Material Point Method (MPM)

19
Material Point Method (MPM) Wednesday, 10/2/2002 Variational principle Particle discretization Grid interpolation

description

Material Point Method (MPM). Variational principle Particle discretization Grid interpolation. Wednesday, 10/2/2002. Lennard-Jones Potential. Handout: Molecular dynamics of simple systems Error, page 7. force. potential. Motion equations. Tensor expression:. Engineering expression:. - PowerPoint PPT Presentation

Transcript of Material Point Method (MPM)

Page 1: Material Point Method (MPM)

Material Point Method (MPM)

Wednesday, 10/2/2002

Variational principleParticle discretizationGrid interpolation

Page 2: Material Point Method (MPM)

Lennard-Jones Potential

φ(rij )=4εσrij

⎝ ⎜

⎠ ⎟ 12

−σrij

⎝ ⎜

⎠ ⎟

6⎡

⎣ ⎢

⎦ ⎥

potential force

Handout: Molecular dynamics of simple systemsError, page 7

Page 3: Material Point Method (MPM)

Motion equations

σij, j +ρbi =ρai

∂σ xx

∂x+

∂σxy

∂y+ρbx =ρax

∂σ xy

∂x+

∂σyy

∂y+ρby =ρay

Tensor expression:

Engineering expression:

Page 4: Material Point Method (MPM)

Discretization in Material Point Method (MPM)

Solid line is an outline of the body analyzed.Black dots are the material points.Dashed lines show a regular, background grid for calculation.

Page 5: Material Point Method (MPM)

Motion equations (Variational form)

∂σ xx

∂x+

∂σxy

∂y+ρbx −ρax

⎝ ⎜ ⎞

⎠ Ω∫ ψdΩ =0

∂σ xy

∂x+

∂σyy

∂y+ρby −ρay

⎛ ⎝ ⎜ ⎞

⎠ Ω∫ ψdΩ =0

: arbitrary spatial function

∂σ xx

∂x+

∂σxy

∂y+ρbx −ρax =0

∂σ xy

∂x+

∂σyy

∂y+ρby −ρay =0

Page 6: Material Point Method (MPM)

Elastic Bar Dropping

dσdx

+ρb=ρa

b=g

Acceleration due to gravity

Page 7: Material Point Method (MPM)

Particle Discretization?How to solve?

dσdx

+ρb=ρa

Page 8: Material Point Method (MPM)

Direct solution

dσdx

+ρb=ρa

x← x+vdt

v← v+adt a=1ρ

dσdx

+b

σ ← σ +Edvdx

dt

Solution:

Page 9: Material Point Method (MPM)

Variational Form

dσdx

+ρb−ρa⎛ ⎝

⎞ ⎠ a

b∫ ψdx=0

dσdx

+ρb=ρa

: arbitrary spatial function

Page 10: Material Point Method (MPM)

Particle Discretization?

dσdx

+ρg−ρa⎛ ⎝

⎞ ⎠ a

b∫ ψdx=0

Page 11: Material Point Method (MPM)

Variational Equation

dσdx

+bρ−aρ⎛ ⎝

⎞ ⎠ a

b

∫ ψdx=0

d(σψ)dx

−σdψdx

+ bρ−aρ( )ψ⎡ ⎣

⎤ ⎦ dx

a

b∫ =0

(σψ)b −(σψ) a + bρψdxa

b∫ − σdψdx

dxa

b∫ = aρψdxa

b∫

Considering free ends at a and b

bρψdxa

b

∫ − σdψdx

dxa

b

∫ = aρψdxa

b

Page 12: Material Point Method (MPM)

Particle Discretization

m(p)b(p)ψ (p)

p

∑ − V(p)σ (p) dψ (p)

dxp

∑ = m(p)a(p)ψ (p)

p

bρψdxa

b

∫ − σdψdx

dxa

b

∫ = aρψdxa

b

Page 13: Material Point Method (MPM)

Spatial grid

Page 14: Material Point Method (MPM)

Shape function

φ(x)=(x2 −x)x2 −x1

φ (1) +(−x1 +x)x2 −x1

φ (2)

φ(x)= φ (n)N(n)(x)n

N(1)(x) =(x2 −x)x2 −x1

N(2)(x)=(−x1 +x)x2 −x1

Page 15: Material Point Method (MPM)

Grid Interpolation

m(p)b(p)ψ (p)

p

∑ − V(p)σ (p) dψ (p)

dxp

∑ = m(p)a(p)ψ (p)

p

ψ ( p) = ψ (n)N(n,p)

n

a(p) = a (n)N (n,p)

n

m( p)b( p) Nn

∑ (n,p)ψ (n)

p

∑ − V( p)σ( p) dN(n,p)

dxψ (n)

n

∑p

= m( p) N (n',p)

n'

∑ a(n') N(n,p)

n

∑ ψ (n)

p

Page 16: Material Point Method (MPM)

Grid Equation

m( p)b( p) Nn

∑ (n,p)ψ (n)

p

∑ − V( p)σ( p) dN(n,p)

dxψ (n)

n

∑p

= m( p) N (n',p)

n'

∑ a(n') N(n,p)

n

∑ ψ (n)

p

m(p)b(p)N (n,p)

p

∑ − V(p)σ (p) dN(n,p)

dxp

∑ = N (n',p)N (n,p)

p

∑ m(p)

n'

∑ a(n')

Since is arbitrary:

ψ (n)

Page 17: Material Point Method (MPM)

Grid Equation (F=ma)

m(p)b(p)N (n,p)

p

∑ − V(p)σ (p) dN(n,p)

dxp

∑ = N (n',p)N (n,p)

p

∑ m(p)

n'

∑ a(n')

F (n) = m(p)b(p)N (n,p)

p

f (n) =− V(p)σ (p) dN(n,p)

dxp

m (n,n') = N (n',p)N (n,p)

p

∑ m(p)

External force

Internal force

Mass matrix

F (n) +f (n) = m (n,n')

n'

∑ a(n')

Page 18: Material Point Method (MPM)

Derivative of Shape Function

N(1)(x) =(x2 −x)x2 −x1

N(2)(x)=(−x1 +x)x2 −x1

ddx

N (1)(x)=−1

x2 −x1

ddx

N (2)(x) =1

x2 −x1

Page 19: Material Point Method (MPM)

Summary

Variational principleParticle discretizationGrid interpolation

F (n) +f (n) = m (n,n')

n'

∑ a(n')

Next class: MPM procedure