Mathcad - L27 examples - uidaho.edu · 2020. 1. 15. · ECE 524: Transients in Power Systems...

28
ECE 524: Transients in Power Systems Session 27; Page 1/28 Spring 2018 Three Phase Travelling Wave Examples 132kV LL VS VSEND I 100km line VREC V V V R 0 0.32 ohm km R 1 0.025 ohm km L 0 3.2 mH km L 1 0.91 mH km C 0 0.008 μF km C 1 0.0125 μF km Z c0 L 0 C 0 Z c0 632.46 Ω Z c1 L 1 C 1 Z c1 269.81 Ω Applied voltage: V m 107.8kV Balanced three phase set with close at peak of phase: V abc0 V m V m 2 V m 2 V abc0 107.8 53.9 53.9 kV Clarke Transform: T i 1 3 1 1 1 2 1 2 1 2 0 3 2 3 2 T e T i T e T i T 1 0 0 0 1 0 0 0 1

Transcript of Mathcad - L27 examples - uidaho.edu · 2020. 1. 15. · ECE 524: Transients in Power Systems...

  • ECE 524: Transients in Power Systems

    Session 27; Page 1/28 Spring 2018

    Three Phase Travelling Wave Examples

    132kV LL

    VS VSEND

    I

    100km line

    VRECVVV

    R0 0.32ohmkm

    R1 0.025ohmkm

    L0 3.2mHkm

    L1 0.91mHkm

    C0 0.008μFkm C1 0.0125

    μFkm

    Zc0L0C0

    Zc0 632.46 Ω Zc1L1C1

    Zc1 269.81 Ω

    Applied voltage: Vm 107.8kV

    Balanced three phase set with close at peak of phase: Vabc0

    Vm

    Vm

    2

    Vm

    2

    Vabc0

    107.8

    53.9

    53.9

    kV

    Clarke Transform:

    Ti1

    3

    1

    1

    1

    2

    1

    2

    1

    2

    0

    32

    32

    Te Ti Te TiT

    1

    0

    0

    0

    1

    0

    0

    0

    1

  • ECE 524: Transients in Power Systems

    Session 27; Page 2/28 Spring 2018

    Vmodal0 Te1 Vabc0 Vmodal0

    0

    132.03

    0

    kV

    Close into open circuit, we expect receiving end voltage to double for each mode, and the convert back to ABC

    Voltages when close all three poles

    (file lect27.pl4; x-var t) v:VSENDA v:VSENDB v:VSENDC v:VRECA v:VRECB v:VRECC 0.094 0.096 0.098 0.100 0.102 0.104[s]

    -200

    -100

    0

    100

    200

    300

    [kV] Note that each individual phase doublesthe initial applied voltageSuggests only one mode excited, asimplied above

    Initial modal currentVmodal01

    Zc1489.33A Ti

    0

    Vmodal01Zc1

    0

    399.53

    199.77

    199.77

    A

  • ECE 524: Transients in Power Systems

    Session 27; Page 3/28 Spring 2018

    (file lect27.pl4; x-var t) c:VSA -VSENDA c:VSB -VSENDB c:VSC -VSENDC 0.096 0.098 0.100 0.102 0.104 0.106 0.108[s]

    -500

    -350

    -200

    -50

    100

    250

    400

    [A]

    Consistent with the resultsabove for the initial transient

    Single phase close to open circuited line:

    Voltage

    Vmodal_single0 Te1

    107.8kV

    0kV

    0kV

    Vmodal_single0

    62.24

    88.02

    0

    kV Note the cross-coupling, the first term is a ground mode term.

    Receiving end: Vrecmodal 2 Vmodal_single0

    Vabc_rec Te Vrecmodal Vabc_rec

    215.6

    0

    0

    kV

  • ECE 524: Transients in Power Systems

    Session 27; Page 4/28 Spring 2018

    Sending end voltages

    ( fi le le c t2 7 .p l4 ; x-va r t) v :V S E N D A v :V S E N D B v :V S E N D C 0 .0 9 7 0 .0 9 8 0 .0 9 9 0 .1 0 0 0 .1 0 1 0 .1 0 2 0 .1 0 3 0 .1 0 4 0 .1 0 5[s ]

    - 4 0

    - 2 0

    0

    2 0

    4 0

    6 0

    8 0

    1 0 0

    1 2 0[k V ]

    Phases B and C show a zero mode response(same voltage on each).

    (fi le le c t27 .p l4 ; x-va r t) v:V RE C A v:V RE C B v:V RE C C 0.095 0.097 0.099 0.101 0.103 0.105 0.107[s]

    -100

    -50

    0

    50

    100

    150

    200

    250

    [kV ]Receiving endvoltages: Note effect of two different

    propagation times for ground andline mode

  • ECE 524: Transients in Power Systems

    Session 27; Page 5/28 Spring 2018

    Current

    (f ile lec t25.pl4; x -v ar t ) c :VSA -VSEN D A c :VSB -VSEN D B c :VSC -VSEN D C 0.096 0.098 0.100 0.102 0.104 0.106 0.108[s ]

    -400

    -300

    -200

    -100

    0

    100

    200

    300

    [A ]

    Close 1 phase, with load 3 phase short.....

    (f ile lec t25 .p l4 ; x -v a r t ) c :V S A -V S E N D A c :V S B -V S E N D B c :V S C -V S E N D C 0 .000 0 .026 0 .052 0 .078 0 .104 0 .130[s ]

    -2000

    -1500

    -1000

    -500

    0

    500

    1000

    1500

    2000[A ]

    Sending end currents:

  • ECE 524: Transients in Power Systems

    Session 27; Page 6/28 Spring 2018

    (f ile lect25.pl4; x-v ar t) c:VRECA - c:VRECB - c:VRECC - 0.095 0.100 0.105 0.110 0.115 0.120 0.125 0.130[s]

    -2000

    -1500

    -1000

    -500

    0

    500

    1000

    1500

    2000[A]

    Receiving end currents

  • ECE 524: Transients in Power Systems

    Session 27; Page 7/28 Spring 2018

    EMTDC ImplementationBreaker set for single pole operation (eachphase can operate independently)

    Now need three trip inputs, see in circuit diagram below

  • ECE 524: Transients in Power Systems

    Session 27; Page 8/28 Spring 2018

    R=0

    T im e dB re a k e r

    L o g icO p e n @ t0B R K A

    TL in eT

    TER

    M

    T im e dB re a k e r

    L o g icO p e n @ t0T E R M

    VS E N D VR E C

    VS E N D

    VR E C

    IB R E AK A

    IB R E AK B

    IB R E AK C

    Ire c A

    Ire c B

    Ire c C

    T im e dB re a k e r

    L o g icO p e n @ t0B R K B

    T im e dB re a k e r

    L o g icO p e n @ t0B R K C Need a seperate control for each

    phase of the breaker now

    Main : Graphs

    0.100

    -250 -200 -150 -100 -50

    0 50

    100 150 200 250

    y (k

    V)

    VSEND VREC

    Voltages for 3 pole close, withterminal open

  • ECE 524: Transients in Power Systems

    Session 27; Page 9/28 Spring 2018

    Main : Graphs

    0.100

    -0.50

    0.00

    0.50

    y (k

    A)

    IBREAKA IBREAKB IBREAKCCurrents for 3 pole close to opencircuited line

    Main : Graphs

    0.100

    -250 -200 -150 -100

    -50 0

    50 100 150 200 250

    y (k

    V)

    VSEND VRECSingle phase close:

    Voltage (open circuited line)

  • ECE 524: Transients in Power Systems

    Session 27; Page 10/28 Spring 2018

    Main : Graphs

    0.100

    -0.50

    0.00

    0.50

    y (k

    A)

    IBREAKA IBREAKB IBREAKC

    Current (open circuited line)

    Main : Graphs

    0.100

    -250 -200 -150 -100

    -50 0

    50 100 150 200 250

    y (k

    V)

    VSEND VRECClose 1 phase, with load 3 phaseshort.....

    Sending end voltage (note reflections onsending end)

  • ECE 524: Transients in Power Systems

    Session 27; Page 11/28 Spring 2018

    Main : Graphs

    0.100 0.150

    -2.00

    -1.50

    -1.00

    -0.50

    0.00

    0.50

    1.00

    1.50

    2.00

    y (k

    A)

    IBREAKA IBREAKB IBREAKC

    Sending end currents:

    Main : Graphs

    0.100 0.150

    -2.00

    -1.50

    -1.00

    -0.50

    0.00

    0.50

    1.00

    1.50

    2.00

    y (k

    A)

    IrecA IrecB IrecC

    Receiving end currents

  • ECE 524: Transients in Power Systems

    Session 27; Page 12/28 Spring 2018

    Trapped Charge and Inrush Current

    When clearing a line, breakers open at natural current zeroIf line is unloaded this is a capacitive current, so clear at voltage peakPotential for inrush currentsNote that emt-programs exaggerate this effect since don't allow for self-dischargeMismatch in voltage between source side of breaker and line side of breaker determines:

    Inrush current1.Magnitude of worst case overvoltage at receiving end of line if that is open2.

    Won't see same on all three phase with 3 pole closing

     

    1 Zc Zc

     

    132kV LL

    VS

    I

    SWITI

    10 uOhm

    V1

    100km line

    V2VV

  • ECE 524: Transients in Power Systems

    Session 27; Page 13/28 Spring 2018

    ( f i l e R E C L O S E . p l 4 ; x - v a r t ) v : V 1 A v : V 1 B v : V 1 C 0 . 0 0 0 0 . 0 2 6 0 . 0 5 2 0 . 0 7 8 0 . 1 0 4 0 . 1 3 0[ s ]

    - 1 2 0

    - 8 0

    - 4 0

    0

    4 0

    8 0

    1 2 0

    [ k V ]

    Voltages at sending end of the linewhen energize open circuited line:

    Energize lineThen clear it Then reclose

    The transient voltages in the trappedcharge are largely due to residualeffects of the initial closing transient.

    ( f i le R E C L O S E .p l4 ; x - v a r t ) v :V 2 A v :V 2 B v :V 2 C 0 . 0 0 0 0 . 0 2 6 0 . 0 5 2 0 . 0 7 8 0 . 1 0 4 0 . 1 3 0[ s ]

    - 3 0 0

    - 2 0 0

    - 1 0 0

    0

    1 0 0

    2 0 0

    3 0 0

    [ k V ]And a receiving end

    Note the larger transientsfor the reclose

  • ECE 524: Transients in Power Systems

    Session 27; Page 14/28 Spring 2018

    Sending end currents (combine the two switches)

    ( f i le R E C L O S E . p l4 ; x - v a r t ) c : V S A - V 1 A c : V S B - V 1 B c : V S C - V 1 C c : V S A - S W IT A c : V S B - S W IT B c : V S C - S W IT C

    0 . 0 0 0 0 . 0 2 6 0 . 0 5 2 0 . 0 7 8 0 . 1 0 4 0 . 1 3 0[ s ]- 6 0 0

    - 4 0 0

    - 2 0 0

    0

    2 0 0

    4 0 0

    6 0 0

    [ A ]Bigger current on reclose due to largervoltage across the charactersitic impedance

    Repeat with the system in steady-state before open the breakers.

    ( f i l e R E C L O S E . p l 4 ; x - v a r t ) v : V 1 A v : V 1 B v : V 1 C 0 . 0 0 0 0 . 0 2 6 0 . 0 5 2 0 . 0 7 8 0 . 1 0 4 0 . 1 3 0[ s ]

    - 1 2 0

    - 6 8

    - 1 6

    3 6

    8 8

    1 4 0

    [ k V ]

    Sending end voltages:note that trappedcharge changedsince voltage atpoint on wave forbreaker clearinghas changed

  • ECE 524: Transients in Power Systems

    Session 27; Page 15/28 Spring 2018

    ( f i l e R E C L O S E . p l4 ; x - v a r t ) v : V 2 A v : V 2 B v : V 2 C 0 . 0 0 0 0 . 0 2 6 0 . 0 5 2 0 . 0 7 8 0 . 1 0 4 0 . 1 3 0[ s ]

    - 3 0 0

    - 2 0 0

    - 1 0 0

    0

    1 0 0

    2 0 0

    3 0 0

    [ k V ]

    Receiving end voltages

    R=0

    T im e dB re a k e r

    L o g icO p e n @ t0B R K 1

    B R K 1

    R E S IS T

    T im e dB re a k e r

    L o g icO p e n @ t0R E S IS T

    1 E -5 [o h m ]

    1 E -5 [o h m ]

    1 E -5 [o h m ]TL in e

    T

    TER

    M

    T im e dB re a k e r

    L o g icO p e n @ t0T E R M

    VS E N D VR E C

    VS E N D

    VR E C

    IB R E AK A IR A

    IB R E AK B

    IB R E AK C

    IR B

    IR C

    EMTDC implementation:

  • ECE 524: Transients in Power Systems

    Session 27; Page 16/28 Spring 2018

    Ma in : G ra p h s

    0 .0 0 0 0 .0 5 0 0 .1 0 0 0 .1 5 0 0 .2 0 0 0 .2 5 0 0 .3 0 0

    -1 2 5 -1 0 0

    -7 5 -5 0 -2 5

    0 2 5 5 0 7 5

    1 0 0 1 2 5

    y (k

    V)

    V S ENDSending end voltageswith two transients

    Some differencefrom ATP

    Main : Graphs

    0 .000 0 .050 0 .100 0 .150 0 .200 0 .250 0 .300

    -300

    -200

    -100

    0

    100

    200

    300

    y (k

    V)

    V RECReceiving end voltages

  • ECE 524: Transients in Power Systems

    Session 27; Page 17/28 Spring 2018

    Ma in : G raphs

    0 .100 0 .120 0 .140 0 .160 0 .180 0 .200 0 .220 0 .240 0 .260

    -0 .80

    -0 .60

    -0 .40

    -0 .20

    0 .00

    0 .20

    0 .40

    0 .60

    0 .80

    y (k

    A)

    IB REA K A IB REA K B IB REA K C IRA IRB IRC

    Sending end currents

    Main : Graphs

    0.000 0.050 0.100 0.150 0.200 0.250 0.300

    -125 -100

    -75 -50 -25

    0 25 50 75

    100 125

    y (k

    V)

    VSENDRepeat without firstenergization transient

    Sending end voltage

  • ECE 524: Transients in Power Systems

    Session 27; Page 18/28 Spring 2018

    Main : Graphs

    0.000 0.050 0.100 0.150 0.200 0.250 0.300

    -250 -200 -150 -100

    -50 0

    50 100 150 200 250

    y (k

    V)

    VRECReceiving end voltages

  • ECE 524: Transients in Power Systems

    Session 27; Page 19/28 Spring 2018

    Options to Reduce Inrush

    Controlled breaker pole closingPre-insertion resistor, bypass after a few travel timesSecondary transient (small) when bypassSingle phase case: size R = ZcNo reflection for return waves

    Voltage divider - apply 50% of voltage to the1.input of the lineReduces voltage and current2.

    Resistor sized for current loading and dissipationHow about three phase line:

    Ideally size for the first line mode,1.Some mismatch if do single pole reclosing2.Many utilities just use one standard size3.resistor, rather than optimize for each line. Not ideal, but eliminates most of the transient4.  

    2 Zc

    1 R

    Zc

    132kV LL

    VS

    I

    SWITI

    632 Ohm

    V1

    100km line

    V2VVV

    132kV LL

    VSALT

    I

    SWITAI

    269.8 Ohm

    V1A

    100km line

    V2AVVV

    Rpre = Zc1

    Rpre = Zc0

  • ECE 524: Transients in Power Systems

    Session 27; Page 20/28 Spring 2018

     

    132kV LL

    VS

    I

    SWITI

    632 Ohm

    V1

    100km line

    V2VVV

    132kV LL

    VSALT

    I

    SWITAI

    269.8 Ohm

    V1A

    100km line

    V2AVVV

    Rpre = Zc1

    Rpre = Zc0

    ( f i le P R E IN S . p l4 ; x - v a r t ) v : V 1 A A v : V 2 A A v : V S A 0 . 0 9 8 0 . 0 9 9 0 . 1 0 0 0 . 1 0 1 0 . 1 0 2 0 . 1 0 3 0 . 1 0 4[ s ]

    - 2 0

    0

    2 0

    4 0

    6 0

    8 0

    1 0 0

    1 2 0

    [ k V ]

    Initial close with R = Zc1

    No overvoltageatthe receiving endSending end voltage increases whenafter 2 travel times

  • ECE 524: Transients in Power Systems

    Session 27; Page 21/28 Spring 2018

    ( f i le P R E IN S . p l4 ; x - v a r t ) c : V S A L T A - S W IT A A c : V S A L T B - S W IT A B c : V S A L T C - S W IT A C 0 . 0 9 6 0 . 0 9 8 0 . 1 0 0 0 . 1 0 2 0 . 1 0 4 0 . 1 0 6 0 . 1 0 8 0 . 1 1 0 0 . 1 1 2[ s ]

    - 1 5 0

    - 1 0 0

    - 5 0

    0

    5 0

    1 0 0

    1 5 0

    2 0 0

    [ A ]

    Sending end current

    No longer have repeatedreflections, transient lasts2 travel times.

  • ECE 524: Transients in Power Systems

    Session 27; Page 22/28 Spring 2018

    ( f i le P R E IN S .p l4 ; x - v a r t ) v :V 1 A A v :V 2 A A v :V S A 0 . 1 0 0 0 . 1 0 4 0 . 1 0 8 0 . 1 1 2 0 . 1 1 6 0 . 1 2 0[ s ]

    - 1 2 0

    - 8 0

    - 4 0

    0

    4 0

    8 0

    1 2 0

    [ k V ]

    Bypass the resistor after 1 cycle:

  • ECE 524: Transients in Power Systems

    Session 27; Page 23/28 Spring 2018

    ( f i le P R E IN S .p l4 ; x - v a r t ) v :V 1 A v :V 2 A v :V S A 0 . 0 9 5 0 . 0 9 9 0 . 1 0 3 0 . 1 0 7 0 . 1 1 1 0 . 1 1 5[ s ]

    - 1 2 0

    - 8 0

    - 4 0

    0

    4 0

    8 0

    1 2 0

    [ k V ]

    Repeat with R = Zc0

    Actually reducevoltages further

  • ECE 524: Transients in Power Systems

    Session 27; Page 24/28 Spring 2018

    ( fi le P R E IN S .p l4 ; x -va r t) v :V 2 A v :V 2 B v :V 2 C 0 . 0 0 0 0 .0 2 6 0 . 0 5 2 0 .0 7 8 0 .1 0 4 0 . 1 3 0[s ]

    - 2 5 0 .0

    - 1 8 7 .5

    - 1 2 5 .0

    - 6 2 .5

    0 .0

    6 2 .5

    1 2 5 .0

    1 8 7 .5

    2 5 0 .0[ k V ]Reclose with R=Zc0

  • ECE 524: Transients in Power Systems

    Session 27; Page 25/28 Spring 2018

    R=0

    Tim edBreaker

    LogicOpen@t0BRK1

    BRK1

    RESIST 269.8[ohm ]

    269.8[ohm ]

    269.8[ohm ]TLine

    T

    TER

    M

    Tim edBreaker

    LogicOpen@t0TERM

    VSEND VREC

    EMTDC implementation(with Rpre = Zc1)

    Main : Graphs

    0.2020 0.2030 0.2040 0.2050 0.2060 0.2070 0.2080 0.2090

    -150

    -100

    -50

    0

    50

    100

    150

    y (k

    V)

    VSEND VRECPhase sending andreceiving endvoltage with Rpre = Zc1

  • ECE 524: Transients in Power Systems

    Session 27; Page 26/28 Spring 2018

    Main : Graphs

    0.2000 0.2020 0.2040 0.2060 0.2080 0.2100 0.2120 0.2140

    -0.200

    -0.150

    -0.100

    -0.050

    0.000

    0.050

    0.100

    0.150

    0.200

    y (k

    A)

    IRA IRB IRC

    Sending end currents

  • ECE 524: Transients in Power Systems

    Session 27; Page 27/28 Spring 2018

    Main : Graphs

    0.1990 0.2000 0.2010 0.2020 0.2030 0.2040 0.2050 0.2060 0.2070 0.2080 0.2090

    -150

    -100

    -50

    0

    50

    100

    150

    y (k

    V)

    VSEND VRECRepeat with Rpre=Zc0

    Main : Graphs

    0.180 0.190 0.200 0.210 0.220

    -0.125 -0.100 -0.075 -0.050 -0.025 0.000 0.025 0.050 0.075 0.100 0.125

    y (k

    A)

    IRA IRB IRC

  • ECE 524: Transients in Power Systems

    Session 27; Page 28/28 Spring 2018

    Main : Graphs

    0.000 0.050 0.100 0.150 0.200 0.250 0.300

    -250

    -200

    -150

    -100

    -50

    0

    50

    100

    150

    200

    y (k

    V)

    VRECReclose intotrapped charge with Rpre=Zc0