Materials Theory and Mineral Physics

43
Materials Theory and Mineral Physics erview of methods orphization of quartz under pressure ructural transitions in ruby and the ruby pressure ermoelasticity of LM minerals and the problem f LM temperature and composition ilog Renata Wentzcovitch CEMS, U of MN

description

Materials Theory and Mineral Physics. Renata Wentzcovitch CEMS, U of MN. • Overview of methods • Amorphization of quartz under pressure • Structural transitions in ruby and the ruby pressure scale • Thermoelasticity of LM minerals and the problem - PowerPoint PPT Presentation

Transcript of Materials Theory and Mineral Physics

Page 1: Materials Theory and Mineral Physics

Materials Theory and Mineral Physics

• Overview of methods

• Amorphization of quartz under pressure

• Structural transitions in ruby and the ruby pressure scale • Thermoelasticity of LM minerals and the problem of LM temperature and composition

• Epilog

Renata Wentzcovitch CEMS, U of MN

Page 2: Materials Theory and Mineral Physics

BO approximation

• Born-Oppenheimer approximation (1927) Ions (RI ) + electrons (ri )

RRRERM I

II

)(2 22

22

rERR

ZZeRE VJI

JI

JI

2)(

2

II R

REF

)(

lmlm

RE

)( 0)(1

det 22

JIJI

RR

RE

MM

IRR

Molecular dynamics Lattice dynamics

forces stresses phonons

Page 3: Materials Theory and Mineral Physics

Electronic Density Functional Theory (DFT) (T = 0 K)

• Hohemberg and Kohn (1964)

][)()(][][ nFrnrVdrnEE extvv r

• Kohn and Sham(1965) (auxiliary non-interacting system)

][)()(][][][ nErnrdrVnEnTnE xcextHartreev

i

ii pm

nT 2

2

1][

)()()( rrrni

ii energy minimization...

DFT1

dft1

irr

Page 4: Materials Theory and Mineral Physics

• Kohn-Sham equations: (one electron equation)

)()()()()(2

22

rrrVrVrVm iiixcHartreeext

'

)('

)(

][)(

rr

rndr

rn

nErV Hartree

Hartree

)(

][)(

rn

nErV xc

xc

with and

• Local density approximation (LDA)

]([)( )rnrdrnExc

Quantum Monte CarloCeperley and Alder, 1980

dft2

Page 5: Materials Theory and Mineral Physics

Pseudopotentials

NucleusCore electronsValence electrons

V(r)

1.0

0.5

0.0

-0.5

0

Radial distance (a.u.)

Troullier-Martins (1991)

rRl (

r)

1 2 3 4 5

3s orbital of Si

Real atom

Pseudoatom

r

Ion potential

Pseudopotential

1/2 Bond length

Page 6: Materials Theory and Mineral Physics

Fictitious molecular dynamicsH. C. Andersen (1978)

IJI

JII

II U

mL

,

2 ,2

1

2RRR VPUV

WmL ext

IJIJI

II

I ,

22 ,2

1

22RRs 3

2

V

(N,E,V) (N,H,P)

R V1

3s

Page 7: Materials Theory and Mineral Physics

Invariant Variable Cell Shape MD

h1

h2

)(thiji=vector indexj=cart. index

VPUWm

L extLDAji

jiI

Ii

,

2,22 sgsT

hsr o)h(1h hhg T

Wentzcovitch, (1991)

Page 8: Materials Theory and Mineral Physics

Typical Computational Experiment

Damped dynamics (Wentzcovitch, 1991)

)(~ PI),(~ int rffr

P = 150 GPa

Page 9: Materials Theory and Mineral Physics

Lattice

K Vo

dP

dV

Kth = 259 GPa K’th=3.9

Kexp = 261 GPa K’exp=4.0

(a,b,c)th < (a,b,c)exp ~ 1%

Tilt angles th - exp < 1deg

(• Wentzcovitch, Martins, & Price, 1993)

( Ross and Hazen, 1989)

Page 10: Materials Theory and Mineral Physics

Yegani-Haeri, 1994Wentzcovitch et al, 1995Karki et al, 1997

within 5%

S-waves (shear)

P-wave (longitudinal)

n propagation direction

Elastic Waves

Page 11: Materials Theory and Mineral Physics

Amorphization in Quartz under Pressure

quartz cristobalitetridymite

coesite

stishovite

Collaborators: C.R.S. da Silva (UMN), J. Chelikowsky (UMN), N. Binggeli (EPFL)

Page 12: Materials Theory and Mineral Physics

Hemley, Prewitt, Kingma, in Reviews in Mineralogy, 29 (1996)

(Hemley,1987)

Page 13: Materials Theory and Mineral Physics

Microstructure of -quartz during amorphization

Kingma, Maede, Hemley, Mao, & Veblen, Science (1993) Q – Quartz

Q’- Quartz-like

* - New peaks

Page 14: Materials Theory and Mineral Physics

Mechanical instability of quartz under pressure

Binggeli & Chelikowsky, PRL 1993 (shear instability)

Chapplot & Sikka, PRL 1993 (phonon softening)

Page 15: Materials Theory and Mineral Physics

quartz

-Quartz

Page 16: Materials Theory and Mineral Physics

ComparisonQuartz - 0 GPa (exp)

Quartz - 0 GPa (calc)

K-phase – 33 GPa (calc)

New phase – 25.5 GPa (exp)New phase – 26 GPa (calc)

New phase – 27.4 GPa (exp)

Page 17: Materials Theory and Mineral Physics

New phase

New Phase

Page 18: Materials Theory and Mineral Physics

Nature of P induced coordination change

Stolper & Ahrens, GRL (1987)

1) Gradual increase in density

2) Occurs at room T

3) Changes are reversible

Page 19: Materials Theory and Mineral Physics

Polyhedra

Si-O distances (A)o

1.531 1.607 1.6241.683 1.673 1.6801.714 1.763 1.6831.752 1.768 1.7261.760 1.813 1.7972.030 1.817

Page 20: Materials Theory and Mineral Physics

Conclusions

• Nature of the intermediate phase of silica seems to be understood • Properties: produced by a soft mode structure consists of 6-, and 5-fold Si at 33 GPa it is 10% denser than quartz (H ~ 0.1 eV/atom)

• Amorphous could be the result of a generalized phonon stability

Page 21: Materials Theory and Mineral Physics

Optical transitions in ruby across the corundum to Rh2O3 (II) phase transformation

Collaborators: W. Duan (U. of MN), G. Paiva (USP), & A. Fazzio (USP)Support: NSF, CNPq, and FAPESP

Page 22: Materials Theory and Mineral Physics

Structural Transition in Ruby (Al2O3:Cr)

• PIB (Cynn et al.-1990 and Bukowinski – 1994). Between 4 and 148 GPa

• LAPW (Marton & Cohen – 1994) 90 GPa

• Pseudopotentials (VCS-MD) (Thomson, Wentzcovitch, & Bukowinski), Science (1996)

Page 23: Materials Theory and Mineral Physics

Suggestive X-ray diffraction pattern

•Experimental confirmation (Funamori and Jeanloz, Science (1997))

• Comparison with EDS (Jephcoat, Hemley, Mao, Am. Mineral.(1986))

175 GPa

corundum

Rh2O3 (II)

50/50% mixture

Page 24: Materials Theory and Mineral Physics

The high pressure ruby scale

Forman, Piermarini, Barnett, & Block, Science (1972)

(R-line)

Mao, Xu, & Bell, JGR (1986)

Bell, Xu,& Mao, in Shock Waves in Condensed Matter, ed. by Gupta (1986)

Page 25: Materials Theory and Mineral Physics

Optical transitions in ruby

Intra-d transitions in Cr3+ (d3)

Page 26: Materials Theory and Mineral Physics

Ab initio calculation of Al2O3:Cr

(80 atoms/cell)

(Duan, Paiva, Wentzcovitch, Fazzio, PRL (1998))

Page 27: Materials Theory and Mineral Physics

Eigenvalue SpectraCorundum Rh2O3 (II)

Page 28: Materials Theory and Mineral Physics

Multiplet method for e-’s in X-tal field(Fazzio, Caldas, & Zunger, PRB (1984)

(Sugano, Tanabe, & Kamimura, 1962)

[ [

Page 29: Materials Theory and Mineral Physics

Deformation parameters

Racah parameters B and C

Orbital deformation parameters

Page 30: Materials Theory and Mineral Physics

Optical transitions X Pressure

(Duan, Paiva, Wentzcovitch,Fazzio, PRL (1998)

(Sugano, Tanabe, & Kamimura, 1962) (Fazzio, Caldas, & Zunger, 1984)

Page 31: Materials Theory and Mineral Physics

Phase transition in Cr2O3

• Corundum Rh2O3 (II) phase transition AFM at 14 GPa, PM at 18 GPa.

• Experimental confirmation: Rheki & Dubrovinsky (2001) unpublished PT = 30GPa, T= 1500 K.

Dobin, Duan, & Wentzcovitch, PRB 2000

Page 32: Materials Theory and Mineral Physics

Conclusions

• Calculated P-induced optical shifts in ruby agree well with experiments

• Phase transformation should affect mainly the U and Y absorption lines

• New interpretation of observed anomalies in absorption lines

• Prediction and confirmation of corundum to Rh2O3 (II) transition in Cr2O3 near of below 30 GPa

• Need more experiments: Study of Y line above 30 GPa NEXAFS under pressure…

Page 33: Materials Theory and Mineral Physics

Thermoelasticity of LM minerals and the problem of LM temperature and composition

Core T

Mantle adiabat

solidus

HA

Mw(Mg,Fe)SiO3

CaSiO3

peridotite

P(GPa)0 4020 60 80 100 120

2000

3000

4000

5000

T (

K)

(Zerr, Diegler, Boehler, 1998)

Collaborators: B.B. Karki (UMN), S. de Gironcoli & S. Baroni (SISSA)

Page 34: Materials Theory and Mineral Physics

Phonon dispersion in MgO & MgSiO3 perovskite

Calc Exp Calc Exp

(Karki, Wentzcovitch, Gironcoli, Baroni, PRB 2000)

0 GPa

-

Exp: Sangster et al. 1970

Exp: Raman [Durben and Wolf 1992] Infrared [Lu et al. 1994]

Page 35: Materials Theory and Mineral Physics

Quasiharmonic approximation

qj B

qjB

qj

qj

Tk

VhTk

VhVUTVF

)(exp1ln

2

)()(),(

Volume (Å3)F

(ry

)

4th order finite strain equation of state

static zero-point

thermal

MgO

Static 300K Exp(Fei 1999)V (Å3) 18.5 18.8 18.7K (GPa) 169 159 160K´ 4.18 4.30 4.15K´´(GPa-1) -0.025 -0.030

-

-

-

-

Page 36: Materials Theory and Mineral Physics

Thermal expansivity of MgO & MgSiO3-pv(Karki, Wentzcovitch, Gironcoli and Baroni, GRL in press)

(1

0-5 K

-1)

(1

0-5 K

-1)

Page 37: Materials Theory and Mineral Physics

MgSiO3-perovskite and MgO

(gr/cm-3)

V (A3)

KT

(GPa) d KT/dP d KT

2/dP2

(GPa-1) d KT/dT (Gpa K-1)

10-5 K-1

3.580 18.80 159 4.30 -0.030 -0.014 3.12 Calc. MW

3.601 18.69 160 4.15 ~ -0.0145 3.13 Exp. MW

4.210 164.1 247 4.0 -0.016 -0.031 2.1 Calc. Pv

4.247 162.3 246 | 266

3.7 | 4.0

~ -0.02 | -0.07

1.7 | 2.2

Exp. Pv

Exp.: [Ross & Hazen, 1989; Mao et al., 1991; Wang et al., 1994; Funamori et al., 1996; Chopelas, 1996; Gillet et al., 2000; Fiquet et al., 2000]

Page 38: Materials Theory and Mineral Physics

Elastic moduli of MgO at high P and T(Karki et al. 1999, 2000)

Page 39: Materials Theory and Mineral Physics

KS at Lower Mantle P-T

300 K 1000 K 2000 K 3000 K

Page 40: Materials Theory and Mineral Physics

LM Geotherms

1000

2000

3000

4000

5000

6000

500 1000 1500 2000 2500 3000

T (

K)

Depth (km)

Pv

Solidus

Isentropes

Pyrolite

CMB |

Tc

Page 41: Materials Theory and Mineral Physics

Me

“…At depths greater than 1200 km, the rate of rise of the bulk modulus is too small for the lower mantle to consist of an adiabatic and homogeneous layer of standard chondritic or pyrolitic composition. Superadiabatic gradients, or continuous changes in chemical composition, or phase, or all are required to account for the relatively low bulk modulus of the deeper part of the LM ,….” (Wentzcovitch, 2001)

Page 42: Materials Theory and Mineral Physics

Epilog

• Beyond QHA and beyond elasticity (rheology)

• Transition metal (Fe) bearing systems

• Alloy systems

• Press on to Gbars…

Page 43: Materials Theory and Mineral Physics

Thanks to …

• Bijaya B. Karki

• Shun-I. Karato

• G. David Price