Materials for 3D optical storage: two-photon access vs. one-photon background

10
Materials for 3D optical storage: two-photon access vs. one-photon background N.S. Makarov, A. Rebane, M. Drobizhev (Department of Physics, Montana State University, Bozeman, MT 59717, USA) H. Wolleb, H. Spahni (Ciba Specialty Chemicals Inc, P.O.

description

Materials for 3D optical storage: two-photon access vs. one-photon background. N.S. Makarov, A. Rebane, M. Drobizhev (Department of Physics, Montana State University, Bozeman, MT 59717, USA) H. Wolleb, H. Spahni (Ciba Specialty Chemicals Inc, P.O. Box Ch-4002 Basle, Switzerland). Outline. - PowerPoint PPT Presentation

Transcript of Materials for 3D optical storage: two-photon access vs. one-photon background

Page 1: Materials for 3D optical storage: two-photon access vs. one-photon background

Materials for 3D optical storage:two-photon access vs.

one-photon background

N.S. Makarov, A. Rebane, M. Drobizhev(Department of Physics, Montana State University,

Bozeman, MT 59717, USA)H. Wolleb, H. Spahni

(Ciba Specialty Chemicals Inc, P.O. Box Ch-4002 Basle, Switzerland)

Page 2: Materials for 3D optical storage: two-photon access vs. one-photon background

Outline

• Principles of 3D 2PA optical memory

• Lack of 2PA-sensitive photochromes

• 2PA resonance enhancement

• 2PA vs. 1PA

• 2PA-sensitive phtalocyanines

• Summary

• References

Page 3: Materials for 3D optical storage: two-photon access vs. one-photon background

Principles of 3D 2PA optical memory

hv

dv

hh dh

write

form Bform A

M

L

L

read

form Bform A

PD

DM

L

L

Page 4: Materials for 3D optical storage: two-photon access vs. one-photon background

Lack of 2PA-sensitive photochromes

2

2 2 4 2 2max 0

8( )A B

A B F

SNR

I N NA

Access with 1 pulse: 100fs, 100MHz => 1TB read/write in 22.2 hrsEach bit have to be written and read by only 1 femtosecond pulse!

11 2 30max 2

90

10 / 10

~ 750 800

~ 100

~ 10

~ 0.1

~ 0.1

~ 0.1

~ 0.5

A B

F

photonsI W cm

cm snm

fs

N molecules

NA

3 42 10 10 GM

32 10off resonance GM

4

2 2

2 22

2 22

5off resonance

fg fg PA

Lg

hnc

μ Δμ

Compound 1, cm2 (, nm) 2,GM (, nm) F AB

Fulgide-based 3.3810-16 (650) 2 (780) 0.16 0.045

Spiropyrans-based 8.2710-18 (352) 100 (694) 0.05 0.01

Diarylethene-based 1.3310-16 (530-600)

70 (750) 0.5 0.4

Page 5: Materials for 3D optical storage: two-photon access vs. one-photon background

2PA resonance enhancement

2 24 2

2 22 2 2

2 22

5

ig fi

PA

ig m

Lg

hnc

μ μ

A fundamental trade-off between 2PA and 1PA may be formulated as follows: On the one hand, one would like to tune laser frequency as close as possible to the resonance in order to increase useful signal, but on the other hand, one would like to tune as far as possible to decrease detrimental background.

2

1

2

2 1 2 0

1

2

wPAwPA

w r rPA PA PA F A B

PSBR

P M

NASNR P P P N

15000 14000 13000 12000 11000 10000 9000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

700 800 900 1000 1100Wavelength, nm

2,

GM

Frequency, cm-1

NN

NH NH

N

NN N

O

O

O

Qx(A)Qy(A)

long wavelength tail region

Page 6: Materials for 3D optical storage: two-photon access vs. one-photon background

2PA vs. 1PA

1 2 3 4 5 6 7 8 9

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

900 nm, a=2.14 ±0.16 890 nm, a=1.99 ±0.05 880 nm, a=1.68 ±0.04 870 nm, a=1.54 ±0.09 860 nm, a=1.36 ±0.10 850 nm, a=1.24 ±0.17

Flu

ore

sce

nce

inte

nsi

ty,

a.u

.

Laser pulse energy, a.u.

I(P)= Pa

10-4

1

Ab

sorb

an

ce,

a.u

.

0 500 1000 1500 2000 2500

10-3

10-1

10-5

10-2

Frequency detuning 1PA-L, cm-1

240K

300K

Fluorescence 240K

200 400 600 800 1000 1200 1400 1600 18000.01

0.1

1

10

100

1000

Opt

ical

Den

sity

, a.u

.

Wavelengths, nm

200 400 600 800 1000 1200 1400 1600 1800

0

500

1000

1500

2000

2500

3000

3500

Opt

ical

Den

sity

, a.u

.

Wavelengths, nm

850-900 nm

Page 7: Materials for 3D optical storage: two-photon access vs. one-photon background

2PA-sensitive phtalocyanines

1 10 100 1000

1

SN

R

SBR

Pc3AnPc3Nc

2000 cm-12250 cm-1

2250 cm-1

2500 cm-1

2750 cm-1

3000 cm-1

1E-3 0.01 0.1 1 10

0.01

0.1

1

SN

R

SBR

Pc3An

Pc3Nc

750 cm-1

1000 cm-1

1250 cm-1

1500 cm-1

1750 cm-1

2000 cm-1

2250 cm-1

, 0.5F A B

Compound 1, cm2 (, nm) 2,GM (, nm) F AB

Pc3Nc 4.810-16 (752) 816 (865) 0.32 0.0080

Pc3An 5.710-16 (778) 1300 (920) 0.26 0.0138

Page 8: Materials for 3D optical storage: two-photon access vs. one-photon background

Summary• Because of the requirement of fast speed writing and readout, the storage materials need to have high molecular 2PA cross section, 2>103-104 GM• It is evident that the crucial points in this approach are the two-photon sensitivity of a molecule and the possibility of its photochemical transformation from one form to another• Careful choice of excitation frequency, along with suitable combination of 1PA and 2PA properties allow minimizing the negative impact of underlying near resonance hot band absorption• Our model allows to predict the appropriateness of chromophores for the 2PA-based optical storage

Page 9: Materials for 3D optical storage: two-photon access vs. one-photon background

References1. D.A. Parthenopoulos, P.M. Rentzepis, “Three-Dimensional Optical Storage Memory”, Science, 245, 843-845 (1989).2. M. Drobizhev, A. Karotki, M. Kruk, A. Rebane, “Resonance enhancement of two-photon absorption in porphyrins”, Chem.

Phys. Lett., 355, 175-182, (2002).3. M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P.N. Taylor, H.L. Anderson, “Understanding Strong Two-

Photon Absorption in -Conjugated Porphyrin Dimers via Double-Resonance Enhancement in a Three-Level Model”, J. Am. Chem. Soc., 126, 15352-15353 (2004).

4. M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, C.W. Spangler, “Strong two-photon absorption in new asymmetrically substituted porphyrins: interference between charge-transfer and intermediate-resonance pathways”, J. Phys. Chem. B, 110, 9802-9814 (2006).

5. M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P.N. Taylor, H.L. Anderson, “Extremely strong near-IR two-photon absorption in conjugated porphyrin dimmers: quantitative description with three-essential-states model”, J. Phys. Chem. B, 109, 7223-7236 (2005).

6. M. Drobizhev, A. Karotki, M. Kruk, N. Zh. Mamardashvili, A. Rebane, “Drastic enhancement of two-photon absorption in porphyrins associated with symmetrical electron-accepting substitution”, Chem. Phys. Lett., 361, 504-512 (2002).

7. I. Renge, H. Wolleb, H. Spahni, U.P. Wild, “Phthalonaphthalocyanines: New Far-Red Dyes for Spectral Hole Burning”, J. Phys. Chem. A 101, 6202-6213, (1997).

8. A.A. Gorokhovskii, R.K. Kaarli, L.A. Rebane, “Hole Burning in Contour of a Pure Electronic Line in a Shpolskii System”, JETP Lett., 20, 216-218, (1974).

9. M. Drobizhev, A. Karotki, A. Rebane, “Persistent Spectral Hole Burning by Simultaneous Two-Photon Absorption”, Chem. Phys. Lett., 334, 76-82, (2001).

10. A. Rebane, M. Drobizhev, A. Karotki, Y. Dzenis, C.W. Spangler, A. Gong, F. Meng, “New two-photon materials for fast volumetric rewritable optical storage”, in: Proc. SPIE, Advanced Optical and Quantum Memories and Computing, Eds. H.J. Coufal, Z.U. Hasan, (SPIE, Belligham, WA, 2004), 5362, pp. 10-19.

11. M. Drobizhev, A. Karotki, M. Kruk, A. Krivokapic, H.L. Anderson, A. Rebane, “Photon energy upconversion in porphyrins: one-photon hot-band absorption versus two-photon absorption”, Chem. Phys. Lett., 370, 690-699 (2003).

12. A. Karotki, M. Drobizhev, Y. Dzenis, P.N. Taylor, H.L. Anderson, A. Rebane, “Dramatic enhancement of intrinsic two-photon absorption in a conjugated porphyrin dimer”, Phys. Chem. Chem. Phys., 6, 7-10 (2004).

13. M. Drobizhev, A. Karotkii, A. Rebane, “Dendrimer molecules with record large two-photon absorption cross section”, Opt. Lett., 26, 1081-1083 (2001).

14. M. Drobizhev, N.S. Makarov, A. Rebane, E.A. Makarova, E.A. Luk’yanets, “Two-photon absorption in tetraazachlorin and its benzo-and 2,3-naphtho-fused derivatives: Effective symmetry of -conjugation pathway”, J. Porphyrines and Phtalocyanines, Proc. Of the International Conference on Porphyrines and Phtalocyanines, ICPP-4, Rome, Italy, 2-7 July, 2006 (to be published).

Page 10: Materials for 3D optical storage: two-photon access vs. one-photon background

M.E. Marhic, “Storage limit of two-photon-based three-dimensional memories with parallel access”,

Opt. Lett., 16, 1272-1273 (1991).

“For systems that use parallel access by simultaneous writing or reading of bits located in an entire common plane, diffraction sets a limit to the storage density that is far smaller than that for sequential operation. Comparable densities can be achieved by using a three-dimensional waveguiding structure.”