2D:

– In 3D, another ODE is added

)()( 00 xxx s

( , )0( , ) ( ( )) , ( , ) 0, (0)si t iw x t

sx t e x x t e w x t x x

2

2

0 0

( ) ( ) 0,

( ) ( ) 0,

(0) , (0) , (0) 0, (0) 0

x

y

x t x t

y t y t

x x y y x y

20( ) ( ) 0, (0) , (0) 0zz t z t z z z

example

next

Page 28: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

back

Page 29: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Numerical methods for dynamics

Lattice Boltzmann Method (Succi, Phys. Rev. E, 96’; Int. J. Mod. Phys., 98’)

Explicit FDM (Edwards & Burnett et al., Phys. Rev. Lett., 96’)

Particle-inspired scheme (Succi et al., Comput. Phys. Comm., 00’) Leap-frog FDM (Succi & Tosi et al., Phys. Rev. E, 00’)

Crank-Nicolson FDM (Adhikari, Phys. Rev. E 00’) Time-splitting spectral method (Bao, Jaksch&Markowich, JCP, 03’)

Runge-Kutta spectral method (Adhikari et al., J. Phys. B, 03’)

Symplectic FDM (M. Qin et al., Comput. Phys. Comm., 04’)

Page 30: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Time-splitting spectral method (TSSP)

Time-splitting:

For non-rotating BEC – Trigonometric functions (Bao, D. Jaksck & P. Markowich, J. Comput. Phys., 03’)

– Laguerre-Hermite functions (Bao & J. Shen, SIAM Sci. Comp., 05’)

2

2

2

( ( ) | ( , )| )1

1 Step 1: ( , ) ,

2

Step 2: ( , ) ( ) ( , ) | ( , ) | ( , )

| ( , ) | | ( , ) |

( , ) ( , )d d n

t

t d d

n

i V x x t tn n

i x t

i x t V x x t x t x t

x t x t

x t e x t

Page 31: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Properties of TSSP

– Explicit, time reversible & unconditionally stable– Easy to extend to 2d & 3d from 1d; efficient due to FFT– Conserves the normalization– Spectral order of accuracy in space – 2nd, 4th or higher order accuracy in time– Time transverse invariant

– ‘Optimal’ resolution in semicalssical regime

unchanged|),(|)()( 2txxVxV dd

)2/(2/1,, ddOkOh

Page 32: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Dynamics of Ground states

1d dynamics: 2d dynamics of BEC (Bao, D. Jaksch & P. Markowich, J. Comput. Phys., 03’)

– Defocusing: – Focusing (blowup):

3d collapse and explosion of BEC (Bao, Jaksch & Markowich,J. Phys B, 04’)

– Experiment setup leads to three body recombination loss

– Numerical results: • Number of atoms , central density & Movie

xx1 40,at t 100

yy 2,2 0at t,20 xx2

5040 0At t 2

next

420

22 ||||)(2

1),( ixVtx

ti

Page 33: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

back

Page 34: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

back

Page 35: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

back

Page 36: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Collapse and Explosion of BEC

back

Page 37: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Number of atoms in condensate

back

Page 38: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Central density

back

Page 39: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

back

Page 40: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Extension

GPE with damping term (Bao & D. Jaksch, SIAM J. Numer. Anal., 04’)

Two-component BEC

– Methods for ground state & dynamics (Bao, Multiscale Mod. Sim., 04’)

– Dynamics laws (Bao & Y. Zhang, 06’)

2 2 21( , ) ( ) | | ( | | )

2i x t V x igt

)()||||()(2

1),(

)()||||()(2

1),(

222

2212

2

212

2111

2

tfxVtxt

i

tfxVtxt

i

Page 41: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Extension

GPE in a rotational frame

– For ground state (Bao, H. Wang & P. Markowich, Commun. Math. Sci., 04’)

– Dynamical laws (Bao,Du&Zhang, SIAM Appl. Math., 06’;Appl. Numer. Math. 06’)

– Numerical methods• Time-splitting +polar coordinate (Bao,Du&Zhang, SIAM Appl. Math., 06’)

• Time-splitting + ADI in space (Bao & H. Wang, J. Comput. Phys., 06’)

]||)(2

[),( 20

2

2

UNLxVm

txt

i z

iPPxLiyxiypxpL xyxyz ,,)(:

Page 42: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Conclusions & Future Challenges

Conclusions:– Mathematical results for ground & excited states– Dynamical laws in BEC– Efficient methods for ground state & dynamics– Comparison with experimental resutls– Vortex stability & interaction in 2D

Future Challenges– Multi-component BEC– Quantized vortex states & dynamics in 3D– Coupling GPE & QBE

Page 43: Mathematical Analysis and Numerical Simulation for Bose-Einstein Condensates

Collaborators

• External– P.A. Markowich, Institute of Mathematics, University of Vienna, Austria – D. Jaksch, Department of Physics, Oxford University, UK– Q. Du, Department of Mathematics, Penn State University, USA– J. Shen, Department of Mathematics, Purdue University, USA– L. Pareschi, Department of Mathematics, University of Ferarra, Italy– W. Tang & L. Fu, IAPCM, Beijing, China– I-Liang Chern, Department of Mathematics, National Taiwan University, Taiwan

• External– Yanzhi Zhang, Hanquan Wang, Fong Ying Lim, Ming Huang Chai– Yunyi Ge, Fangfang Sun, etc.