MATH21 Coursewares

176
LIMITS of FUNCTIONS

Transcript of MATH21 Coursewares

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 1/176

LIMITS

of FUNCTIONS

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 2/176

LIMITS OF FUNCTIONS

OBJECTIVES:

define limits;

illustrate limits and its theorems; and

evaluate limits applying the given theorems.

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 3/176

DEFINITION: Limits

The most basic use of limits is to describe how a

function behaves as the independent variableapproaches a given value. For example let us

examine the behavior of the function

for x-values closer and closer to 2. It is evident from

the graph and the table in the next slide that the

values of f(x) get closer and closer to 3 as the values

of x are selected closer and closer to 2 on either the

left or right side of 2. We describe this by sayingthat the limit of is 3 as x

approaches 2 from either side, we write

1 x x ) x(  f  2 !

1 x x ) x(  f  2 !

31 x xlim

2

2 x !p

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 4/176

2

3

f(x)

f(x)

x

y

1 x x y 2 !

x 1.9 1.95 1.99 1.995 1.999 2 2.001 2.005 2.01 2.05 2.1

F(x) 2.71 2.852 2.97 2.985 2.997 3.003 3.015 3.031 3.152 3.31

left side r ight side

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 5/176

1.1.1 (p. 70)Limits (An Informal View)

This leads us to the following general idea.

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 6/176

EXAMPLE

Use numerical evidence to make a conjecture about

the value of 

1 x

1 xlim

1 x

p

Although the function , this has no

bearing on the limit.

The table shows sample x-values approaching 1 from

the left side and from the right side. In both cases the

corresponding values of f(x) appear to get closer andcloser to 2, and hence we conjecture that

and is consistent with the graph of f.

1 x

1 x ) x(  f 

!

2

1 x

1 xlim

1 x!

p

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 7/176

Figure 1.1.9 (p. 71)

x .99 .999 .9999 .99999 1 1.00001 1.0001 1.001 1.01

F(x) 1.9949 1.9995 1.99995 1.999995 2.000005 2.00005 2.0005 2.004915

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 8/176

THEOREMS ON LIMITS

Our strategy for finding limits algebraically has two parts:

First we will obtain the limits of some simpler function

Then we will develop a list of theorems that will enable us

to use the limits of simple functions as building blocks for

finding limits of more complicated functions.

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 9/176

We start with the following basic theorems, which are

illustrated in Fig 1.2.1

Theorem 1.2.1 (p. 80)

a xk k  !!pp axax

lim b lim a 

numbers.real bek andaLetTheorem 1.2.1

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 10/176

Figure 1.2.1 (p. 80)

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 11/176

33lim 33lim 33lim 

example, For 

a.of valuesall  for a xa sk  f(x)

whyexpl ainswhichvaries, xa sk at  fixed remain

  f(x)of valuest het hen funct ion,constant aisk  x f  If 

 x0 x-25 x!!!

pp

!

ppp T

Example 1.

TT

!!!

pp!

ppp x x x

 If 

x-2x0xlim 2lim 0lim 

example,For 

.axf thattrue bealsomustitathen xx,xf 

Example 2.

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 12/176

Theorem 1.2.2 (p. 81)

The following theorem will be our basic tool for finding limits

algebraically

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 13/176

This theorem can be stated informally as follows:

a) The limit of a sum is the sum of the limits.

b) The limit of a difference is the difference of the limits.

c) The limits of a product is the product of the limits.

d) The limits of a quotient is the quotient of the limits,provided the limit of the denominator is not zero.

e) The limit of the nth root is the nth root of the limit.

 A constant factor can be moved through a limit symbol.

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 14/176

31 

58 

5 )4( 2 

5lim xlim2 

5lim x2lim 5 x2lim .1

4 x4 x

4 x4 x4 x

!

!

!!

!

pp

ppp

6  

12-18 

12 )3( 6  

12lim x6 lim12 x6 lim .23 x3 x3 x

!

!!

!ppp

13 

131 

2 )3( 534 

2lim xlim5 xlim4lim 

2lim x5lim xlim4lim 

2 x5lim x4lim )2 x5(  x4lim .3

3 x3 x3 x3 x

3 x3 x3 x3 x

3 x3 x3 x

!

!

!!

!

!

pppp

pppp

ppp

EXAMPLE Evaluate the following limits.

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 15/176

21

10 

425

52 

4lim xlim5

 x lim2

4lim x5lim

 x2 lim

4 x5

 x2lim .4

5 x5 x

5 x

5 x5 x

5 x

5 x

!

!

!

!

pp

p

pp

p

p

3375 

156 33 

6 lim xlim3

6 lim x3lim 

6  x3lim6  x3lim .5

33

3

3 x3 x

3

3 x3 x

3

3 x

3

3 x

!

!!

!

!

!

pp

pp

pp

2

3

4

3 x

1 x8lim

3 x

1 x8lim .6 

1 x1 x

!!

!

pp

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 16/176

OR

When evaluating the limit of a function at a givenvalue, simply replace the variable by the indicated

limit then solve for the value of the function:

 

22

3lim 3 4 1 3 3 4 3 1

27 12 1

38

 x  x x 

p !

!

!

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 17/176

EXAMPLE Evaluate the following limits.

2 x

8 xlim .1

3

2 x

p

Solution:

0

0

0

88

22

82

2 x

8 xlim

33

2 x!

!

!

p

 

2

2

2

2

2

3

2

2 2 4lim

2

lim 2 4

2 2 2 4

4 4 4

12

8lim 122

 x 

 x 

 x 

 x x x  

 x 

 x x 

 x 

 x 

p

p

p

!

!

! !

!

@ !

Equivalent function:

(indeterminate)

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 18/176

Note: In evaluating a limit of a quotient which

reduces to , simplify the fraction. Just removethe common factor in the numerator and

denominator which makes the quotient .

To do this use factoring or rationalizing thenumerator or denominator, wherever the radical is.

0

0

0

0

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 19/176

0

2 2 2 2 0lim

0 0 x 

 x 

 x p

! !

 

0 0

0

0

2 2 2 2 2 2lim lim

2 2 2 2

1 1 1 2

lim 42 2 2 2 2 2

2 2 2lim

4

 x x 

 x 

 x 

  x x x  

 x  x  x x 

 x 

 x 

 x 

p p

p

p

!

! ! !

@ !

 x

22 xlim .2

0 x

p

Solution:

Rationalizing the numerator:

(indeterminate)

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 20/176

9 x4

27  x8lim .3

2

3

0 x

p

Solution:

Rationalizing the numerator:

(indeterminate)3

2

3

3

22

38 27

8 27 27 27 02lim

4 9 9 9 034 9

2

 x 

 x 

 x p

¨ ¸© ¹ ª º! ! !

¨ ¸ © ¹ª º

3 3

2 2

32

23

2

2

2 3 4 6 98 27lim lim

4 9 2 3 2 3

4 6 9 9 9 9lim

2 3 3 3

27 9 3 3 2

6 2 22

 x x 

 x 

 x x x   x 

 x x x  

 x x 

 x 

p p

p

!

! !

! ! ! !

 

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 21/176

5 x

3 x2 xlim .4

2

3

2 x

p

Solution:

33

222

2 2 2 32 3lim

5 2 5

8 4 34 5

15

9

15

3

 x 

 x x 

 x p

!

!

!

!

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 22/176

EXERCISES

5w4w

7 w7 wlim 10. 

2 x

8 xlim .5

19 x9 x2lim 9. 4 y

 y8 y4lim .4

1 y2 y

3 y2 y1 ylim 8. 

1 x

4 x3 xlim .3

1 x

3 x2 x3 x2lim 7 . 

4 x3 x

1 x2lim .2

1 x9

1 x3

lim 6 . 2 x5 x4lim .1

2

2

1w

3

2 x

2

134

5 x

3

13

2 y

2

2

1 y3

2

1 x

2

23

1 x21 x

2

3

1 x

2

3 x

¹¹ º

 ¸

©©ª

¨

pp

pp

pp

pp

pp

Evaluate the following limits.

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 23/176

LIMITS

of FUNCTIONS

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 24/176

ONE-SIDED LIMITS

OBJECTIVES:

define one-sided limits

illustrate one-sided limits

investigate the limit if it exist or not using theconcept of one-sided limits.

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 25/176

DEFINITION: One-Sided Limits

T

he limit of a function is called two-sided limit if itrequires the values of  f(x) to get closer and closer to

a number as the values of  x are taken from either

side of  x=a. However some functions exhibit

different behaviors on the two sides of an x-value ain which case it is necessary to distinguish whether

the values of  x near a are on the left side or on the

right side of a for purposes of investigating limitingbehavior.

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 26/176

C

onsider the function

°¯®

"!!

0 x  ,1

0 x  ,1 

 x

 x ) x(  f 

Q

Q1

-1

As x approaches 0 from the right, the

values of f(x) approach a limit of 1, and

similarly , as x approaches 0 from the

left, the values of f(x) approach a

limit of -1.

 1lim and 1lim

!!

pp  x

 x

 x

 x

 symbols In

o xo x

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 27/176

1.1.2 (p. 72)

One-Sided Limits (An Informal View)

This leads to the general idea of a one-sided limit

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 28/176

1.1.3 (p. 73)

The Relationship Between One-Sided and Two-Sided Limits

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 29/176

EXAMPLE:

 x

 x ) x(  f  !1. Find if the two sided limits exist given .

Q

Q1

-1

exist.notdoes lim or 

existnotdoes lim 

limlim sin

1lim and 1lim

 x

 xit 

 sided t 

wot 

het 

hen

 x

 x

 x

 xt hece

 x

 x

 x

 x

o x

o xo x

o xo x

p

pp

pp

{

!!SOLUTION

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 30/176

EXAMPLE:

2. For the functions in Fig1.1.13, find the one-sided

limit and the two-sided limits at x=a if they exists.

The functions in all three figures have the same

one-sided limits as , since the functions are

Identical, except at x=a.

a x p

1 ) x(  f lim and  3 ) x(  f lim

are it  slim These

a xa x!!

pp

In all three cases the two-sided limit does not exist as

because the one sided limits are not equal.a x p

SOLUTION

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 31/176

Figure 1.1.13 (p. 73)

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 32/176

3. Find if the two-sided limit exists and sketch the graph

of .2

6+x if x < -2( ) =

x if x -2g x 

® ¾¯ ¿

u° À

26  

 x6 lim ) x(  g lim.a2 x2 x

!

!

! pp

2- 

 xlim ) x(  g lim.b

2

2

2 x2 x

!

!

! pp

4 ) x(  g lim or 4t oequal isand  exist  it lim sided  t wo t he t hen

 ) x(  g lim ) x(  g limt he ce sin

2 x

2 x2 x

!

!

p

pp

SOLUTION

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 33/176

x

-2-6 4

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 34/176

4. Find if the two-sided limit exists and sketch the graph

of and sketch the graph.

2

2

3 + x if x < -2

( ) = 0 if x = -2

11 - x if x > -2

f x 

® ¾± ±¯ ¿

± ±° ÀSOLUTION

7  

23 

 x3lim ) x(  f lim.a

2

2

2 x2 x

!

!

! pp

7  

2-11 

 x11lim ) x(  f lim.b

2

2

2 x2 x

!

!

! pp

7  ) x(  f lim or 

7 t oequal isand  exist  it lim sided  t wo t he t hen

 ) x(  f lim ) x(  f limt he ce sin

2 x

2 x2 x

!

!

p

pp

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 35/176

 gr a ph.t he sket chand  

 ,exist   f(x)limif  eminer det   ,4 x23 ) x(  f   If  .52 xn

!

4223 

4 x23lim  ) x(  f lim .a2 x2 x

!

!

! pp

4223 

4 x23lim  ) x(  f lim .b2 x2 x

!

!

! pp

3 ) x(  f lim or 

3t oequal isand  exist  it lim sided  t wo t he t hen

 ) x(  f lim ) x(  f limt he ce sin

2 x

2 x2 x

!

!

p

pp

SOLUTION

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 36/176

f(x)

x

(2,3)

2

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 37/176

EXERCISES Sketch the graph of the following functions and

the indicated limit if it exists. find

a.

.

 ) x(  g lim.c  g(x)lim.b  g(x)lim.a 

1 x if  2x-7 

1 x if  2

1 x if  3 x2

 ) x(  g .2

 ) x(  f lim.c  f(x)lim.b  f(x)lim.a 

4- x if  4 x

-4 x if   x4 ) x(  f .1

1 x1 x1 x

4 x4 x4 x

ppp

ppp

±°

±¯

®

"

!

!

°¯®

e

"!

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 38/176

.

 ) x(  f lim.c  f(x)lim.b  f(x)lim.a 

1 x2 ) x(  g .5

 ) x(  f lim.c  f(x)lim.b  f(x)lim.a 

 x4 ) x(  g .4

 ) x(  f lim.c  f(x)lim.b  f(x)lim.a 

0 x if  3

0 x if   x ) x(  f .3

2

1 x

2

1 x

2

1 x

4 x4 x4 x

0 x0 x0 x

ppp

ppp

ppp

!

!

°¯®

!

{!

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 39/176

LIMITS

of FUNCTIONS

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 40/176

INFINITE LIMITS

OBJECTIVES:

define infinite limits;

illustrate the infinite limits; and

use the graphs to evaluate the

limits of functions.

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 41/176

DEFINITION: INFINITE LIMITS

Sometimes one-sided or two-sided limits fail to exist

because the value of the function increase or

decrease without bound.

For example, consider the behavior of for

values of x near 0. It is evident from the table and

graph in Fig 1.1.15 that as x values are taken closer

and closer to 0 from the right, the values of 

are positive and increase without bound; and asx-values are taken closer and closer to 0 from the

left, the values of are negative and

decrease without bound.

 x

1 ) x(  f  !

 x

1 ) x(  f  !

 x

1 ) x(  f  !

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 42/176

In symbols, we write

g!g!pp

 x

1lim and  

 x

1lim

0 x0 x

Note:

The symbols here are not real

numbers; they simply describe particular ways in

which the limits fail to exist. Thus it is incorrect to

write .

gg  and 

0!gg

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 43/176

Figure 1.1.15 (p. 74)

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 44/176

1.1.4 (p. 75)

Infinite Limits (An Informal View)

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 45/176

Figure 1.2.2 (p. 84)

Figure 1.1.2 illustrate graphically the limits for rational

functions of the form

22

a x

1  ,

a x

1  ,

a x

1

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 46/176

EXAMPLE: Evaluate the following limits:

40 x  x

1 lim .1 p

40 x  x

1 lim.2

p

50 x  x

1 lim.4 p

g!!

p 01

 x1 lim 5

0 x

g!!

p 0

 x

1 lim 

40 x

g!!p 0

1

 x

1 lim

40 x

g!!

p 0

1

 x

1 lim

50 x

50 x  x

1 lim.5

p

g!p 40 x

 x

1 lim .3 g!

p 50 x  x

1 lim.6 

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 47/176

2 x

 x3 lim a.

 .5

2 x p

2 x

 x3 lim.b

2 x p

g

!

!!

p 0

0

23 

2- x

3x lim-2 x

2.028.12 x

8.1 sa y ,lef t  from2t oclose xof value

 takewemeans2 x

!!

p

g!

!

!!

p 0

0

23 

2- x

3x lim

2 x

1.021.22 x

1.2 sa y ,right  from2t oclose xof value

 takewemeans2 x

!!

p

g!p 2 x

 x3 lim .c2 x

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 48/176

 ) x(  f lima x p

 ) x(  f lima x p

 ) x(  f lima xp

g g g

g

g

g g ggg

gg

SUMMARY:   ) x( Q

 ) x(  R ) x(  f   If  !

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 49/176

EXAMPLE

g!¹

 º

 ¸©

ª

¨

!g!

p

pp

3 x

3 x

2 limt hen 

3

1

3 x

2

 lim and  3 x

2

 lim .1

3 x

3 x3 x

g!g g!g cc

nSubt r act io /  Addit ion: Not e

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 50/176

g!gg!g

g!gg!g

c c

c c

: Not e

g!¹ º

 ¸©ª

¨

!

g!

p

pp

1 x

3 x 

1 x

 x2 limt hen 

1

1 x

3 x lim and  

1 x

 x2 lim .2

1 x

1 x1 x

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 51/176

g!¹ º

 ¸©ª

¨

!

g!

p

pp

4 x

6  x2 

2 x

 x3 limt hen 

3

1

4 x

6  x2 lim and  

2 x

 x3 lim .3

2 x

2 x2 x

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 52/176

 

32

2 lim.4

4

16 lim .3

4

2 lim .2

9

4 lim .1

2

2

3

2

4

22

2

2

3

p

p

p

p

 x x

 x x

 x

 x

 x

 x

 x

 x

 x

 x

EXERCISES: Evaluate the following limits:

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 53/176

LIMITS

of FUNCTIONS

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 54/176

LIMITS AT INFINITY

OBJECTIVES:

define limits at infinity;

illustrate the limits at infinity; anduse the graphs to find the limits of 

functions

DEFINITION LIMITS AT INFINITY

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 55/176

DEFINITION: LIMITS AT INFINITY

If the values of the variable x increase without

bound, then we write , and if the values of 

x decrease without bound, then we write .

The behavior of a function as x increases or

decreases without bound is sometimes called the

end behavior of the function.

 ) x(  f 

gp xgp x

F

or example ,

0 x

1lim and  0

 x

1lim

 x x!!

gpgp

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 56/176

x

x

0 x

1

lim x !gp 0 x

1lim x !gp

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 57/176

1.3.1(p

.8

9)

Limits at Infinity (An Informal View)

In general, we will use the following notation.

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 58/176

Figure 1.3.2 (p. 89)

Fig.1.3.2 illustrates the end behavior of the function f when

 L ) x(  f lim or   L ) x(  f lim x x

!!gpgp

EXAMPLE

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 59/176

Figure 1.3.4 (p. 90)

Fig.1.3.2 illustrates the graph of . As suggested by

this graph,

EXAMPLE  x

 x

11 y ¹

 º

 ¸©ª

¨ !

e x

11lim

and  e x

11lim

 x

 x

 x

 x

!¹ º

 ¸©ª

¨

!¹ º

 ¸©ª

¨

gp

gp

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 60/176

EXAMPLES:

 x

 x x x

 x x

 x

 x

 x

 x

 x

31

125lim.3

52

4lim .2

86

53lim .1

23

3

2

gp

gp

gp

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 61/176

LIMITS

of FUNCTIONS

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 62/176

SQUEEZING THEOREM

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 63/176

THEOREM

a.

b.

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 64/176

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 65/176

LIMITS

of FUNCTIONS

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 66/176

C ontinuity of Functions

OBJE C TIVES:

At the end of the lesson, the students

should be able to:

define continuity and discontinuity;

illustrate continuity and discontinuity; and

verify the continuity and discontinuity of a

function

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 67/176

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 68/176

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 69/176

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 70/176

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 71/176

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 72/176

THE DERIVATIVEOBJECTIVES:

to define the derivative of a function

to find the derivative of a function by

increment method(4-step rule)

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 73/176

Derivative of a Function

The process of finding the derivative of a function

is called differentiation and the branch of calculus

that deals with this process is called differential

calculus. Differentiation is an important

mathematical tool in physics, mechanics,

economics and many other disciplines that involve

change and motion.

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 74/176

Consider a point on the curve ))(,( 22  x f  xQ ),( x f  y !

that is distinct from and compute the

slope of the secant line through P and Q.

)),(,( 11  x f  x P 

 PQm

 x

 x f  x f m PQ

(

!

)()(12 where

12

 x x x !(

 x x x (! 12and 

 x

 x f  x x f 

m PQ (

(

!

)()( 11

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 75/176

2 x ,

1 xIf we let approach then the point Q will

move along the curve and approach point P. Aspoint Q approaches P, the value of approaches

zero and the secant line through P and Q 

approaches a limiting position, then we will

consider that position to be the position of the

tangent line at P.

 x(

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 76/176

))(,(11

 x f  x P ))(,( 22  x f  xQ

)( x f  y !

 x x x

 x x x

(!

!(

12

12

 y(

tangent line

secant line

x

y

Thus we make the following definition

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 77/176

Thus we make the following definition

DEFINITION:

Suppose that is in the domain of the function f the tangent line to the curve at the point

is the line with equation

1 x

)( x f  y !

))(,(11  x f  x P 

)()( 11  x xm x f  y !

 x

 x f  x x f m

 x (

(!

p(

)()(lim 1

0where provided the limit

exists, and is the point of tangency.))(,( 11  x f  x P 

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 78/176

DEFINITION

The derivative of at point P on the curve is

equal to the slope of the tangent line at P, thus thederivative of the function f given by with

respect to x at any x in its domain is defined as:

)( x f  y !

)( x f  y !

0 0

( ) ( )lim lim x x

dy y f x x f x

dx x x( p ( p

( ( ! !( (

provided the limit exists.

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 79/176

Other notations for the derivative of a function are:

)(),(',','),(,  x f dx

d and  x f  f  y x f  D y D  x x

Note:

To find the slope of the tangent line to the curve at point P

means that we are to find the value of the derivative at that

point P.

There are two ways of finding the derivative of a function:

1. By using the increment method or the four-step rule

2. By using the differentiation formulas

THE INCREMENT METHOD OR THE FOUR STEP RULE

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 80/176

THE INCREMENT METHOD OR THE FOUR-STEP RULE

One method of determining the derivative of a

function is the increment method or more commonly

known as the four-step rule.

The procedure is as follows:

 x x ( y y (

STEP 1: Substitute for x and

for y in )( x f  y !

STEP 2: Subtract y=f(x) from the result of step 1 to

obtain in terms of   x and y( . x(

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 81/176

STEP 3: Divide both sides of step 2 by

STEP 4: Find the limit of step 3 as approaches 0.

. x(

 x(

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 82/176

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 83/176

DIFFERENTIATION OF

ALGEBRAIC FUNCTIONS

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 84/176

OBJECTIVES:

to identify the different rules of differentiation

and distinguish one from the other;

prove the different rules of differentiation using

the increment method;find the derivative of an algebraic function using

the basic rules of differentiation; and

extend these basic rules to other complex

algebraic functions.

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 85/176

DERIVATIVE USING FORMULAS

The increment-method (four-step rule) of finding

the derivative of a function gives us the basic procedures

of differentiation. However these rules are laborious and

tedious when the functions to be differentiated arecomplex, that is, functions with large exponents,

functions with fractional exponents and other rational

functions

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 86/176

Understanding of the theorems of differentiation is

very important. This is the heart of differential calculus. All

of the succeeding topics such as applications of derivatives,

differentiation of transcendental functions etc. will bedependent on these theorems. Understanding of these

theorems will enable us to calculate derivatives more

efficiently and will make calculus easy and enjoyable.

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 87/176

IFFERENTIATION FORMULAS

Derivative of a Constant

Theorem T he derivative of a constant function

is 0; that is, if c is any real number, then

0][ !c

dx

IFFERENTIATION FORMULAS

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 88/176

IFFERENTIATION FORMULAS

Derivatives of Power FunctionsTheorem ( Power Rule) I f n is a positive integer,

then1][ ! nn nx x

dx

In words, to differentiate a power function,

decrease the constant exponent by one and multiply

the resulting power function by the original exponent .

IFFERENTIATION FORMULAS

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 89/176

IFFERENTIATION FORMULAS

Derivative of a Constant Times a Function

Theorem ( Constant Multiple Rule) I  f is a

differentiable function at x and c is any real 

number, then is also differentiable at x and cf 

? A ? A)()(  x f dx

d c xcf 

dx

d !

In words, the derivative of a constant times a function

is the constant times the derivative of the function,if this derivative exists.

Proof:ffd ( )()(

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 90/176

? A x

 xcf  x xcf  xcf 

dx

 x (

(!

p(

)()(lim)(

0

¼½

»¬-

«

(

(!p(  x

 x f  x x f c

 x

)()(lim

0

 x

 x f  x x f c

 x (

(!

p(

)()(lim

0

? A)( x f dx

d c!

IFFERENTIATION FORMULAS

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 91/176

IFFERENTIATION FORMULAS

Derivatives of Sums or Differences

Theorem ( Sum or Difference Rule) I  f and areboth differentiable functions at x, then so are

and , and 

In words, the derivative of a sum or of a difference

equals the sum or difference of their derivatives, if these

derivatives exist.

  f   g 

 g  f   g  f 

 g dxd  f 

dxd  g  f 

dxd  s!s

? A ? A¼

½

»¬

-

«s!s )()()()(  x g 

dx

d  x f 

dx

d  x g  x f 

dx

or 

Proof:

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 92/176

 x

 x g  x f  x x g  x x f  x g  x f 

dx

 x (

s(s(!s

p(

)]()([)()([lim)]()([

0

 x

 x g  x x g  x f  x x f 

 x (

(s(!

p(

)]()([)]()([lim

0

 x

 x g  x x g 

 x

 x f  x x f 

 x x

(

(s

(

(!

p(p(

)()(lim

)()(lim

00

)]([)]([  x g dx

d  x f 

dx

d s!

IFFERENTIATION FORMULAS

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 93/176

IFFERENTIATION FORMULAS

Derivative of a Product

Theorem (The Product Rule) I  f and are bothdifferentiable functions at x, then so is the

  product , and 

In words the derivative of a product of two functionsis the first function times the derivative of the second

plus the second function times the derivative of the

first, if these derivatives exist.

  f   g 

 g  f 

dx

df  g 

dx

dg  f  g  f 

dx

d !

? A ? A)()()]([)()()(  x f dx

d  x g  x g 

dx

d  x f  x g  x f 

dx

d !

or

Proof:

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 94/176

 x

 x g  x f  x x g  x x f  x g  x f 

dx

 x (

((!

p(

)()()()(lim)]()([

0

 x

 x g  x f  x g  x x f  x g  x x f  x x g  x x f 

 x (

((((!

p(

)]()()()()()()()(lim

0

¼½»

¬-«

(

(

(

((!

p(  x

 x f  x x f  x g 

 x

 x g  x x g  x x f 

 x

)()()(

)()()(lim

0

 x

 x f  x x f  x g 

 x

 x g  x x g  x x f 

 x x x x (

(

(

((!

p(p(p(p(

)()(lim)(lim

)()(lim)(lim

0000

? A ? A ? A ? A)()(lim)((lim00

 x f dx

d  x g  x g 

dx

d  x x f 

 x x p(p(

(!

IFFERENTIATION FORMULAS

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 95/176

IFFERENTIATION FORMULAS

Derivative of a Quotient

Theorem (The Quotient Rule) I  f and are bothdifferentiable functions at x, and if 

then is differentiable at x and 

  f   g ,0)( { x g 

or

 g 

  f  

2 g 

dx

dg  f 

dx

df  g 

 g 

 f 

dx

!¹¹ º

 ¸©©ª

¨

? A ? A

? A2

)(

)()()()(

)(

)(

 x g 

 x g dx

d  x f  x f dx

d  x g 

 x g 

 x f 

dx

!¼½

»¬-

«

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 96/176

In words, the derivative of a quotient of two

functions is the fraction whose numerator is the

denominator times the derivative of the numerator minus

the numerator times the derivative of the denominatorand whose denominator is the square of the given

denominator

IFFERENTIATION FORMULAS

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 97/176

IFFERENTIATION FORMULAS

Derivatives of Composition

Theorem (The Chain Rule) If is differentiable at x 

and if  f is differentiable at , then the

composition is differentiable at x. Moreover,

if and then and

 g 

)( x g 

 g  f Q

))((  x g  f  y ! )( x g u ! )(u f  y !

dx

du

du

dy

dx

dy!

IFFERENTIATION FORMULAS

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 98/176

IFFERENTIATION FORMULAS

Derivative of a Radical with index equal to 2

If u is a differentiable function of x, then

u

dx

du

udx

2!

The derivative of a radical whose index is two, is afraction whose numerator is the derivative of the

radicand, and whose denominator is twice the given

radical, if the derivative exists.

IFFERENTIATION FORMULAS

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 99/176

IFFERENTIATION FORMULAS

Derivative of a Radical with index other than 2

If n is any positive integer and u is a differentiable

function of x, then

The derivative of the nth root of a given function isthe exponent multiplied by the product of u whose

power is diminished by one and the derivative of u, if 

this derivative exists.

dx

duu

nu

dx

d nn !¼

½

»¬-

« 111 1

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 100/176

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 101/176

HIGHER DERIVATIVES

AND

IMPLICIT DIFFERENTIATION

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 102/176

OBJECTIVES:

to define higher  der ivatives;to apply the knowledge of higher  der ivatives

and implicit diff erentiation in pr oving relations;

to find the higher  der ivative of algebr aicfunctions; and

to deter mine the der ivative of algebr aic

functions implicitly under  the specified

conditions.

HIGHER DERIVATIVES

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 103/176

HIGHER DERIVATIVES

The derivative of a function f is itself a function

and hence may have a derivative of its own. If is

differentiable, then its derivative is denoted by

and is called the second derivative of  f. As long as

we have differentiability, we can continue theprocess of differentiating to obtain the third,

fourth, fifth, and even higher derivatives of  f .

' f 

' f 

"  f  

,......)'(,)''''(,)'''(''',)''('',' 454  f  f  f  f  f  f  f  f  f  !!!!

These successive derivatives are denoted by

Oth t ti f hi h d i ti

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 104/176

Other common notations for higher derivatives are

the following:

fir st der ivative:  )(),(),(',', x  f   D x  f  dx

d  x  f   y

dx

dy x

second der ivative:  )(),(),('','', 22

2

2

2

 x f  D x f dxd  x f  y

dx yd   x

nth der ivative:  )(),(),(,,  x f  D x f 

dx

d  x f  y

dx

 yd  xn

n

nnn

n

n

The symbols ,dx

dy,

2

2

dx

 yd 

n

n

dx 

y d are called Leibniz notations.

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 105/176

IMPLICIT DIFFERENTIATION

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 106/176

FUNCTIONS DEFINED EXPLICITLY AND IMPLICITLY

There are two ways to define functions, implicitly and explicitly . Most of the equations we have dealt

with have been explicit equations, such as y = 2 x -3,

so that we can write y = f ( x ) where f ( x ) = 2 x -3. But

the equation 2 x -y = 3 describes the same function.

This second equation is an implicit definition of y as a

function of  x . As there is no real distinction between

the appearance of  x or y in the second form, thisequation is also an implicit definition of  x as a

function of y.

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 107/176

An implicit function is a function in which the

dependent variable has not been given "explicitly" interms of the independent variable. To give a

function f  explicitly is to provide a prescription for

determining the output value of the function y in

terms of the input value x : y = f ( x ). By contrast, the

function is implicit if the value of y is obtained

from x by solving an equation of the form: R( x ,y ) = 0.

An equation of the form is said to define  x f y  !

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 108/176

q

explicitly as a function of  x because the variable y 

appears alone on one side of the equation and doesnot appear at all on the other side. However,

sometimes functions are defined by equations in

which is not alone on one side; for example the

equation is not of the form , but

still defines y as a function of  x since it can be

rewritten as . Thus we say that

defines y implicitly as a function of  x , the functionbeing .

 x y yx ! 1 )( x f  y !

1

1

! x

 x y  x y yx ! 1

1

1)(

! x

 x x f 

Suppose we have an equation f(x, y) = 0 where

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 109/176

pp q f( y)

neither variable could be expressed as a function of 

the other.In other words, it wouldnt be possible,

by rearranging f(x, y) = 0, to separate out one of the

variables and express it as a function of the other.

Often we can solve an equation f(x, y) = 0 for one of 

the variables obtaining multiple solutions

constituting multiple branches. Consider the

equation which defines y as an implicit

function of  x . If we solve for y in terms of  x , weobtain two solutions and

thus we have found two functions that are defined

implicitly by .

0122 ! y x

21  x y !

0122 ! y x

IMPLICIT DIFFERENTIATION

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 110/176

In general, it is not necessary to solve an equationfor y in terms of x in order to differentiate the

functions defined implicitly by the equation.

To find the derivative of functions defined implicitly

we use implicit differentiation.

Steps in Implicit Differentiation

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 111/176

Steps in Implicit Differentiation

1. Differentiate both sides of the equation withrespect to x.

2. Collect all the terms with on one side of the

equation.

3. Factor out .

4. Solve for .

dx 

dy 

dx 

dy 

dx 

dy 

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 112/176

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 113/176

Slope of a C urve,

T angent,and Normal Lines

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 114/176

SPE C I F I C OBJE C TIVES:

At the end of this lesson, the students are expected to

accomplish the following:

determine the slope of a curve and the derivative of a

function at a specified point;

solve problems involving slope of a curve;

determine the equations of tangent and normal lines

using differentiation; and solve problems involving tangent and normal lines.

tangent line

y

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 115/176

))(,(11

 x f  x P  ))(,(22

 x f  xQ

)( x f  y !

 x x x

 x x x

(!

!(

12

12

 y(

tangent line

secant line

x

Consider a point on the curve))(( xfxQ )(xfy !

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 116/176

Consider a point on the curve ))(,( 22  x f  xQ ),( x f  y !

that is distinct from and compute the

slope of the secant line through P and Q.

)),(,( 11  x f  x P 

 PQm

 x

 x f  x f m PQ

(

!

)()(12 where 12  x x x !(

 x x x (! 12and 

 x

 x f  x x f m PQ

(

(!

)()( 11

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 117/176

2 x ,

1 xIf we let approach then the point Q will

move along the curve and approach point P. Aspoint Q approaches P, the value of approaches

zero and the secant line through P and Q 

approaches a limiting position, then we will

consider that position to be the position of the

tangent line at P.

 x(

Thus we make the following definition

DEFINITION

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 118/176

DEFINITION:

Suppose that is in the domain of the function f 

the tangent line to the curve at the point

is the line with equation

1 x

)( x f  y !))(,(

11  x f  x P 

)()(11

 x xm x f  y !

 x

 x f  x x f m

 x (

(!

p(

)()(lim 1

0where provided the limit

exists, and is the point of tangency.))(,( 11  x f  x P 

DEFINITION

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 119/176

The derivative of at point P on the curve is

equal to the slope of the tangent line at P, thus thederivative of the function f given by with

respect to x at any x in its domain is defined as:

)( x f  y !

)( x f  y !

0 0

( ) ( )lim lim x x

dy y f x x f x

dx x x( p ( p

( ( ! !( (

provided the limit exists.

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 120/176

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 121/176

THE DERIVATIVE IN

GRAPHING ANDAPPLICATIONS

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 122/176

ANALYSIS OF FUNCTIONS I:

INCREASE, DECREASE and CONCAVITY

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 123/176

OBJECTIVES:

define increasing and decreasing functions;

define concavity and direction of bending that isconcave upward or concave downward; and

determine the point of inflection.

.

Th t i i d i d t t d t

INCREASING and DECREASING FUNCTIONS

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 124/176

02 4

increasing decreasing increasing constant

The term increasing, decreasing, and constant are used to

describe the behavior of a function as we travel left to right

along its graph. An example is shown below.

The following definition, which is illustrated in

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 125/176

Definition 4.1.1 (p. 233)

Figure 4.1.2, expresses these intuitive ideas precisely.

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 126/176

Figure 4.1.2 (p. 233)

y y

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 127/176

x

y

y

Each tangent line 

has po

sitive

slo

pe;function is increasing

x

y

y

Each tangent line 

hasne

gative

slo

pe;function is decreasingy

x

y y

Each tangent line 

Has zer o slope,

function is constant

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 128/176

Theorem 4.1.2 (p. 233)

. g  sindecreaand  g  sinincreais3 x4 x f(x)whichon int ervalst he Find  .1 2 !

EXAMPLE

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 129/176

y

A

? °¯®

g""

g

!!

2,onincrea sing is f 2 xwhen0 x'  f 

 ,2-ondecrea sing is f 2 xwhen0 x'  f  t hus

2 x24 x2 x'  f 

-1

2

3

x

3 x4 x ) x(  f 2

!

increasing

decreasing

. g  sindecreaand  g  sinincreais x f(x)whichon int ervalst he Find  .2 3!

EXAMPLE

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 130/176

-4

3

4

x

y 3 x ) x(  f  !

A

? °¯®

g""

g"

!

0, onincrea sing is f 0 xwhen0 x'  f 

 ,0- onincrea sing is f 0 xwhen0 x'  f  t hus

 x x'  f  2

in

cre

asin

g

increasing

-3

CONCAVITY

Although the sign of the derivative of f reveals where

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 131/176

Although the sign of the derivative of  f reveals where

the graph of  f is increasing or decreasing , it does not

reveal the direction of the curvature.

Figure 4.1.8 suggests two ways to characterize the concavity

of a differentiable f on an open interval:

 f is concave up on an open interval if its tangent lines have

increasing slopes on that interval and is concave down if 

they have decreasing slopes.

 f is concave up on an open interval if its graph lies above the

its tangent line and concave down if it lies below its tangent

lines.

y

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 132/176

y

y

y

y

y

concave up

yy

y

y y

concave down

x x

y

increasing slopesdecreasing slopes

Figure 4.1.8

CONCAVITY

Formal definition of the concave up and

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 133/176

Formal definition of the  concave up  and

 concave down .

Definition 4.1.3 (p. 235)

Since the slopes of the tangent lines to the gr aph of a 

differentiable function f are the values of its derivative f¶

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 134/176

Theorem 4.1.4 (p. 235)

diff erentiable function f are the values of its der ivative f ,

it f ollows f r om Theorem 4.1.2 (applied to f¶ r ather  than f )

that f¶ will be increasing on intervals where f¶¶ is positive and that f¶ will be decreasing on intervals where f¶¶ is

negative. Thus we have the f ollowing theorem.

EXAMPLE:

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 135/176

-1

2

3

x

3 x4 x ) x(  f 2

!

increasing

decreasing

0 x' '  f 2 x' '  f  and  4 x2 x'  f 

. ,-int erval t heonup concaveis3 x4 x y  funct iont het hat  suggest  sabove figureThe

2

"!!

gg!

EXAMPLE

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 136/176

-4

3

4

x

y 3 x ) x(  f  !

increasing

increasing

-3

°¯®

""

!!

gg

!

0 x if  0 x' '  f 

and 0 x if  0 x' '  f  x6  x' '  f  and   x3 x'  f 

0,int erval t heonupconcaveand .0-int erval t heondown concaveis

 x y  funct iont het hat  suggest  sabove figureThe

2

3

INFLECTION POINTS:

Points where the curve changes from concave up

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 137/176

Points where the curve changes from concave up

to concave down or vice-versa are called points of 

inflection.

Definition 4.1.5 (p. 236)

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 138/176

Figure 4.1.9 (p. 236)

The figure shows the graph of the function .

Use the 1st and 2nd derivatives of  f to determine the intervals

1 x3 x x f 23

!

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 139/176

2-1 3

1

2

-3

y

y

x

on which f is increasing, decreasing, concave up and concave

down. Locate all inflection points and confirm that yourconclusions are consistent with the graph.

1 x6 6  x6  x' '  f 

2 x x3 x6  x3 x'  f 

:SO LU TION 

2

!!

!!

INTERVAL (3x)(x-2) f(x) CONCLUSION

x<0 ( )( ) + f is increasing on A0g

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 140/176

x<0 (-)(-) + f is increasing on

0<x<2 (+)(-) - f is decreasing on

x>2 (+)(+) + f is increasing on

A0 ,g

? A2 ,0

? g ,2

INTERVAL (6)(x-1) f(x) CONCLUSION

x<1 (-) - f is concave down on

x>1 (+) + f is concave up on g ,1

1 ,g

The 2nd table shows that there is a point of inf lection  at x=1, 

since f changes f r om concave up to concave down at that point. 

The point of inf lection is (1,-1).

. x x f of  any,if   point  s,inflect iont he Find  4!

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 141/176

 

upconcave;0 x when 0 x' '  f 

 upconcave0; x when0 x' '  f  x12 x' '  f 

 x4 x'  f 

:SO LU TION 

2

3

°¯®

""

"!

!

 .00'  f' t hougheven0, xat  point  inflec

ionnohencea

nd conca

vit 

 yincha

ngenoist 

hereThus!!

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 142/176

ANALYSIS OF FUNCTIONS II:

RELATIVE EXTREMA;GRAPHING

POLYNOMIALS

OBJECTIVES:

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 143/176

define maximum, minimum, inflection, stationaryand critical points, relative maximum and relativeminimum;

determine the critical, maximum and minimum

points of any given curve using the first and secondderivative tests;

draw the curve using the first and second derivativetests; and

describe the behavior of any given graph in terms of concavity and relative extrema

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 144/176

Definition 4.2.1 (p. 244)

Figure 4.2.1

y1x4xx

4x

1y 234 !

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 145/176

2

-1

3

1

2

-3

x

-3

3

1

1 xat ma ximumrel at iveaand 

 2 xand 1 xat  minimarel at iveaha s

1 x4 x x3

 x2

 y

!

!!

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 146/176

Figure 4.2.3 (p. 245)

The points  x 1,  x 2,  x 3,  x 4, and  x 5 are critical points. Of  these,  x 1,  x 2, and  x 5 are 

stationary points.

Figure 4.2.3 illustrates that a relative extremum

can also occur at a point where a function is not

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 147/176

differentiable.

In general, we define a critical point for a function f 

to be a point in the domain of  f at which either the

graph of f has a horizontal tangent line or f is not

differentiable (line is vertical).to distinguish between the two types of critical

points we call x a stationary point of  f if  f(x)=0.

Thus we have the following theorem:

1 x3 x x f of  point  scrit ical t heall  Find  3 !

EXAMPLE

tangent line

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 148/176

°¯®

!p!

!p!

!!!

1  x01 x

1 x01 x  ,t hus 

01 x1 x33 x3 x'  f 

:SO LU TION 

2

1 xand 1 x at occur 

  point  scrit ical t heTherefore

1 x whenand  

-1 x when0 x f' t hat meansThis

!!

!

!!

tangent line

tangent line

EXAMPLE

3

2

3

5

 x15 x3 x f of  point  scrit ical t heall  Find  !

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 149/176

±°

±¯

®

{p{

!p!

!!!!

0 x0 x

2 x02 x

  ,t hus 

0

 x

2 x52 x x5 x10 x5 x'  f 

:SO LU TION 

3

1

3

1

31

31

32

 point. y stat ionar ais2 x t hat 

and 2 xand 0 x at occur 

  point  scrit ical t heTherefore

0 x when x f' and  

2 x when0 x f' t hat meansThis

!

!!

!g!

!!

5

2-1 3

-4

1

-3

y

x

-2

2

1

y

tangent line

FIRST DERIVATIVE TEST

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 150/176

Theorem 4.2.2 asserts that the relative extrema must occur

at critical points, but it does not say that a relative

extremum occurs at every critical point.

sign.changes f' where point  scrit ical  

t hoseat  ext remum rel at ive a ha s  funct ion A

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 151/176

Figure 4.2.6 (p. 246)

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 152/176

Theorem 4.2.3 (p. 247) First Derivative Test

The above theorem simply say that for a continuous

function, relative extrema occur at critical points where the

derivative changes from (+) to () and relative minima

where it changes from () to (+).

EXAMPLE

3

2

3

5

 x15 x3 x f of  point  scrit ical t heall  Find  !

:SO LU TION 

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 153/176

 point. y stat ionar ais2 x t hat  

and 2 xand 0 x at occur  

 point  scrit ical The

!!!

y

5

2-1 3

-4

1

-3

y

x

-2

2

1

y

tangent line

3

1

3

1

3

1

3

2

 x

2- x5 

2 x x5 x10 x5 x'  f  

t hat  shownhavewe

!

!!

y

:below shownisderivat ivet hisof analysis sign A

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 154/176

INTERVAL  f(x)

x<0 (-)/(-) +

0<x<2 (-)/(+) _

x>2 (+)/(+) +

3

1

 x / 2 x5

imumminrel at ive2 x at t ochanges f' of  signThe

 imumma xrel at ive0 x at -t ochanges f' of  signThe

p!

p!

SECOND DERIVATIVE TEST

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 155/176

There is another test for relative extrema that is based on

the following geometric observation:

a function f has a relative maximum at stationary point if 

the graph of  f is concave down on an open interval

containing that point

a function f has a relative minimum at stationary point if 

the graph of  f is concave up on an open interval

containing that point

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 156/176

Figure 4.2.7

Note: The second der ivative test is applicable only to stationar y points

where the 2nd der ivative exists.

EXAMPLE 35  x5 x3 x f of ext remarel at ivet he Find  !

:SO LU TION 

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 157/176

12x30x30x-60x x' '  f 

1 x -1; x 0; x 

01 x ;01 x ;015x 

01 x1 x15x0 x'  f when

1 x1 x15x1 x15x15x-15x x'  f 

23

2

2

22224

!!

!!!

!!!

!p!!!!

STATIONARY

POINTS  f 

2nd DERIVATIVE TEST

x 1 30 f has a relative maximum

1 x2 x30 2

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 158/176

x=-1 -30 -  f has a relative maximum

x=0 0 0 inconclusive

x=1 30 +  f has a relative minimum

INTERVAL  f(x) Conclusion

x<-1 (+)(-)(-) +

x=-1  f has a relative maximum

-1<x<0 (+)(+)(-) -

x=0  f has neither a relative max nor min

0<x<1 (+)(+)(-) -

x=1  f has a relative minimum

x>1 (+)(+)(+) +

1 x1 x x152

y

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 159/176

2-1

1

x

-2

2

1

3 x x3 y of  curve t he t r ace and   Analyze .1 !

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 160/176

1 x and  -1 x 

0 x1 and  0 x1 

0 x1 x13 x-13 

 x33'  y

 x x3 y

2

2

3

!!

!!

!!

!

!

0 x 

0 x6 

 x6 ' '  y 

!

!

!

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 161/176

INTERVAL Conclusion

x<1 (+)(-)(+)= - + f is decreasing; concave upward

x=-1 -2 0 + f has a relative minimum

-1<x<0 (+)(+)(+)= + + f is increasing; concave upward

x=0 0 3 0 f has a point of inflection

0<x<1 (+)(+)(+)= + - f is increasing; concave downward

x=1 2 0 - f is has a relative maximum

x>1 (+)(+)(-)= - - f is decreasing; concave downward

2 x3 x

 x f  

 x1 x13

 x'  f  

 x6   x' '  f 

y

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 162/176

-2

y

y

2-1

1

x

-2

2

1

3 x3 x3 y !

2 x4

 x4 y of  curve t he t r ace and   Analyze .2

!

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 163/176

2 x and  -2 x 

0 x2 and  0 x2 

0 x4

 x2 x24

 x4

 x44

'  y

 x4

 x2 x44'  y

 x4

 x2 x44 x4'  y

 x4

 x4

 y

2222

2

22

22

22

2

2

!!

!!!

!

!

!

!

!

 x2 x4216  x4 x8 x4''y

222 !

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 164/176

? A

 32 x and  0 x

012 x x4 x8

024 x2 x44x-

016  x4 x28 x44x-016  x4 x42 x44x-

016  x4 x4 x4 x8 x4

 x4

   y 

22

22

222

222

2222

42

s!!

!

!

! !

!

!

INTERVAL Conclusion  x f    x'  f    x' '  f 

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 165/176

x= -2 -1

-2<x<0

x=0 0

0<x<2

x=2 1

32 x

32 x !

2 x32

32 x2

32 x "

32 x !

2

3

23

y2

 x4 y !

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 166/176

-2

y

y

2-1

1

x

-2

2

1-3-4 3 4

`

2 x4y

7x12x3x2y1 23 234x6x8x3y6

More examples:

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 167/176

7  x12 x3 x2 y .1 3 !

4 x

2 y .2

2 !

234  x12 x4 x3 y .3 !

2

2

 x

1 x y .4 !

35  x

3

2 x

5

1 y .5 !

 x6  x8 x3 y .6  !

 ) x2(  x y .7  22 !

2

 x1

 x y .8

!

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 168/176

ROLLES THEOREMAND

THE MEAN-VALUETHEOREM

ROLLES THEOREM

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 169/176

This theorem states the geometrically obvious factthat if the graph of a differentiable function

intersects the x-axis at two places, a and b there

must be at least one place where the tangent line ishorizontal.

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 170/176

Theorem 4.8.1 (p. 302)Rolle's Theorem

Figure 4.8.1

EXAMPLE

Find the two x-intercepts of the function

and confirm that f(c) = 0 at some point between those

4 x5 x x f  2 !

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 171/176

and confirm that f (c) = 0 at some point between those

Intercepts.

Solution:

? A

.0c f' which at  

1,4 int erval t heon point ais25 cso ,

25 x ;05 x2 x f'  

0' c f' t hat  such 1,4

int erval t hein c  point onelea st at of exist encet he  guar ant eed areweThus

.1,4 inet rval t heon sat isfied areTheorem s Rolle' of hypot hesest he

 ,everywhere iabledifferent and  cont inuousis f l  plolynomiat he since

4 xand 1 xareint ercept  s- xt he so  ,4 x1 x 4 x5 x x f  2

!

!!!!

!

!!!!

y

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 172/176

1 2 3 4

1

2

-1

-2

x

02

5'  f  !¹

 º

 ¸©ª

¨

THE MEAN-VALUE THEOREM

Rolles Theorem is a special case of a more general

lt ll d th M l Th

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 173/176

result, called the Mean-value T heorem.

Geometrically, this theorem states that between anytwo points A (a,f(a)) and B(b,f(b)) on the graph of a

differentiable function f, there is at least one place

where the tangent line to the graph is parallel to thesecant line joining A and B.(Fig 4.8.5)

Figure 4.8.5 (p. 304)

Note that the slope of the secant line joining  A(a,f(a)) and B(b,f(b)) is

afbf

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 174/176

ab

a f b f m

!

and that the slope of the tangent line at c in Figure 4.5.8a is f(c).

Similarly, in Figure 4.5.8b the slopes of the tangent lines at joining

 A(a,f(a)) and B(b,f(b)) is

Since nonvertical parallel lines have the same slope, the Mean-Value

Theorem can be stated precisely as follows

.lyrespect ive  ,c f' and c f' arecand c 2121

Theorem 4.8.2 (p. 304)Mean-Value Theorem

EXAMPLEShow that the function satisfies the hypotheses

of the mean-value theorem over the inteval [0,2], and find 1 x

4

1 x f  3 !

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 175/176

all values of c in the interval (0,2) at which the tangent line

to the graph of  f is parallel to the secant line joining the

points (0, f (0)) and (2, f (2)).

Solution:

? A

0,2int erval t heinlies1.15 only  ,15.13

32

3

4c Therefore

4c3 0213

4c3 

ab

a f b f c f'  Thus

4

c3c f'  and   ,

4

 x3 x f'  32 f b f   ,10 f a f   But 

 2.band 0awit h sat isfied areTheoremV alue- Meant heof 

 hypot hesest he so ,0,2onabledifferent iand 0,2oncont inuousis f  par t icul ar  In

. polynomial aisit becauseeverywhere iabledifferent and  cont inuousis f 

22

22

s}s!s!

!!

!

!!!!!!

!!

y1 x

4

1 y 3 !

4

8/3/2019 MATH21 Coursewares

http://slidepdf.com/reader/full/math21-coursewares 176/176

1 2 3 4

1

2

-1

-2

x

3

4