mathematic formulary.pdf

download mathematic formulary.pdf

of 65

Transcript of mathematic formulary.pdf

  • 8/10/2019 mathematic formulary.pdf

    1/65

    Mathematics Formulary

    By ir. J.C.A. Wevers

  • 8/10/2019 mathematic formulary.pdf

    2/65

    c 1999, 2013 J.C.A. Wevers Version: September 2, 2013

    Dear reader,

    This document contains 66 pages with mathematical equations intended for physicists and engineers. It is intended

    to be a short reference for anyone who often needs to look up mathematical equations.

    This document can also be obtained from the author, Johan Wevers([email protected]).

    It can also be found on the WWW onhttp://www.xs4all.nl/johanw/index.html.

    This work is licenced under the Creative Commons Attribution 3.0 Netherlands Lic ense. To view a copy of this li-

    cence, visit http://creativecommons.org/licenses/by/3.0/nl/or send a letter to Creative Commons, 171 Second Street,

    Suite 300, San Francisco, California 94105, USA.

    The C code for the rootfinding via Newtons method and the FFT in chapter8are from Numerical Recipes in C,

    2nd Edition, ISBN 0-521-43108-5.

    The Mathematics Formulary is made with teTE

    X and LATE

    X version 2.09.

    If you prefer the notation in which vectors are typefaced in boldface, uncomment the redefinition of the\veccommand and recompile the file.

    If you find any errors or have any comments, please let me know. I am always open for suggestions and possible

    corrections to the mathematics formulary.

    Johan Wevers

    [email protected]

    mailto:[email protected]:[email protected]://www.xs4all.nl/~johanwhttp://www.xs4all.nl/~johanwhttp://creativecommons.org/licenseses/by/3.0/nl/mailto:[email protected]:[email protected]://creativecommons.org/licenseses/by/3.0/nl/http://www.xs4all.nl/~johanwmailto:[email protected]
  • 8/10/2019 mathematic formulary.pdf

    3/65

    Contents

    Contents I

    1 Basics 1

    1.1 Goniometric functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.2 Hyperbolic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.3 Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    1.4 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    1.5 Complex numbers and quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    1.5.1 Complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    1.5.2 Quaternions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    1.6 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.6.1 Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    1.6.2 Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    1.7 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    1.8 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    1.8.1 Expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    1.8.2 Convergence and divergence of series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    1.8.3 Convergence and divergence of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    1.9 Products and quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    1.10 Logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    1.11 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    1.12 Primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    2 Probability and statistics 92.1 Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    2.2 Probability theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    2.3 Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    2.3.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    2.3.2 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    2.4 Regression analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    3 Calculus 12

    3.1 Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    3.1.1 Arithmetic rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    3.1.2 Arc lengts, surfaces and volumes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    3.1.3 Separation of quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    3.1.4 Special functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    3.1.5 Goniometric integrals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

    3.2 Functions with more variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

    3.2.1 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

    3.2.2 Taylor series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    3.2.3 Extrema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    3.2.4 The -operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163.2.5 Integral theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    3.2.6 Multiple integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    3.2.7 Coordinate transformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    3.3 Orthogonality of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    3.4 Fourier series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    I

  • 8/10/2019 mathematic formulary.pdf

    4/65

    II Mathematics Formulary door J.C.A. Wevers

    4 Differential equations 20

    4.1 Linear differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    4.1.1 First order linear DE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    4.1.2 Second order linear DE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204.1.3 The Wronskian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    4.1.4 Power series substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    4.2 Some special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    4.2.1 Frobenius method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    4.2.2 Euler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    4.2.3 Legendres DE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    4.2.4 The associated Legendre equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    4.2.5 Solutions for Bessels equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    4.2.6 Properties of Bessel functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    4.2.7 Laguerres equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    4.2.8 The associated Laguerre equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    4.2.9 Hermite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    4.2.10 Chebyshev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    4.2.11 Weber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    4.3 Non-linear differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    4.4 Sturm-Liouville equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    4.5 Linear partial differential equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    4.5.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    4.5.2 Special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    4.5.3 Potential theory and Greens theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    5 Linear algebra 29

    5.1 Vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    5.2 Basis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    5.3 Matrix calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295.3.1 Basic operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    5.3.2 Matrix equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    5.4 Linear transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    5.5 Plane and line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    5.6 Coordinate transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    5.7 Eigen values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    5.8 Transformation types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    5.9 Homogeneous coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    5.10 Inner product spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    5.11 The Laplace transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    5.12 The convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    5.13 Systems of linear differential equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    5.14 Quadratic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    5.14.1 Quadratic forms inIR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385.14.2 Quadratic surfaces inIR3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    6 Complex function theory 39

    6.1 Functions of complex variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    6.2 Complex integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    6.2.1 Cauchys integral formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    6.2.2 Residue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    6.3 Analytical functions definied by series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    6.4 Laurent series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    6.5 Jordans theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

  • 8/10/2019 mathematic formulary.pdf

    5/65

    Mathematics Formulary by J.C.A. Wevers III

    7 Tensor calculus 43

    7.1 Vectors and covectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    7.2 Tensor algebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    7.3 Inner product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447.4 Tensor product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    7.5 Symmetric and antisymmetric tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    7.6 Outer product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    7.7 The Hodge star operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    7.8 Differential operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    7.8.1 The directional derivative. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    7.8.2 The Lie-derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    7.8.3 Christoffel symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    7.8.4 The covariant derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    7.9 Differential operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    7.10 Differential geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    7.10.1 Space curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    7.10.2 Surfaces inIR3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487.10.3 The first fundamental tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    7.10.4 The second fundamental tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    7.10.5 Geodetic curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    7.11 Riemannian geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    8 Numerical mathematics 51

    8.1 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    8.2 Floating point representations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    8.3 Systems of equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    8.3.1 Triangular matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    8.3.2 Gauss elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    8.3.3 Pivot strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    8.4 Roots of functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538.4.1 Successive substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    8.4.2 Local convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    8.4.3 Aitken extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

    8.4.4 Newton iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

    8.4.5 The secant method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    8.5 Polynomial interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    8.6 Definite integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    8.7 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    8.8 Differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    8.9 The fast Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

  • 8/10/2019 mathematic formulary.pdf

    6/65

    IV Mathematics Formulary door J.C.A. Wevers

  • 8/10/2019 mathematic formulary.pdf

    7/65

    Chapter 1

    Basics

    1.1 Goniometric functions

    For the goniometric ratios for a point pon the unit circle holds:

    cos() = xp , sin() = yp , tan() = ypxp

    sin2(x) + cos2(x) = 1andcos2(x) = 1 + tan2(x).

    cos(a b) = cos(a) cos(b) sin(a) sin(b) , sin(a b) = sin(a) cos(b) cos(a) sin(b)

    tan(a b) = tan(a) tan(b)1 tan(a) tan(b)

    Thesum formulasare:

    sin(p) + sin(q) = 2 sin( 12 (p + q)) cos(12 (p q))

    sin(p) sin(q) = 2 cos( 12 (p + q)) sin( 12 (p q))cos(p) + cos(q) = 2 cos( 12 (p + q)) cos(

    12 (p q))

    cos(p) cos(q) = 2 sin(12 (p + q)) sin( 12 (p q))

    From these equations can be derived that2cos2(x) = 1 + cos(2x) , 2sin2(x) = 1 cos(2x)

    sin( x) = sin(x) , cos( x) = cos(x)sin( 12 x) = cos(x) , cos( 12 x) = sin(x)

    Conclusions from equalities:

    sin(x) = sin(a) x= a 2k or x= ( a) 2k, kINcos(x) = cos(a) x= a 2k or x=a 2k

    tan(x) = tan(a) x= a k and x= 2 k

    The following relations exist between the inverse goniometric functions:

    arctan(x) = arcsin

    xx2 + 1

    = arccos

    1x2 + 1

    , sin(arccos(x)) =

    1 x2

    1.2 Hyperbolic functions

    The hyperbolic functions are defined by:

    sinh(x) =ex ex

    2 , cosh(x) =

    ex + ex

    2 , tanh(x) =

    sinh(x)

    cosh(x)

    From this follows thatcosh2(x) sinh2(x) = 1. Further holds:arsinh(x) = ln |x +x

    2 + 1| , arcosh(x) = arsinh(x2 1)

    1

  • 8/10/2019 mathematic formulary.pdf

    8/65

    2 Mathematics Formulary by ir. J.C.A. Wevers

    1.3 Calculus

    The derivative of a function is defined as:

    df

    dx= lim

    h0

    f(x + h) f(x)h

    Derivatives obey the following algebraic rules:

    d(x y) = dx d y , d(xy) = xdy + ydx , d

    x

    y

    =

    ydx xdyy2

    For the derivative of the inverse functionfinv(y), defined byfinv(f(x)) = x, holds at pointP = (x, f(x)):dfinv(y)

    dy

    P

    df(x)

    dx

    P

    = 1

    Chain rule: iff=f(g(x)), then holdsdf

    dx=

    df

    dg

    dg

    dx

    Further, for the derivatives of products of functions holds:

    (f g)(n) =nk=0

    n

    k

    f(nk) g(k)

    For theprimitive functionF(x)holds:F(x) = f(x). An overview of derivatives and primitives is:

    y = f(x) dy/dx= f(x)

    f(x)dx

    axn

    anxn1

    a(n + 1)1

    xn+1

    1/x x2 ln |x|a 0 ax

    ax ax ln(a) ax/ ln(a)ex ex ex

    a log(x) (x ln(a))1 (x ln(x) x)/ ln(a)ln(x) 1/x x ln(x) x

    sin(x) cos(x) cos(x)cos(x) sin(x) sin(x)tan(x) cos2(x) ln | cos(x)|

    sin1(x) sin2(x) cos(x) ln | tan( 12 x)|sinh(x) cosh(x) cosh(x)cosh(x) sinh(x) sinh(x)

    arcsin(x) 1/1 x2 x arcsin(x) + 1 x2arccos(x) 1/1 x2 x arccos(x) 1 x2arctan(x) (1 + x2)1 x arctan(x) 12ln(1 + x2)

    (a + x2)1/2 x(a + x2)3/2 ln |x + a + x2|(a2 x2)1 2x(a2 + x2)2 1

    2aln |(a + x)/(a x)|

    Thecurvatureof a curve is given by: =(1 + (y)2)3/2

    |y|

    The theorem of De l Hopital: iff(a) = 0andg(a) = 0, then is limxa

    f(x)

    g(x) = lim

    xa

    f(x)

    g(x)

  • 8/10/2019 mathematic formulary.pdf

    9/65

    Chapter 1: Basics 3

    1.4 Limits

    limx0

    sin(x)x

    = 1 , limx0

    ex

    1x

    = 1 , limx0

    tan(x)x

    = 1 , limk0

    (1 + k)1/k = e , limx

    1 + n

    x

    x= en

    limx0

    xa ln(x) = 0 , limx

    lnp(x)

    xa = 0 , lim

    x0

    ln(x + a)

    x =a , lim

    x

    xp

    ax = 0 als |a|> 1.

    limx0

    a1/x 1

    = ln(a) , lim

    x0

    arcsin(x)

    x = 1 , lim

    x

    x

    x= 1

    1.5 Complex numbers and quaternions

    1.5.1 Complex numbers

    The complex numberz =a +biwitha and bIR. a is the real part,b the imaginary partofz .|z|= a2 + b2.By definition holds: i2 =1. Every complex number can be written as z =|z| exp(i), withtan() =b/a. Thecomplex conjugateofz is defined asz = z :=a bi. Further holds:

    (a + bi)(c + di) = (ac bd) + i(ad + bc)(a + bi) + (c + di) = a + c + i(b + d)

    a + bi

    c + di =

    (ac + bd) + i(bc ad)c2 + d2

    Goniometric functions can be written as complex exponents:

    sin(x) = 12i (eix eix)

    cos(x) = 1

    2(eix + eix)

    From this follows thatcos(ix) = cosh(x)andsin(ix) = i sinh(x). Further follows from this thateix = cos(x) i sin(x), soeiz = 0z. Also the theorem of De Moivre follows from this:(cos() + i sin())n = cos(n) + i sin(n).

    Products and quotients of complex numbers can be written as:

    z1 z2 = |z1| |z2|(cos(1+ 2) + i sin(1+ 2))z1

    z2=

    |z1||z2|

    (cos(1

    2) + i sin(1

    2))

    The following can be derived:

    |z1+ z2| |z1| + |z2| , |z1 z2| | |z1| |z2| |

    And fromz = r exp(i)follows: ln(z) = ln(r) + i,ln(z) = ln(z) 2ni.

    1.5.2 Quaternions

    Quaternions are defined as: z = a +bi+cj + dk, witha,b,c,dIRand i2 = j 2 = k 2 =1. The products ofi,j,kwith each other are given byij =ji = k,jk=kj = i andki =ik= j .

  • 8/10/2019 mathematic formulary.pdf

    10/65

    4 Mathematics Formulary by ir. J.C.A. Wevers

    1.6 Geometry

    1.6.1 Triangles

    The sine rule is:

    a

    sin()=

    b

    sin()=

    c

    sin()

    Here, is the angle opposite to a, is opposite to b and opposite to c. The cosine rule is:a2 =b2+c22bc cos().For each triangle holds: + + = 180.

    Further holds:

    tan( 12 ( + ))

    tan( 12 ( ))=

    a + b

    a b

    The surface of a triangle is given by 1

    2

    ab sin() = 1

    2

    aha = s(s a)(s b)(s c)withhathe perpendicular onaands= 12 (a + b + c).1.6.2 Curves

    Cycloid: if a circle with radiusa rolls along a straight line, the trajectory of a point on this circle has the followingparameter equation:

    x= a(t + sin(t)) , y= a(1 + cos(t))

    Epicycloid: if a small circle with radius a rolls along a big circle with radius R, the trajectory of a point on the smallcircle has the following parameter equation:

    x= a sin

    R+ aa t

    + (R+ a) sin(t) , y= a cos

    R+ aa t

    + (R+ a) cos(t)

    Hypocycloid: if a small circle with radius a rolls inside a big circle with radius R, the trajectory of a point on thesmall circle has the following parameter equation:

    x= a sin

    R a

    a t

    + (R a) sin(t) , y=a cos

    R a

    a t

    + (R a) cos(t)

    A hypocycloid with a = R is called a cardioid. It has the following parameterequation in polar coordinates:r= 2a[1 cos()].

    1.7 Vectors

    Theinner productis defined by:a b=i

    aibi =|a | |b | cos()

    whereis the angle between aand b. Theexternal productis inIR3 defined by:

    a b= aybz azbyazbx axbz

    axby aybx

    =

    ex ey ezax ay azbx by bz

    Further holds:|a b |=|a | |b | sin(), and a (b c ) = (a c )b (a b )c.

  • 8/10/2019 mathematic formulary.pdf

    11/65

    Chapter 1: Basics 5

    1.8 Series

    1.8.1 Expansion

    The Binomium of Newton is:

    (a + b)n =nk=0

    n

    k

    ankbk

    where

    n

    k

    :=

    n!

    k!(n k)! .

    By subtracting the seriesn

    k=0

    rk andrnk=0

    rk one finds:

    nk=0

    rk =1 rn+1

    1 r

    and for |r|< 1 this gives thegeometric series:k=0

    rk = 1

    1 r .

    Thearithmetic seriesis given by:

    Nn=0

    (a + nV) = a(N+ 1) + 12 N(N+ 1)V.

    The expansion of a function around the pointais given by theTaylor series:

    f(x) = f(a) + (x a)f(a) +(x a)2

    2 f(a) + +(x a)

    n

    n! f(n)(a) + R

    where the remainder is given by:

    Rn(h) = (1

    )nhn

    n!f(n+1)(h)

    and is subject to:mhn+1

    (n + 1)!Rn(h) Mh

    n+1

    (n + 1)!

    From this one can deduce that

    (1 x) =n=0

    n

    xn

    One can derive that:n=1

    1

    n2 =

    2

    6 ,

    n=1

    1

    n4 =

    4

    90 ,

    n=1

    1

    n6 =

    6

    945

    nk=1

    k2 = 16 n(n + 1)(2n + 1),

    n=1

    (

    1)n+1

    n2 =2

    12 ,

    n=1

    (

    1)n+1

    n = ln(2)

    n=1

    1

    4n2 1= 12 ,

    n=1

    1

    (2n 1)2 =2

    8 ,

    n=1

    1

    (2n 1)4 =4

    96 ,

    n=1

    (1)n+1(2n 1)3 =

    3

    32

    1.8.2 Convergence and divergence of series

    Ifn

    |un| converges,n

    un also converges.

    If limn

    un= 0 thenn

    un is divergent.

    An alternating series of which the absolute values of the terms drop monotonously to 0 is convergent (Leibniz).

  • 8/10/2019 mathematic formulary.pdf

    12/65

    6 Mathematics Formulary by ir. J.C.A. Wevers

    Ifp

    f(x)dx 0

    nthen is

    n

    un convergentifn

    ln(un+ 1) is convergent.

    Ifun= cnxn the radius of convergenceof

    n

    un is given by: 1

    = lim

    n

    n

    |cn|= limn

    cn+1cn.

    The series

    n=1

    1

    npis convergent ifp >1 and divergent ifp1.

    If: limn

    unvn

    =p, than the following is true: ifp >0 thann

    unandn

    vnare both divergent or both convergent, if

    p= 0holds: ifn

    vnis convergent, thann

    un is also convergent.

    IfL is defined by: L = limn

    n|nn|, or by: L = limn un+1

    un, then is

    n

    un divergent ifL >1 and convergent if

    L < 1.

    1.8.3 Convergence and divergence of functions

    f(x)is continuous inx = a only if the upper - and lower limit are equal: limxa

    f(x) = limxa

    f(x). This is written as:

    f(a) = f(a+).

    Iff(x)is continuous inaand: limxa

    f(x) = limxa

    f(x),thanf(x)is differentiable inx= a.

    We define:fW := sup(|f(x)| |x W), and limx

    fn(x) = f(x). Than holds:{fn} is uniform convergent iflimn

    fn

    f

    = 0, or:

    ( > 0)

    (N)

    (n

    N)

    fn

    f

    < .

    Weierstrass test: if unWis convergent, than unis uniform convergent.

    We defineS(x) =

    n=N

    un(x)andF(y) =

    ba

    f(x, y)dx:= F. Than it can be proved that:

    Theorem For Demands onW Than holds onW

    rows fn continuous, fis continuous{fn} uniform convergent

    C series S(x)uniform convergent, Sis continuousun continuous

    integral fis continuous Fis continuousrows fn can be integrated, fncan be integrated,

    {fn} uniform convergent

    f(x)dx= limn

    fndx

    I series S(x)is uniform convergent, Scan be integrated,

    Sdx =

    undxun can be integrated

    integral fis continuous

    F dy =

    f(x, y)dxdy

    rows {fn} C1; {fn} unif.conv f =(x)D series unC1;

    unconv;

    un u.c. S

    (x) =

    un(x)

    integral f/ycontinuous Fy =

    fy(x, y)dx

  • 8/10/2019 mathematic formulary.pdf

    13/65

    Chapter 1: Basics 7

    1.9 Products and quotients

    Fora,b,c,dIRholds:Thedistributive property:(a + b)(c + d) = ac + ad + bc + bdTheassociative property:a(bc) = b(ac) = c(ab)anda(b + c) = ab + acThecommutative property: a + b= b + a,ab= ba.

    Further holds:

    a2n b2na b =a

    2n1 a2n2b + a2n3b2 b2n1 , a2n+1 b2n+1

    a + b =

    nk=0

    a2nkb2k

    (a b)(a2 ab + b2) = a3 b3 , (a + b)(a b) = a2 + b2 , a3 b3a + b

    =a2 ba + b2

    1.10 Logarithms

    Definition: a log(x) = bab =x. For logarithms with basee one writesln(x).Rules: log(xn) = n log(x),log(a) + log(b) = log(ab),log(a) log(b) = log(a/b).

    1.11 Polynomials

    Equations of the typenk=0

    akxk = 0

    haven roots which may be equal to each other. Each polynomial p(z)of ordern1 has at least one root in C. Ifallak IRholds: whenx = p withpCa root, thanp

    is also a root. Polynomials up to and including order 4have a general analytical solution, for polynomials with order 5 there does not exist a general analytical solution.Fora,b, cIRanda= 0 holds: the 2nd order equation ax2 + bx + c= 0has the general solution:

    x=b b2 4ac

    2a

    Fora,b,c, d IR anda= 0 holds: the 3rd order equationax3 +bx2 +cx + d = 0 has the general analyticalsolution:

    x1 = K3ac b2

    9a2K b

    3a

    x2 = x

    3 = K

    2 +

    3ac

    b2

    18a2K b

    3a + i

    3

    2

    K+

    3ac

    b2

    9a2K

    withK=

    9abc 27da2 2b3

    54a3 +

    3

    4ac3 c2b2 18abcd + 27a2d2 + 4db318a2

    1/3

    1.12 Primes

    Aprimeis a number IN that can only be divided by itself and 1. There are an infinite number of primes. Proof:suppose that the collection of primes Pwould be finite, than construct the number q = 1 +

    pP

    p, than holds

    q= 1(p)and soQcannot be written as a product of primes from P. This is a contradiction.

  • 8/10/2019 mathematic formulary.pdf

    14/65

    8 Mathematics Formulary by ir. J.C.A. Wevers

    If(x)is the number of primes x, than holds:

    limx

    (x)

    x/ ln(x)

    = 1 and limx

    (x)x

    2

    dtln(t)

    = 1

    For eachN 2 there is a prime betweenNand2N.The numbersFk := 2

    k + 1withkINare calledFermat numbers. Many Fermat numbers are prime.The numbers Mk := 2

    k 1 are called Mersenne numbers. They occur when one searches forperfect numbers,which are numbers n INwhich are the sum of their different dividers, for example 6 = 1 + 2 + 3. Thereare 23 Mersenne numbers fork < 12000 which are prime: fork {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521,607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213}.To check if a given number nis prime one can use a sieve method. The first known sieve method was developed byEratosthenes. A faster method for large numbers are the 4 Fermat tests, who dont prove that a number is prime but

    give a large probability.

    1. Take the first 4 primes:b ={2, 3, 5, 7},2. Takew(b) = bn1 modn, for eachb,

    3. Ifw = 1for eachb, thennis probably prime. For each other value ofw,nis certainly not prime.

  • 8/10/2019 mathematic formulary.pdf

    15/65

    Chapter 2

    Probability and statistics

    2.1 Combinations

    The number of possiblecombinationsofk elements fromnelements is given byn

    k

    =

    n!

    k!(n k)!

    The number ofpermutationsofpfromnis given by

    n!

    (n p)! =p!

    n

    p

    The number of different ways to classify ni elements inigroups, when the total number of elements isN, is

    N!i

    ni!

    2.2 Probability theory

    The probabilityP(A)that an eventAoccurs is defined by:

    P(A) = n(A)

    n(U)

    wheren(A)is the number of events when Aoccurs andn(U)the total number of events.

    The probability P(A) that A does notoccur is: P(A) = 1P(A). The probabilityP(AB) that A andB both occur is given by: P(AB) = P(A) + P(B)P(AB). IfA andB are independent, than holds:P(A B) = P(A) P(B).The probabilityP(A|B)thatAoccurs, given the fact thatB occurs, is:

    P(A|B) = P(A B)P(B)

    2.3 Statistics

    2.3.1 General

    The average or mean valuex of a collection of values is: x =i xi/n. Thestandard deviation x in thedistribution ofxis given by:

    x=

    ni=1

    (xi x)2

    n

    When samples are being used the sample variance s is given bys2 = n

    n

    1

    2.

    9

  • 8/10/2019 mathematic formulary.pdf

    16/65

    10 Mathematics Formulary by ir. J.C.A. Wevers

    The covariancexy ofxandy is given by::

    xy =

    n

    i=1

    (xi

    x

    )(yi

    y

    )

    n 1Thecorrelation coefficientrxyofxandy than becomes: rxy=xy/xy.

    The standard deviation in a variablef(x, y)resulting from errors inxandy is:

    2f(x,y)=

    f

    xx

    2+

    f

    yy

    2+

    f

    x

    f

    yxy

    2.3.2 Distributions

    1. The Binomial distribution is the distribution describing a sampling with replacement. The probability for

    success isp. The probabilityP fork successes inntrials is then given by:

    P(x= k) =

    n

    k

    pk(1 p)nk

    The standard deviation is given byx=

    np(1 p)and the expectation value is = np.2. The Hypergeometric distributionis the distribution describing a sampling without replacement in which the

    order is irrelevant. The probability forksuccesses in a trial withApossible successes andBpossible failuresis then given by:

    P(x= k) =

    A

    k

    B

    n k

    A + Bn

    The expectation value is given by= nA/(A + B).

    3. The Poisson distribution is a limiting case of the binomial distribution when p 0, n and alsonp= is constant.

    P(x) =xe

    x!

    This distribution is normalized to

    x=0

    P(x) = 1.

    4. The Normal distribution is a limiting case of the binomial distribution for continuous variables:

    P(x) = 1

    2exp

    1

    2

    x x

    2

    5. The Uniform distributionoccurs when a random numberxis taken from the setaxb and is given by:

    P(x) = 1

    b a if axb

    P(x) = 0 in all other cases

    x= 12 (b a)and2 =(b a)2

    12 .

  • 8/10/2019 mathematic formulary.pdf

    17/65

    Chapter 2: Probability and statistics 11

    6. The Gamma distributionis given by:

    P(x) =x1ex/

    ()

    if 0

    y

    with >0 and >0. The distribution has the following properties:x= ,2 =2.

    7. The Beta distributionis given by:

    P(x) =x1(1 x)1

    (, ) if 0x1

    P(x) = 0 everywhere else

    and has the following properties:x= +

    ,2 =

    ( + )2( + + 1).

    ForP(2)holds: = V /2and= 2.

    8. The Weibull distributionis given by:

    P(x) =

    x1ex

    if 0x >0

    P(x) = 0 in all other cases

    The average is x= 1/(( + 1))9. For atwo-dimensional distributionholds:

    P1(x1) =

    P(x1, x2)dx2 , P2(x2) =

    P(x1, x2)dx1

    with

    (g(x1, x2)) =

    g(x1, x2)P(x1, x2)dx1dx2 =x1

    x2

    g P

    2.4 Regression analyses

    When there exists a relation between the quantities x and y of the formy = ax +b and there is a measured setxiwith relatedyi, the following relation holds for aandb withx= (x1, x2,...,xn)and e= (1, 1,..., 1):

    y ax be< x, e >

    From this follows that the inner products are 0:

    (y, x ) a(x, x ) b(e, x ) = 0(y, e ) a(x, e ) b(e, e ) = 0

    with(x, x ) =i

    x2i ,(x, y ) =i

    xiyi,(x, e ) =i

    xi and (e, e ) = n.a andb follow from this.

    A similar method works for higher order polynomial fits: for a second order fit holds:

    y a x2 bx ce< x2, x, e >

    with x2 = (x21,...,x2n).

    Thecorrelation coefficientr is a measure for the quality of a fit. In case of linear regression it is given by:

    r= n

    xy x y

    (n

    x2 (

    x)2)(n

    y2 (

    y)2)

  • 8/10/2019 mathematic formulary.pdf

    18/65

    Chapter 3

    Calculus

    3.1 Integrals

    3.1.1 Arithmetic rules

    The primitive functionF(x) off(x)obeys the rule F(x) = f(x). WithF(x) the primitive off(x) holds for thedefinite integral

    ba

    f(x)dx= F(b) F(a)

    Ifu= f(x)holds:b

    a

    g(f(x))df(x) =

    f(b)f(a)

    g(u)du

    Partial integration: withF andGthe primitives offandg holds: f(x) g(x)dx= f(x)G(x)

    G(x)

    df(x)

    dx dx

    A derivative can be brought under the intergral sign (see section1.8.3for the required conditions):

    d

    dy

    x=h(y)x=g(y)

    f(x, y)dx

    =x=h(y)x=g(y)

    f(x, y)

    y dx f(g(y), y) dg(y)

    dy + f(h(y), y)

    dh(y)

    dy

    3.1.2 Arc lengts, surfaces and volumes

    The arc length of a curvey(x)is given by:

    =

    1 +

    dy(x)

    dx

    2dx

    The arc length of a parameter curveF(x(t))is:

    =

    F ds=

    F(x(t))|x(t)|dt

    with

    t=dx

    ds =

    x(t)

    |x(t)| , |t |= 1

    (v, t)ds=

    (v, t(t))dt=

    (v1dx + v2dy+ v3dz)

    The surfaceAof a solid of revolution is:

    A= 2

    y

    1 +

    dy(x)

    dx

    2dx

    12

  • 8/10/2019 mathematic formulary.pdf

    19/65

    Chapter 3: Calculus 13

    The volumeVof a solid of revolution is:

    V =

    f2(x)dx

    3.1.3 Separation of quotients

    Every rational function P(x)/Q(x) where P and Q are polynomials can be written as a linear combination offunctions of the type(x a)k withkZZ, and of functions of the type

    px + q

    ((x a)2 + b2)nwithb >0 andnIN. So:

    p(x)

    (x a)n =nk=1

    Ak(x a)k ,

    p(x)

    ((x b)2 + c2)n =nk=1

    Akx + B

    ((x b)2 + c2)k

    Recurrent relation: forn= 0 holds: dx

    (x2 + 1)n+1 = 1

    2nx

    (x2 + 1)n+2n 1

    2n

    dx

    (x2 + 1)n

    3.1.4 Special functions

    Elliptic functions

    Elliptic functions can be written as a power series as follows:1 k2 sin2(x) = 1

    n=1

    (2n 1)!!(2n)!!(2n 1) k

    2n sin2n(x)

    1

    1 k

    2

    sin2

    (x)

    = 1 +

    n=1

    (2n 1)!!(2n)!!

    k2n sin2n(x)

    withn!! = n(n 2)!!.

    The Gamma function

    The gamma function(y)is defined by:

    (y) =

    0

    exxy1dx

    One can derive that (y+ 1) = y(y) = y!. This is a way to define faculties for non-integers. Further one canderive that

    (n + 12 ) =

    2n

    (2n

    1)!! and (n)(y) =

    0

    exxy1 lnn(x)dx

    The Beta function

    The betafunction(p, q)is defined by:

    (p, q) =

    10

    xp1(1 x)q1dx

    withpandq >0. The beta and gamma functions are related by the following equation:

    (p, q) =(p)(q)

    (p + q)

  • 8/10/2019 mathematic formulary.pdf

    20/65

    14 Mathematics Formulary by ir. J.C.A. Wevers

    The Delta function

    The delta function(x)is an infinitely thin peak function with surface 1. It can be defined by:

    (x) = lim0

    P(, x) with P(, x) =

    0 for |x|>

    1

    2 when |x|<

    Some properties are:

    (x)dx= 1 ,

    F(x)(x)dx= F(0)

    3.1.5 Goniometric integrals

    When solving goniometric integrals it can be useful to change variables. The following holds if one defines

    tan( 1

    2

    x) := t:

    dx= 2dt

    1 + t2 , cos(x) =

    1 t21 + t2

    , sin(x) = 2t

    1 + t2

    Each integral of the type

    R(x,

    ax2 + bx + c)dx can be converted into one of the types that were treated insection3.1.3. After this conversion one can substitute in the integrals of the type:

    R(x,

    x2 + 1)dx : x= tan(), dx= d

    cos() of

    x2 + 1 = t + x R(x,

    1 x2)dx : x= sin(), dx= cos()d of

    1 x2 = 1 tx

    R(x,

    x2 1)dx : x= 1

    cos() , dx=

    sin()

    cos2()d of

    x2 1 = x t

    These definite integrals are easily solved:

    /20

    cosn(x)sinm(x)dx=(n 1)!!(m 1)!!

    (m + n)!!

    /2 whenmandnare both even1 in all other cases

    Some important integrals are:

    0

    xdx

    eax + 1=

    2

    12a2 ,

    x2dx

    (ex + 1)2 =

    2

    3 ,

    0

    x3dx

    ex 1=4

    15

    3.2 Functions with more variables

    3.2.1 Derivatives

    Thepartial derivativewith respect toxof a functionf(x, y)is defined by:f

    x

    x0

    = limh0

    f(x0+ h, y0) f(x0, y0)h

    Thedirectional derivativein the direction ofis defined by:

    f

    = lim

    r0

    f(x0+ r cos(), y0+ r sin()) f(x0, y0)r

    = ( f, (sin , cos )) =f v

    |v

    |

  • 8/10/2019 mathematic formulary.pdf

    21/65

    Chapter 3: Calculus 15

    When one changes to coordinates f(x(u, v), y(u, v))holds:

    f

    u=

    f

    x

    x

    u+

    f

    y

    y

    u

    Ifx(t)andy(t)depend only on one parametert holds:

    f

    t =

    f

    x

    dx

    dt +

    f

    y

    dy

    dt

    The total differentialdfof a function of 3 variables is given by:

    df=f

    xdx +

    f

    ydy+

    f

    zdz

    So

    dfdx

    = fx

    + fy

    dydx

    + fz

    dzdx

    Thetangentin pointx0 at the surfacef(x, y) = 0is given by the equation fx(x0)(x x0) + fy(x0)(y y0) = 0.Thetangent planeinx0 is given by:fx(x0)(x x0) + fy(x0)(y y0) = z f(x0).

    3.2.2 Taylor series

    A function of two variables can be expanded as follows in a Taylor series:

    f(x0+ h, y0+ k) =

    n

    p=0

    1

    p!h

    p

    xp

    + k p

    yp f(x0, y0) + R(n)

    withR(n)the residual error and

    h

    p

    xp+ k

    p

    yp

    f(a, b) =

    pm=0

    p

    m

    hmkpm

    pf(a, b)

    xmypm

    3.2.3 Extrema

    Whenf is continuous on a compact boundary V there exists a global maximum and a global minumum for f onthis boundary. A boundary is called compact if it is limited and closed.

    Possible extrema off(x, y)on a boundaryV IR2 are:

    1. Points onV wheref(x, y)is not differentiable,

    2. Points wheref= 0,

    3. If the boundaryVis given by(x, y) = 0, than all points where f(x, y) + (x, y) = 0are possible forextrema. This is the multiplicator method of Lagrange, is called a multiplicator.

    The same as in IR2 holds inIR3 when the area to be searched is constrained by a compact V, andV is defined by1(x,y,z) = 0and 2(x, y, z) = 0for extrema off(x, y, z)for points (1) and (2). Point (3) is rewritten as follows:

    possible extrema are points where f(x, y, z) + 1 1(x, y, z) + 2 2(x, y, z) = 0.

  • 8/10/2019 mathematic formulary.pdf

    22/65

    16 Mathematics Formulary by ir. J.C.A. Wevers

    3.2.4 The -operatorIn cartesian coordinates(x, y, z)holds:

    = x

    ex+ y

    ey+ z

    ez

    gradf = f

    xex+

    f

    yey+

    f

    zez

    div a = ax

    x +

    ayy

    + az

    z

    curl a =

    azy

    ayz

    ex+

    axz

    azx

    ey+

    ayx

    axy

    ez

    2f = 2f

    x2+

    2f

    y2 +

    2f

    z 2

    In cylindrical coordinates(r,,z)holds:

    = r

    er+1

    r

    e+

    zez

    gradf = f

    rer+

    1

    r

    f

    e+

    f

    zez

    div a = ar

    r +

    arr

    +1

    r

    a

    + az

    z

    curl a =

    1

    r

    az

    az

    er+

    arz

    azr

    e+

    ar

    +a

    r 1

    r

    ar

    ez

    2f = 2f

    r2 +

    1

    r

    f

    r +

    1

    r22f

    2+

    2f

    z 2

    In spherical coordinates(r,,)holds:

    = r

    er+1

    r

    e+

    1

    r sin

    e

    gradf = f

    rer+

    1

    r

    f

    e+

    1

    r sin

    f

    e

    div a = ar

    r +

    2arr

    +1

    r

    a

    + ar tan

    + 1

    r sin

    a

    curl a =

    1

    r

    a

    + ar tan

    1r sin

    a

    er+

    1

    r sin

    ar

    ar

    ar

    e+

    ar

    +a

    r 1

    r

    ar e

    2f = 2f

    r2 +

    2

    r

    f

    r +

    1

    r22f

    2 +

    1

    r2 tan

    f

    +

    1

    r2 sin2

    2f

    2

    General orthonormal curvilinear coordinates(u,v,w)can be derived from cartesian coordinates by the transforma-tionx= x(u, v, w). The unit vectors are given by:

    eu= 1

    h1

    x

    u, ev =

    1

    h2

    x

    v , ew=

    1

    h3

    x

    w

    where the termshi give normalization to length 1. The differential operators are than given by:

    gradf = 1

    h1

    f

    ueu+

    1

    h2

    f

    vev+

    1

    h3

    f

    wew

  • 8/10/2019 mathematic formulary.pdf

    23/65

    Chapter 3: Calculus 17

    div a = 1

    h1h2h3

    u(h2h3au) +

    v(h3h1av) +

    w(h1h2aw)

    curl a =

    1

    h2h3(h3aw)

    v (h2av)

    w

    eu+

    1

    h3h1(h1au)

    w (h3aw)

    u

    ev+1

    h1h2

    (h2av)

    u (h1au)

    v

    ew

    2f = 1h1h2h3

    u

    h2h3

    h1

    f

    u

    +

    v

    h3h1

    h2

    f

    v

    +

    w

    h1h2

    h3

    f

    w

    Some properties of the -operator are:

    div(v) = divv+ grad v curl(v) = curlv+ (grad) v curl grad= 0div(u v) = v (curlu) u (curlv) curl curlv= grad divv 2v div curlv= 0div grad=2 2v(2v1, 2v2, 2v3)

    Here, v is an arbitrary vectorfield and an arbitrary scalar field.

    3.2.5 Integral theorems

    Some important integral theorems are:

    Gauss:

    (v n)d2A=

    (divv )d3V

    Stokes for a scalar field:

    ( et)ds=

    (n grad)d2A

    Stokes for a vector field:

    (v et)ds=

    (curlv n)d2A

    this gives:

    (curlv n)d2A= 0

    Ostrogradsky:

    (n v )d2A=

    (curlv )d3A

    (n )d2A=

    (grad)d3V

    Here the orientable surface

    d2Ais bounded by the Jordan curves(t).

    3.2.6 Multiple integrals

    LetAbe a closed curve given byf(x, y) = 0, than the surfaceAinside the curve inIR2

    is given by

    A=

    d2A=

    dxdy

    Let the surfaceA be defined by the function z = f(x, y). The volumeV bounded byA and thexy plane is thangiven by:

    V =

    f(x, y)dxdy

    The volume inside a closed surface defined byz = f(x, y)is given by:

    V =

    d3V =

    f(x, y)dxdy =

    dxdydz

  • 8/10/2019 mathematic formulary.pdf

    24/65

    18 Mathematics Formulary by ir. J.C.A. Wevers

    3.2.7 Coordinate transformations

    The expressions d2A andd3V transform as follows when one changes coordinates to u = (u, v, w) through thetransformationx(u, v, w):

    V =

    f(x, y, z)dxdydz=

    f(x(u))

    xu dudvdw

    InIR2 holds:x

    u=

    xu xvyu yv

    Let the surfaceAbe defined byz = F(x, y) =X(u, v). Than the volume bounded by thexy plane andFis givenby:

    S

    f(x)d2A=

    G

    f(x(u))

    Xu Xv dudv=

    G

    f(x, y, F (x, y))

    1 + xF2 + yF2dxdy

    3.3 Orthogonality of functions

    The inner product of two functionsf(x)andg(x)on the interval[a, b]is given by:

    (f, g) =

    ba

    f(x)g(x)dx

    or, when using a weight functionp(x), by:

    (f, g) =

    ba

    p(x)f(x)g(x)dx

    Thenorm f follows from:f2 = (f, f). A set functionsfi is orthonormalif(fi, fj) = ij .Each functionf(x)can be written as a sum of orthogonal functions:

    f(x) =i=0

    cigi(x)

    and

    c2i f2. Let the setgi be orthogonal, than it follows:

    ci= f, gi(gi, gi)

    3.4 Fourier series

    Each function can be written as a sum of independent base functions. When one chooses the orthogonal basis

    (cos(nx), sin(nx))we have a Fourier series.

    A periodical functionf(x)with period2Lcan be written as:

    f(x) = a0+n=1

    ancos

    nxL

    + bnsin

    nxL

    Due to the orthogonality follows for the coefficients:

    a0 = 1

    2L

    LL

    f(t)d t , an= 1

    L

    LL

    f(t)cos

    nt

    L

    d t , bn=

    1

    L

    LL

    f(t)sin

    nt

    L

    dt

  • 8/10/2019 mathematic formulary.pdf

    25/65

    Chapter 3: Calculus 19

    A Fourier series can also be written as a sum of complex exponents:

    f(x) =

    n=

    cneinx

    with

    cn= 1

    2

    f(x)einxdx

    TheFourier transformof a functionf(x)gives the transformed function f():

    f() = 1

    2

    f(x)eixdx

    The inverse transformation is given by:

    1

    2

    f(x+) + f(x)

    =

    12

    f()eixd

    wheref(x+)andf(x)are defined by the lower - and upper limit:

    f(a) = limxa

    f(x) , f(a+) = limxa

    f(x)

    For continuous functions is 12[f(x+) + f(x)] = f(x).

  • 8/10/2019 mathematic formulary.pdf

    26/65

    Chapter 4

    Differential equations

    4.1 Linear differential equations

    4.1.1 First order linear DE

    The general solution of a linear differential equation is given by yA = yH + yP, whereyH is the solution of thehomogeneous equationandyP is aparticular solution.

    A first order differential equation is given by: y(x) +a(x)y(x) = b(x). Its homogeneous equation isy (x) +a(x)y(x) = 0.

    The solution of the homogeneous equation is given by

    yH = k exp

    a(x)dx

    Suppose thata(x) = a =constant.

    Substitution ofexp(x)in the homogeneous equation leads to thecharacteristic equation + a= 0 =a.Supposeb(x) = exp(x). Than one can distinguish two cases:

    1. =: a particular solution is: yP= exp(x)2. = : a particular solution is: yP= x exp(x)

    When a DE is solved by variation of parameters one writes: yP(x) = yH(x)f(x), and than one solves f(x) fromthis.

    4.1.2 Second order linear DE

    A differential equation of the second order with constant coefficients is given by: y (x) +ay(x) +by(x) =c(x).Ifc(x) = c =constant there exists a particular solutionyP= c/b.

    Substitution ofy = exp(x)leads to the characteristic equation2 + a + b= 0.

    There are now 2 possibilities:

    1. 1

    =2

    : thanyH

    = exp(1

    x) + exp(2

    x).

    2. 1 = 2 = : thanyH = ( + x) exp(x).

    Ifc(x) = p(x)exp(x)wherep(x)is a polynomial there are 3 possibilities:

    1. 1, 2=:yP= q(x) exp(x).2. 1 = , 2=:yP= xq(x) exp(x).3. 1 = 2 = : yP= x

    2q(x) exp(x).

    whereq(x)is a polynomial of the same order as p(x).

    When:y (x) + 2y(x) = f(x)andy(0) =y(0) = 0follows: y(x) =x

    0f(x) sin((x t))dt.

    20

  • 8/10/2019 mathematic formulary.pdf

    27/65

    Chapter 4: Differential equations 21

    4.1.3 The Wronskian

    We start with the LDEy(x) +p(x)y(x) + q(x)y(x) = 0and the two initial conditionsy(x0) = K0and y(x0) =

    K1. Whenp(x)andq(x)are continuous on the open interval Ithere exists a unique solutiony(x)on this interval.

    The general solution can than be written asy(x) = c1y1(x) + c2y2(x)andy1and y2 are linear independent. Theseare alsoall solutions of the LDE.

    TheWronskianis defined by:

    W(y1, y2) =

    y1 y2y1 y2 =y1y2 y2y1

    y1 and y2are linear independent if and only if on the interval Iwhen x0Iso that holds:W(y1(x0), y2(x0)) = 0.

    4.1.4 Power series substitution

    When a seriesy =

    anxn is substituted in the LDE with constant coefficients y(x) +py(x) +qy(x) = 0 thisleads to:

    n

    n(n 1)anxn2 +pnanxn1 + qanxn

    = 0

    Setting coefficients for equal powers ofxequal gives:

    (n + 2)(n + 1)an+2+p(n + 1)an+1+ qan= 0

    This gives a general relation between the coefficients. Special cases are n = 0, 1, 2.

    4.2 Some special cases

    4.2.1 Frobenius method

    Given the LDE

    d2y(x)

    dx2 +

    b(x)

    x

    dy(x)

    dx +

    c(x)

    x2 y(x) = 0

    withb(x)andc(x)analytical atx= 0. This LDE has at least one solution of the form

    yi(x) = xri

    n=0

    anxn with i= 1, 2

    withrreal or complex and chosen so thata0= 0. When one expandsb(x)andc(x)asb(x) = b0+ b1x + b2x2 + ...andc(x) = c0+ c1x + c2x

    2 + ..., it follows forr:

    r2 + (b0 1)r+ c0 = 0

    There are now 3 possibilities:

    1. r1 = r2: thany(x) = y1(x) ln |x| + y2(x).

    2. r1 r2IN: thany(x) = ky1(x) ln |x| + y2(x).

    3. r1 r2=ZZ: thany(x) = y1(x) + y2(x).

  • 8/10/2019 mathematic formulary.pdf

    28/65

    22 Mathematics Formulary by ir. J.C.A. Wevers

    4.2.2 Euler

    Given the LDE

    x2 d

    2y(x)

    dx2 + ax

    dy(x)

    dx + by(x) = 0

    Substitution ofy(x) =xr gives an equation forr: r2 + (a 1)r+ b= 0. From this one gets two solutions r1 andr2. There are now 2 possibilities:

    1. r1=r2: thany(x) = C1xr1 + C2xr2 .2. r1 = r2 = r: thany(x) = (C1ln(x) + C2)x

    r.

    4.2.3 Legendres DE

    Given the LDE

    (1 x2) d2y(x)

    dx2 2x dy(x)

    dx + n(n 1)y(x) = 0

    The solutions of this equation are given by y(x) = aPn(x) + by2(x) where the Legendre polynomialsP(x) aredefined by:

    Pn(x) = dn

    dxn

    (1 x2)n

    2nn!

    For these holds:Pn2 = 2/(2n + 1).

    4.2.4 The associated Legendre equation

    This equation follows from the-dependent part of the wave equation 2 = 0by substitution of= cos(). Than follows:

    (1 2) dd(1

    2)dP()

    d + [C(1 2) m2]P() = 0

    Regular solutions exists only ifC= l(l+ 1). They are of the form:

    P|m|l () = (1 2)m/2d|m|P0()

    d|m| =

    (1 2)|m|/22ll!

    d|m|+l

    d|m|+l(2 1)l

    For |m|> lisP|m|l () = 0. Some properties ofP0l()zijn:1

    1

    P0l ()P0l()d=

    2

    2l+ 1ll ,

    l=0

    P0l()tl =

    11 2t + t2

    This polynomial can be written as:

    P0l () = 1

    0

    (+

    2 1 cos())ld

    4.2.5 Solutions for Bessels equation

    Given the LDE

    x2d2y(x)

    dx2 + x

    dy(x)

    dx + (x2 2)y(x) = 0

    also calledBessels equation, and the Bessel functions of the first kind

    J(x) = x

    m=0(1)mx2m

    22m+m!(+ m + 1)

  • 8/10/2019 mathematic formulary.pdf

    29/65

    Chapter 4: Differential equations 23

    for:= nINthis becomes:Jn(x) = x

    n

    m=0(1)mx2m

    22m+nm!(n + m)!

    When=ZZthe solution is given byy(x) = aJ(x) + bJ(x). But because fornZZholds:Jn(x) = (1)nJn(x), this does not apply to integers. The general solution of Bessels equation is given byy(x) = aJ(x) + bY(x), whereYare the Bessel functions of the second kind:

    Y(x) =J(x)cos() J(x)

    sin() and Yn(x) = lim

    nY(x)

    The equationx2y(x) +xy(x) (x2 +2)y(x) = 0has the modified Bessel functions of the first kindI(x) =iJ(ix)as solution, and also solutions K=[I(x) I(x)]/[2 sin()].Sometimes it can be convenient to write the solutions of Bessels equation in terms of the Hankel functions

    H(1)n (x) = Jn(x) + iYn(x) , H

    (2)n (x) = Jn(x) iYn(x)

    4.2.6 Properties of Bessel functions

    Bessel functions are orthogonal with respect to the weight function p(x) = x.

    Jn(x) = (1)nJn(x). The Neumann functionsNm(x)are definied as:

    Nm(x) = 1

    2Jm(x)ln(x) +

    1

    xm

    n=0

    nx2n

    The following holds: limx0

    Jm(x) = xm, lim

    x0Nm(x) = x

    m form= 0, limx0

    N0(x) = ln(x).

    limr

    H(r) =eikreit

    r , lim

    xJn(x) =

    2

    xcos(x xn) , lim

    xJn(x) =

    2

    xsin(x xn)

    withxn= 12

    (n + 12 ).

    Jn+1(x) + Jn1(x) =2n

    xJn(x) , Jn+1(x) Jn1(x) =2 dJn(x)

    dx

    The following integral relations hold:

    Jm(x) = 1

    2

    2

    0

    exp[i(x sin()

    m)]d=

    1

    0

    cos(x sin()

    m)d

    4.2.7 Laguerres equation

    Given the LDE

    xd2y(x)

    dx2 + (1 x) dy(x)

    dx + ny(x) = 0

    Solutions of this equation are the Laguerre polynomials Ln(x):

    Ln(x) =ex

    n!

    dn

    dxn

    xnex

    =m=0

    (1)mm!

    n

    m

    xm

  • 8/10/2019 mathematic formulary.pdf

    30/65

    24 Mathematics Formulary by ir. J.C.A. Wevers

    4.2.8 The associated Laguerre equation

    Given the LDEd2y(x)

    dx2 +m + 1

    x 1 dy(x)dx +n + 12 (m + 1)

    x

    y(x) = 0

    Solutions of this equation are the associated Laguerre polynomialsLmn(x):

    Lmn(x) = (1)mn!(n m)! e

    xxm dnm

    dxnm

    exxn

    4.2.9 Hermite

    The differential equations of Hermite are:

    d2Hn(x)

    dx2 2x dHn(x)

    dx + 2nHn(x) = 0 and

    d2Hen(x)

    dx2 x dHen(x)

    dx + nHen(x) = 0

    Solutions of these equations are the Hermite polynomials, given by:

    Hn(x) = (1)n exp

    1

    2x2

    dn(exp(12 x2))dxn

    = 2n/2Hen(x

    2)

    Hen(x) = (1)n(exp

    x2 dn(exp(x2))

    dxn = 2n/2Hn(x/

    2)

    4.2.10 Chebyshev

    The LDE

    (1 x2) d2Un(x)

    dx2 3x dUn(x)

    dx + n(n + 2)Un(x) = 0

    has solutions of the formUn(x) =

    sin[(n + 1) arccos(x)]1 x2

    The LDE

    (1 x2) d2Tn(x)

    dx2 x dTn(x)

    dx + n2Tn(x) = 0

    has solutionsTn(x) = cos(n arccos(x)).

    4.2.11 Weber

    The LDEWn (x) + (n + 12 14 x2)Wn(x) = 0has solutions:Wn(x) = Hen(x) exp(14 x2).

    4.3 Non-linear differential equations

    Some non-linear differential equations and a solution are:

    y =a

    y2 + b2 y= b sinh(a(x x0))y =a

    y2 b2 y= b cosh(a(x x0))

    y =a

    b2 y2 y= b cos(a(x x0))y =a(y2 + b2) y= b tan(a(x x0))y =a(y2 b2) y= b coth(a(x x0))y =a(b2 y2) y= b tanh(a(x x0))y =ay

    b y

    b

    y=

    b

    1 + Cb exp(ax)

  • 8/10/2019 mathematic formulary.pdf

    31/65

    Chapter 4: Differential equations 25

    4.4 Sturm-Liouville equations

    Sturm-Liouville equations are second order LDEs of the form:

    ddx

    p(x)

    dy(x)

    dx

    + q(x)y(x) = m(x)y(x)

    The boundary conditions are chosen so that the operator

    L= ddx

    p(x)

    d

    dx

    + q(x)

    is Hermitean. The normalization function m(x)must satisfy

    ba

    m(x)yi(x)yj(x)dx= ij

    Wheny1(x)andy2(x)are two linear independent solutions one can write the Wronskian in this form:

    W(y1, y2) =

    y1 y2y1 y2 = Cp(x)

    whereCis constant. By changing to another dependent variableu(x), given by: u(x) = y(x)

    p(x), the LDEtransforms into thenormal form:

    d2u(x)

    dx2 + I(x)u(x) = 0 with I(x) =

    1

    4

    p(x)

    p(x)

    2 1

    2

    p(x)

    p(x) q(x) m(x)

    p(x)

    IfI(x) > 0, thany /y < 0 and the solution has an oscillatory behaviour, ifI(x) < 0, than y /y > 0 and the

    solution has an exponential behaviour.

    4.5 Linear partial differential equations

    4.5.1 General

    Thenormal derivativeis defined by:u

    n= ( u, n)

    A frequently used solution method for PDEs isseparation of variables: one assumes that the solution can be written

    asu(x, t) = X(x)T(t). When this is substituted two ordinary DEs for X(x)andT(t)are obtained.

    4.5.2 Special casesThe wave equation

    Thewave equationin 1 dimension is given by

    2u

    t2 =c2

    2u

    x2

    When the initial conditionsu(x, 0) = (x)andu(x, 0)/t = (x)apply, the general solution is given by:

    u(x, t) =1

    2[(x + ct) + (x ct)] + 1

    2c

    x+ctxct

    ()d

  • 8/10/2019 mathematic formulary.pdf

    32/65

    26 Mathematics Formulary by ir. J.C.A. Wevers

    The diffusion equation

    Thediffusion equationis:

    ut

    =D2u

    Its solutions can be written in terms of the propagatorsP(x, x, t). These have the property thatP(x, x, 0) = (x x). In 1 dimension it reads:

    P(x, x, t) = 1

    2

    Dtexp

    (x x)24Dt

    In 3 dimensions it reads:

    P(x, x, t) = 1

    8(Dt)3/2exp

    (x x )24Dt

    With initial conditionu(x, 0) = f(x)the solution is:

    u(x, t) =

    G

    f(x)P(x, x, t)dx

    The solution of the equation

    u

    t D

    2u

    x2 =g(x, t)

    is given by

    u(x, t) =

    dt

    dxg(x, t)P(x, x, t t)

    The equation of Helmholtz

    The equation of Helmholtz is obtained by substitution ofu(x, t) =v(x) exp(it)in the wave equation. This givesforv:

    2v(x, ) + k2v(x, ) = 0This gives as solutions forv:

    1. In cartesian coordinates: substitution ofv = A exp(ik x )gives:

    v(x ) =

    A(k)ei

    kxdk

    with the integrals over k 2 =k2.

    2. In polar coordinates:

    v(r, ) =m=0

    (AmJm(kr) + BmNm(kr))eim

    3. In spherical coordinates:

    v(r,,) =

    l=0

    lm=l

    [AlmJl+ 12

    (kr) + BlmJl 12

    (kr)]Y(, )

    r

  • 8/10/2019 mathematic formulary.pdf

    33/65

    Chapter 4: Differential equations 27

    4.5.3 Potential theory and Greens theorem

    Subject of the potential theory are thePoisson equation 2u=f(x )where fis a given function, and theLaplaceequation

    2u = 0. The solutions of these can often be interpreted as a potential. The solutions of Laplaces

    equation are calledharmonic functions.

    When a vector field v is given by v= gradholds:

    ba

    (v, t )ds= (b ) (a )

    In this case there exist functions and wso that v= grad + curl w.

    Thefield linesof the field v(x )follow from:

    x (t) = v(x )

    Thefirst theorem of Green is: G

    [u2v+ (u, v)]d3V =S

    uv

    nd2A

    Thesecond theorem of Green is:G

    [u2v v2u]d3V =S

    u

    v

    n v u

    n

    d2A

    A harmonic function which is 0 on the boundary of an area is also 0 within that area. A harmonic function with a

    normal derivative of 0 on the boundary of an area is constant within that area.

    TheDirichlet problemis:

    2u(x ) =f(x ) , xR , u(x ) = g(x ) for all xS.

    It has a unique solution.

    TheNeumann problemis:

    2u(x ) =f(x ) , xR , u(x )n

    =h(x ) for all xS.

    The solution is unique except for a constant. The solution exists if:

    R

    f(x )d3V =

    S

    h(x )d2A

    Afundamental solutionof the Laplace equation satisfies:

    2u(x ) =(x )

    This has in 2 dimensions in polar coordinates the following solution:

    u(r) = ln(r)

    2

    This has in 3 dimensions in spherical coordinates the following solution:

    u(r) = 1

    4r

  • 8/10/2019 mathematic formulary.pdf

    34/65

    28 Mathematics Formulary by ir. J.C.A. Wevers

    The equation 2v=(x )has the solution

    v(x ) = 1

    4|x |After substituting this in Greens 2nd theorem and applying the sieve property of the function one can deriveGreens 3rd theorem:

    u() = 14

    R

    2ur

    d3V + 1

    4

    S

    1

    r

    u

    n u

    n

    1

    r

    d2A

    TheGreen functionG(x, )is defined by:2G=(x ), and on boundarySholdsG(x, ) = 0. ThanGcanbe written as:

    G(x, ) = 1

    4|x | +g(x, )

    Thang(x,

    )is a solution of Dirichlets problem. The solution of Poissons equation

    2

    u =f(x )when on the

    boundarySholds: u(x ) = g(x ), is:

    u() =

    R

    G(x, )f(x )d3VS

    g(x )G(x, )

    n d2A

  • 8/10/2019 mathematic formulary.pdf

    35/65

    Chapter 5

    Linear algebra

    5.1 Vector spaces

    G is a group for the operation if:1.a, b G a b G: a group isclosed.2. (a b) c= a (b c): a group isassociative.3.e G so thata e= e a= a: there exists a unit element.4.a Ga G so thata a= e: each element has an inverse.

    If

    5.a b= b athe group is called Abelian or commutative. Vector spaces form an Abelian group for addition and multiplication:

    1 a= a,(a) = ()a,( + )(a + b) = a + b + a + b.W is a linear subspaceifw1, w2Wholds: w1+ w2W.W is aninvariant subspaceofVfor the operatorAifwWholds:A wW.

    5.2 Basis

    For an orthogonal basis holds: (ei, ej) = cij. For an orthonormal basis holds:(ei, ej) = ij .

    The set vectors {an} is linear independent if:i

    iai= 0 ii = 0

    The set {an} is a basis if it is 1. independent and 2. V =< a1, a2,... >=

    iai.

    5.3 Matrix calculus

    5.3.1 Basic operations

    For the matrix multiplication of matrices A= aij andB = bkl holds withr the row index and k the column index:

    Ar1k1 Br2k2 =Cr1k2 , (AB)ij =k

    aikbkj

    wherer is the number of rows and k the number of columns.

    The transpose ofA is defined by: aTij = aji . For this holds(AB)T = BTAT and(AT)1 = (A1)T. For the

    inverse matrixholds:(A B)1 =B1 A1. The inverse matrixA1 has the property thatA A1 =IIand canbe found by diagonalization: (Aij|II)(II|A1ij ).

    29

  • 8/10/2019 mathematic formulary.pdf

    36/65

    30 Mathematics Formulary by ir. J.C.A. Wevers

    The inverse of a2 2matrix is:

    a bc d

    1

    = 1

    ad bc d bc a

    Thedeterminant functionD = det(A)is defined by:

    det(A) = D(a1, a2, ..., an)

    For the determinantdet(A)of a matrixAholds:det(AB) = det(A) det(B). Een2 2matrix has determinant:

    det

    a bc d

    =ad cb

    The derivative of a matrix is a matrix with the derivatives of the coefficients:

    dA

    dt =

    daijdt

    and dAB

    dt =B

    dA

    dt + A

    dB

    dt

    The derivative of the determinant is given by:

    d det(A)

    dt =D(

    da1dt

    , ..., an) + D(a1,da2

    dt , ..., an) + ... + D(a1, ...,

    dandt

    )

    When the rows of a matrix are considered as vectors the row rankof a matrix is the number of independent vectors

    in this set. Similar for the column rank. The row rank equals the column rank for each matrix.

    Let A: V Vbe the complex extension of the real linear operator A: V Vin a finite dimensional V. ThenAand Ahave the same caracteristic equation.

    WhenAijIRand v1+ i v2is an eigenvector ofAat eigenvalue= 1+ i2, than holds:1. Av1 = 1v1 2v2 and Av2 = 2v1+ 1v2.

    2. v =v1 iv2 is an eigenvalue at =1 i2.3. The linear span< v1, v2 > is an invariant subspace ofA.

    Ifknare the columns ofA, than the transformed space ofAis given by:

    R(A) =< Ae1, ..., Aen>=< k1,..., kn>

    If the columns knof an mmatrixAare independent, than the nullspaceN(A) ={0 }.

    5.3.2 Matrix equations

    We start with the equation

    A x= band b= 0. Ifdet(A) = 0the only solution is 0. Ifdet(A)= 0 there exists exactly one solution = 0.The equation

    A x= 0has exactly one solution = 0ifdet(A) = 0, and ifdet(A)= 0 the solution is 0.Cramers rule for the solution of systems of linear equations is: let the system be written as

    A x= b a1x1+ ... + anxn= bthenxj is given by:

    xj =D(a1, ..., aj1,b, aj+1, ..., an)

    det(A)

  • 8/10/2019 mathematic formulary.pdf

    37/65

    Chapter 5: Linear algebra 31

    5.4 Linear transformations

    A transformationAis linear if: A(x + y ) = Ax + Ay.

    Some common linear transformations are:

    Transformation type Equation

    Projection on the line< a > P (x ) = (a, x )a/(a, a )Projection on the plane(a, x ) = 0 Q(x ) = x P(x )Mirror image in the line< a > S (x ) = 2P(x ) xMirror image in the plane(a, x ) = 0 T(x ) = 2Q(x ) x= x 2P(x )

    For a projection holds: x PW(x )PW(x )andPW(x )W.If for a transformationAholds: (Ax, y ) = (x, Ay ) = (Ax, Ay ), thanAis a projection.

    LetA: W Wdefine a linear transformation; we define:

    IfSis a subset ofV: A(S) :={AxW|xS} IfTis a subset ofW:A(T) :={xV|A(x )T}

    ThanA(S)is a linear subspace ofWand the inverse transformationA(T)is a linear subspace ofV. From thisfollows thatA(V)is theimage spaceofA, notation:R(A).A(0 ) = E0 is a linear subspace ofV, thenull spaceofA, notation:N(A). Then the following holds:

    dim(N(A)) + dim(R(A)) = dim(V)

    5.5 Plane and line

    The equation of a line that contains the points aandbis:

    x= a + (b a ) = a + r

    The equation of a plane is:

    x= a + (b a ) + (c a ) = a + r1+ r2When this is a plane in IR3, thenormal vectorto this plane is given by:

    nV = r1 r2|r1 r2|

    A line can also be described by the points for which the line equation : (a, x) + b = 0 holds, and for a plane V:(a, x) + k = 0. The normal vector to V is than: a/|a|.The distancedbetween 2 pointspandqis given byd(p, q) =p q.InIR2 holds: The distance of a point pto the line(a, x ) + b= 0is

    d(p, ) =|(a, p ) + b|

    |a|

    Similarly inIR3: The distance of a point pto the plane(a, x ) + k= 0is

    d(p, V) =|(a, p ) + k|

    |a|This can be generalized forIRn andCn (theorem from Hesse).

  • 8/10/2019 mathematic formulary.pdf

    38/65

    32 Mathematics Formulary by ir. J.C.A. Wevers

    5.6 Coordinate transformations

    The linear transformationAfromIKn IKm is given by (IK= IRofC):

    y= Amnx

    where a column ofAis the image of a base vector in the original.

    The matrixAtransforms a vector given w.r.t. a basisinto a vector w.r.t. a basis . It is given by:

    A= ((Aa1),...,(Aan))

    where(x )is the representation of the vector xw.r.t. basis.

    Thetransformation matrixS transforms vectors from coordinate system into coordinate system:

    S := II = ((a1),...,(an))

    andS S =IIThe matrix of a transformationAis than given by:

    A=

    Ae1,...,Aen

    For the transformation of matrix operators to another coordinate system holds: A = SA

    S

    , A

    = S

    A

    S

    and(AB)= AB

    .

    Further isA= SA

    ,A

    =A

    S

    . A vector is transformed viaX= S

    X.

    5.7 Eigen valuesTheeigenvalue equation

    Ax= x

    with eigenvalues can be solved with (AII) = 0 det(AII) = 0. The eigenvalues follow from thischaracteristic equation. The following is true: det(A) =

    i

    i and Tr(A) =i

    aii=i

    i.

    The eigen values i are independent of the chosen basis. The matrix ofA in a basis of eigenvectors, with S thetransformation matrix to this basis, S= (E1 ,...,En), is given by:

    = S1AS= diag(1,...,n)

    When 0 is an eigen value ofAthanE0(A) =N(A).Whenis an eigen value ofAholds:Anx= nx.

    5.8 Transformation types

    Isometric transformations

    A transformation isisometricwhen:Ax=x. This implies that the eigen values of an isometric transformationare given by= exp(i) ||= 1. Than also holds: (Ax, Ay ) = (x, y ).When W is an invariant subspace if the isometric transformation A with dim(A)

  • 8/10/2019 mathematic formulary.pdf

    39/65

    Chapter 5: Linear algebra 33

    Orthogonal transformations

    A transformationA is orthogonalifA is isometricandthe inverseA exists. For an orthogonal transformationOholdsOTO= II, so:OT =O1. IfAandB are orthogonal, thanAB and A1 are also orthogonal.

    LetA: V Vbe orthogonal with dim(V) is given by:

    S=

    cos() sin()

    sin() cos()

    Mirrored orthogonal transformations inIR3 are rotational mirrorings: rotations of axis< a1 > through angleandmirror plane< a1 >

    . The matrix of such a transformation is given by:

    1 0 00 cos()

    sin()

    0 sin() cos()

    For all orthogonal transformationsO in IR3 holds thatO(x ) O(y ) = O(x y ).IRn (n

  • 8/10/2019 mathematic formulary.pdf

    40/65

    34 Mathematics Formulary by ir. J.C.A. Wevers

    Hermitian transformations

    A transformation H : V V with V = Cn is Hermitian if(Hx, y ) = (x, Hy ). The Hermitian conjugatedtransformationA

    H

    ofA is: [aij]

    H

    = [a

    ji]. An alternative notation is: A

    H

    =A

    . The inner product of two vectorsxandycan now be written in the form: (x, y ) = xHy.

    If the transformationsAandB are Hermitian, than their productAB is Hermitian if:[A, B] = AB BA = 0.[A, B]is called the commutatorofAandB.The eigenvalues of a Hermitian transformation belong to IR.

    A matrix representation can be coupled with a Hermitian operator L. W.r.t. a basisei it is given by Lmn =(em, Len).

    Normal transformations

    For each linear transformation A in a complex vector spaceV there exists exactly one linear transformationB sothat(Ax, y ) = (x, By ). ThisB is called theadjungated transformation ofA. Notation: B = A. The followingholds:(CD) =DC.A =A1 ifA is unitary andA =A ifAis Hermitian.

    Definition: the linear transformation A isnormalin a complex vector space V ifAA= AA. This is only the caseif for its matrixSw.r.t. an orthonormal basis holds: AA= AA.

    IfAis normal holds:

    1. For all vectorsxVand a normal transformationAholds:

    (Ax, Ay ) = (AAx, y ) = (AAx, y ) = (Ax, Ay )

    2. xis an eigenvector ofAif and only ifxis an eigenvector ofA.

    3. Eigenvectors ofAfor different eigenvalues are mutually perpendicular.

    4. IfEif an eigenspace fromAthan the orthogonal complementE is an invariant subspace ofA.

    Let the different roots of the characteristic equation ofA be i with multiplicitiesni. Than the dimension of eacheigenspaceVi equalsni. These eigenspaces are mutually perpendicular and each vectorx Vcan be written inexactly one way as

    x=i

    xi with xiVi

    This can also be written as: xi = PixwherePi is a projection onVi. This leads to the spectral mapping theorem:letAbe a normal transformation in a complex vector space Vwith dim(V) = n. Than:

    1. There exist projection transformationsPi,1ip, with the properties

    Pi Pj = 0 fori=j , P1+ ... + Pp= II, dimP1(V) + ... + dimPp(V) = n

    and complex numbers1,...,pso thatA = 1P1+ ... + pPp.

    2. IfAis unitary than holds |i|= 1 i.

    3. IfAis Hermitian thaniIR i.

  • 8/10/2019 mathematic formulary.pdf

    41/65

    Chapter 5: Linear algebra 35

    Complete systems of commuting Hermitian transformations

    Considerm Hermitian linear transformationsAi in an dimensional complex inner product spaceV. Assume theymutually commute.

    Lemma: ifE is the eigenspace for eigenvalue fromA1, thanE is an invariant subspace of all transformationsAi. This means that ifxE, thanAixE.Theorem. Considerm commuting Hermitian matricesAi. Than there exists a unitary matrix Uso that all matricesUAiUare diagonal. The columns ofUare the common eigenvectors of all matrices Aj .

    If all eigenvalues of a Hermitian linear transformation in a n-dimensional complex vector space differ, than thenormalized eigenvector is known except for a phase factorexp(i).

    Definition: a commuting set Hermitian transformations is calledcompleteif for each set of two common eigenvec-

    tors vi, vj there exists a transformationAk so that vi and vj are eigenvectors with different eigenvalues ofAk.

    Usually a commuting set is taken as small as possible. In quantum physics one speaks of commuting observables.

    The required number of commuting observables equals the number of quantum numbers required to characterize a

    state.

    5.9 Homogeneous coordinates

    Homogeneous coordinates are used if one wants to combine both rotations and translations in one matrix transfor-

    mation. An extra coordinate is introduced to describe the non-linearities. Homogeneous coordinates are derived

    from cartesian coordinates as follows: xy

    z

    cart

    =

    wxwywzw

    hom

    =

    XYZw

    hom

    sox= X/w

    ,y = Y /w

    andz= Z/w

    . Transformations in homogeneous coordinates are described by the following

    matrices:

    1. Translation along vector(X0, Y0, Z0, w0):

    T =

    w0 0 0 X00 w0 0 Y00 0 w0 Z00 0 0 w0

    2. Rotations of thex, y, zaxis, resp. through angles, , :

    Rx() =

    1 0 0 00 cos sin 00 sin cos 0

    0 0 0 1

    Ry() =

    cos 0 sin 0

    0 1 0 0

    sin 0 cos 0

    0 0 0 1

    Rz() =

    cos sin 0 0sin cos 0 0

    0 0 1 00 0 0 1

    3. A perspective projection on image planez = cwith the center of projection in the origin. This transformationhas no inverse.

    P(z= c) =

    1 0 0 00 1 0 00 0 1 00 0 1/c 0

  • 8/10/2019 mathematic formulary.pdf

    42/65

    36 Mathematics Formulary by ir. J.C.A. Wevers

    5.10 Inner product spaces

    A complex inner product on a complex vector space is defined as follows:

    1. (a,b ) = (b, a ),

    2. (a, 1b1+ 2b 2) = 1(a,b 1) + 2(a,b 2)for all a,b1,b2V and1, 2C.3. (a, a )0 for all aV,(a, a ) = 0if and only ifa= 0.

    Due to (1) holds: (a, a )IR. Theinner product spaceCn is the complex vector space on which a complex innerproduct is defined by:

    (a,b ) =ni=1

    ai bi

    For function spaces holds:

    (f, g) =

    ba

    f(t)g(t)dt

    For each a the length a is defined by:a = (a, a ). The following holds:a b a+b a +b ,and withthe angle between aand bholds:(a,b ) =a b cos().Let{a1, ..., an} be a set of vectors in an inner product space V. Than the Gramian G of this set is given by:Gij = (ai, aj). The set of vectors is independent if and only ifdet(G) = 0.

    A set isorthonormalif(ai, aj) =ij. Ife1, e2,...form an orthonormal row in an infinite dimensional vector spaceBessels inequality holds:

    x 2

    i=1|(ei, x )|2

    The equal sign holds if and only if limn

    xn x = 0.

    The inner product space2 is defined inC by:

    2 =

    a= (a1, a2,...) |

    n=1

    |an|2 0 there are no more than a finite number of discontinuities and each discontinuityhas an upper - and lower limit,

    2.t0[0, > anda, MIRso that fortt0 holds:|f(t)| exp(at)< M.Than there exists a Laplace transform for f.

    The Laplace transformation is a generalisation of the Fourier transformation. The Laplace transform of a function

    f(t)is, withsCandt0:

    F(s) =

    0

    f(t)estdt

  • 8/10/2019 mathematic formulary.pdf

    43/65

    Chapter 5: Linear algebra 37

    The Laplace transform of the derivative of a function is given by:

    Lf(n)(t) =

    f(n1)(0)

    sf(n2)(0)

    ...

    sn1f(0) + snF(s)

    The operator L has the following properties:1. Equal shapes: ifa >0 than

    L (f(at)) = 1a

    F s

    a

    2. Damping:L (eatf(t)) = F(s + a)3. Translation: Ifa > 0 and g is defined byg(t) = f(ta) ift > a andg(t) = 0 fort a, than holds:

    L (g(t)) = esaL(f(t)).IfsIRthan holds (f) =L((f))and (f) =L((f)).For some often occurring functions holds:

    f(t) = F(s) =L(f(t)) =tn

    n!eat (s a)n1

    eat cos(t) s a(s a)2 + 2

    eat sin(t)

    (s a)2 + 2(t a) exp(as)

    5.12 The convolution

    The convolution integral is defined by:

    (f g)(t) =t

    0

    f(u)g(t u)du

    The convolution has the following properties:

    1. f gLT2.L(f g) =L(f) L(g)3. Distribution:f (g+ h) = f g+ f h

    4. Commutative:f g= g f5. Homogenity:f (g) = f g

    IfL(f) = F1 F2, than isf(t) = f1 f2.

    5.13 Systems of linear differential equations

    We start with the equation x= Ax. Assume thatx=v exp(t), than follows: Av= v. In the2 2case holds:1. 1 = 2: thanx(t) =

    viexp(it).

    2. 1=2: thanx(t) = (ut + v)exp(t).

  • 8/10/2019 mathematic formulary.pdf

    44/65

    38 Mathematics Formulary by ir. J.C.A. Wevers

    Assume that = + i is an eigenvalue with eigenvector v, than is also an eigenvalue for eigenvectorv .Decompose v= u + i w, than the real solutions are

    c1[u cos(t)

    w sin(t)]et + c2[v cos(t) + u sin(t)]et

    There are two solution strategies for the equation x= Ax:

    1. Letx=v exp(t)det(A 2II) = 0.2. Introduce: x = u and y =v , this leads to x = uand y = v. This transforms an-dimensional set of second

    order equations into a2n-dimensional set of first order equations.

    5.14 Quadratic forms

    5.14.1 Quadratic forms inIR2

    The general equation of a quadratic form is: xTAx+ 2xTP +S = 0. Here,A is a symmetric matrix. If =

    S1

    AS= diag(1,...,n)holds:uT

    u + 2uT

    P+ S= 0, so all cross terms are 0. u= (u, v, w)should be chosenso that det(S) = +1, to maintain the same orientation as the system(x, y, z).

    Starting with the equation

    ax2 + 2bxy+ cy2 + dx + ey+ f= 0

    we have |A| = ac b2. An ellipse has |A|> 0, a parabola |A|= 0and a hyperbole |A| < 0. In polar coordinatesthis can be written as:

    r= ep

    1 e cos()An ellipse hase 1.

    5.14.2 Quadratic surfaces inIR3

    Rank 3:

    p x2a2

    + qy2b2

    + r z2c2

    =d

    Ellipsoid:p = q= r = d = 1,a,b,care the lengths of the semi axes. Single-bladed hyperboloid: p = q= d = 1,r =1. Double-bladed hyperboloid:r = d = 1,p= q=1. Cone:p = q= 1,r =1,d = 0.

    Rank 2:

    px2

    a2 + q

    y2

    b2 + r

    z

    c2 =d

    Elliptic paraboloid: p = q= 1,r =1,d = 0.

    Hyperbolic paraboloid: p = r =1,q= 1,d = 0. Elliptic cylinder: p = q=1,r = d = 0. Hyperbolic cylinder: p = d = 1,q=1,r = 0. Pair of planes: p = 1,q=1,d = 0.

    Rank 1:

    py2 + qx = d

    Parabolic cylinder:p,q >0. Parallel pair of planes: d >0,q= 0,p= 0. Double plane: p= 0,q= d = 0.

  • 8/10/2019 mathematic formulary.pdf

    45/65

    Chapter 6

    Complex function theory

    6.1 Functions of complex variables

    Complex function theory deals with complex functions of a complex variable. Some definitions:

    f isanalyticalon G iffis continuous and differentiable on G.AJordan curveis a curve that is closed and singular.

    If K is a curve in Cwith parameter equationz = (t) = x(t) +iy(t),a

    t

    b, than the length L of K is givenby:

    L=

    ba

    dx

    dt

    2+

    dy

    dt

    2dt=

    ba

    dzdt dt=

    ba

    |(t)|dt

    The derivative offin pointz = a is:

    f(a) = limza

    f(z) f(a)z a

    Iff(z) = u(x, y) + iv(x, y)the derivative is:

    f(z) =u

    x+ i

    v

    x=i u

    y+

    v

    y

    Setting both results equal yields the equations of Cauchy-Riemann:u

    x=

    v

    y ,

    u

    y = v

    x

    These equations imply that 2u=2v= 0.fis analytical ifuandv satisfy these equations.

    6.2 Complex integration

    6.2.1 Cauchys integral formula

    LetKbe a curve described byz = (t)on atb and f(z)is continuous onK. Than the integral offoverKis:

    K

    f(z)dz =

    ba

    f((t))(t)dt fcontinuous= F(b) F(a)

    Lemma: letKbe the circle with center aand radiusr taken in a positive direction. Than holds for integerm:

    1

    2i

    K

    dz

    (z a)m =

    0 if m= 11 if m= 1

    Theorem: ifLis the length of curveKand if|f(z)| M forzK, than, if the integral exists, holds:K

    f(z)dz

    M L

    39

  • 8/10/2019 mathematic formulary.pdf

    46/65

    40 Mathematics Formulary by ir. J.C.A. Wevers

    Theorem: letfbe continuous on an area G and letp be a fixed point ofG. LetF(z) =zp

    f()dfor allz Gonly depend onz and not on the integration path. ThanF(z)is analytical onGwithF(z) = f(z).

    This leads to two equivalent formulations of the main theorem of complex integration: let the functionf

    be analytical

    on an areaG. LetKandK be two curves with the same starting - and end points, which can be transformed intoeach other by continous deformation withinG. LetB be a Jordan curve. Than holds

    K

    f(z)dz=

    K

    f(z)dzB

    f(z)dz = 0

    By applying the main theorem oneiz/zone can derive that

    0

    sin(x)

    x dx=

    2

    6.2.2 Residue

    A pointaC is a regular pointof a functionf(z)iffis analytical ina. Otherwiseais asingular pointor poleoff(z). Theresidueoff inais defined by

    Resz=a

    f(z) = 1

    2i

    K

    f(z)dz

    whereKis a Jordan curve which e