Matching moments and matrix computations

30
Matching moments and matrix computations Jörg Liesen Technical University of Berlin and Zden ˇ ek Strakoš Charles University in Prague and Czech Academy of Sciences http://www.karlin.mff.cuni.cz/˜strakos SC2011 in honor of Claude Brezinski and Sebastiano Seatzu Saardinia, October 2011

Transcript of Matching moments and matrix computations

Page 1: Matching moments and matrix computations

Matching moments and matrix computations

Jörg LiesenTechnical University of Berlin

and

Zdenek StrakošCharles University in Prague and Czech Academy of Sciences

http://www.karlin.mff.cuni.cz/˜strakos

SC2011 in honor of Claude Brezinski and Sebastiano SeatzuSaardinia, October 2011

Page 2: Matching moments and matrix computations

Z. Strakoš 2

CG ≡ matrix form of the Gauss-Christoffel Q.

Ax = b , x0 ←→ ω(λ),

∫ ξ

ζ

(λ)−1 dω(λ)

↑ ↑

Tn yn = ‖r0‖ e1 ←→ ω(n)(λ),n∑

i=1

ω(n)i

(

θ(n)i

)−1

xn = x0 + Wn yn

ω(n)(λ) −→ ω(λ)

Page 3: Matching moments and matrix computations

Z. Strakoš 3

Distribution function ω(λ)

λi, si are the eigenpairs of A , ωi = |(si, w1)|2 , w1 = r0/‖r0‖

...

0

1

ω1

ω2

ω3

ω4

ωN

L λ1 λ2 λ3. . . . . . λN U

Hestenes and Stiefel (1952)

Page 4: Matching moments and matrix computations

Z. Strakoš 4

CG and Gauss-Christoffel quadrature errors

∫ U

L

λ−1 dω(λ) =n∑

i=1

ω(n)i

(

θ(n)i

)−1

+ Rn(f)

‖x− x0‖2A

‖r0‖2= n-th Gauss quadrature +

‖x− xn‖2A

‖r0‖2

With x0 = 0,

b∗A−1b =n−1∑

j=0

γj‖rj‖2 + r∗nA−1rn .

CG : model reduction matching 2n moments;

Golub, Meurant, Reichel, Boley, Gutknecht, Saylor, Smolarski, ......... ,Meurant and S (2006), Golub and Meurant (2010), S and Tichý (2011)

Page 5: Matching moments and matrix computations

Z. Strakoš 5

Outline

1. CG convergence bounds based on Chebyshev polynomials

2. Sensitivity of the Gauss-Christoffel quadrature

3. PDE discretizations and matrix computations

Page 6: Matching moments and matrix computations

Z. Strakoš 6

1 Beauty of Chebyshev polynomials

● Flanders and Shortley, Numerical determination of fundamental modes(1950)

● Lanczos, Chebyshev polynomials in the solution of large scale linearsystems (1953)

● Stiefel, Kernel polynomials in linear algebra and their numericalapplications (1958)

● Rutishauser, Theory of gradient methods (1959)

For the state of the art demonstration of the beauty of Chebyshevpolynomials we refer to the work of Nick Trefethen and his collaborators.

Page 7: Matching moments and matrix computations

Z. Strakoš 7

1 Linear bounds for the nonlinear method?

‖x− xn‖A = minp(0)=1

deg(p)≤n

‖A1/2p(A)(x− x0)‖

= minp(0)=1

deg(p)≤n

‖Y p(Λ)Y ∗A1/2(x− x0)‖

(

minp(0)=1

deg(p)≤n

max1≤j≤N

|p(λj)|

)

‖x− x0‖A

Using the shifted Chebyshev polynomials on the interval [λ1, λN ] ,

‖x− xn‖A ≤ 2

(√

κ(A)− 1√

κ(A) + 1

)n

‖x− x0‖A .

Page 8: Matching moments and matrix computations

Z. Strakoš 8

1 Minimization property and the bound

This bound has a remarkably wiggling history:

● Markov (1890)● Flanders and Shortley (1950)● Lanczos (1953), Kincaid (1947), Young (1954, ... )● Stiefel (1958), Rutishauser (1959)● Meinardus (1963), Kaniel (1966)● Daniel (1967a, 1967b)● Luenberger (1969)

It represents nothing but the bound for the Chebyshev method,Liesen and S (2012?)

Page 9: Matching moments and matrix computations

Z. Strakoš 9

1 Composite bounds considering large outliers?

This bound should not be used in connection with the behaviour of CGunless κ(A) = λN/λ1 is really small or unless the (very special)distribution of eigenvalues makes it relevant.

In particular, one should be very careful while using it as a part of acomposite bound in the presence of the large outlying eigenvalues

minp(0)=1

deg(p)≤n−s

max1≤j≤N

| qs(λj) p(λj) | ≤ max1≤j≤N

|qs(λj)|

∣∣∣∣

Tn−s(λj)|

Tn−s(0)

∣∣∣∣

< max1≤j≤N−s

∣∣∣∣

Tn−s(λj)

Tn−s(0)

∣∣∣∣

.

This Chebyshev method bound on the interval [λ1, λN−s]is then valid after s initial steps.

Page 10: Matching moments and matrix computations

Z. Strakoš 10

1 The polynomial qs(λ) has desired roots

0 10 20 30 40 50 60 70 80 90−5

−4

−3

−2

−1

0

1

2

3

4

5

T4(x)

T5(x)

The Chebyshev polynomials T4(λ), T5(λ), and the polynomial q1(λ) ,q1(0) = 1 having the single root at the large outlying eigenvalue.

Page 11: Matching moments and matrix computations

Z. Strakoš 11

1 Quote (2009, ... ): the desired accuracy ǫ

Theorem. After

k = s +

ln(2/ǫ)

2

λN−s

λ1

iteration steps the CG will produce the approximate solution xn

satisfying

‖x− xn‖A ≤ ǫ ‖x− x0‖A .

This recently republished and used statement is in finite precisionarithmetic not true at all.

Page 12: Matching moments and matrix computations

Z. Strakoš 12

1 Mathematical model of FP CG

CG in finite precision arithmetic can be seen as the exact arithmetic CGfor the problem with the slightly modified distribution function with largersupport, i.e., with single eigenvalues replaced by tight clusters.

Paige (1971-80), Greenbaum (1989),Parlett (1990), S (1991), Greenbaum and S (1992), Notay (1993), ... ,Druskin, Knizhnermann, Zemke, Wülling, Meurant, ...Recent review and update in Meurant and S, Acta Numerica (2006).

Fundamental consequence:

In FP computations, the composite convergence bounds eliminating inexact arithmetic large outlying eigenvalues at the cost of one iteration pereigenvalue do not, in general, work.

Page 13: Matching moments and matrix computations

Z. Strakoš 13

1 Axelsson (1976), quote Jennings (1977)

p. 72: ... it may be inferred that rounding errors ... affects the convergencerate when large outlying eigenvalues are present.

Page 14: Matching moments and matrix computations

Z. Strakoš 14

1 The composite bounds completely fail

0 20 40 60 80 100

10−15

10−10

10−5

100

0 20 40 60 80 100

10−15

10−10

10−5

100

Composite bounds with varying number of outliers:Exact CG (left) and FP CG (right),

Gergelits (2011).

Page 15: Matching moments and matrix computations

Z. Strakoš 15

2 CG and Gauss-Christoffel quadrature errors

∫ U

L

λ−1 dω(λ) =n∑

i=1

ω(n)i

(

θ(n)i

)−1

+ Rn(f)

‖x− x0‖2A

‖r0‖2= n-th Gauss quadrature +

‖x− xn‖2A

‖r0‖2

Consider two slightly different distribution functions with

Iω =

∫ U

L

λ−1 dω(λ) ≈ Inω

Iω =

∫ U

L

λ−1 dω(λ) ≈ Inω

Page 16: Matching moments and matrix computations

Z. Strakoš 16

2 Sensitivity of the Gauss-Christoffel Q.

0 5 10 15 2010

−10

10−5

100

iteration n

quadrature error − perturbed integralquadrature error − original integral

0 5 10 15 2010

−10

10−5

100

iteration n

difference − estimatesdifference − integrals

Page 17: Matching moments and matrix computations

Z. Strakoš 17

2 : A point going back to 1814

1. Gauss-Christoffel quadrature for a small number of quadrature nodescan be highly sensitive to small changes in the distribution functionthat enlarge its support.

In particular, the difference between the corresponding quadratureapproximations (using the same number of quadrature nodes) can bemany orders of magnitude larger than the difference between theintegrals being approximated.

2. This sensitivity in Gauss-Christoffel quadrature can be observedfor discontinuous, continuous, and even analytic distribution functions,and for analytic integrands uncorrelated with changes in thedistribution functions, with no singularity close to the interval ofintegration.

Page 18: Matching moments and matrix computations

Z. Strakoš 18

2 Theorem - O’Leary, S, Tichý (2007)

Consider distribution functions ω(λ) and ω(λ) on [L, U ] . Letpn(λ) = (λ− λ1) . . . (λ− λn) and pn(λ) = (λ− λ1) . . . (λ− λn) be thenth orthogonal polynomials corresponding to ω and ω respectively,with ps(λ) = (λ− ξ1) . . . (λ− ξs) their least common multiple.If f ′′ is continuous on [L, U ] , then the difference ∆n

ω,ω betweenthe approximation In

ω to Iω and the approximation Inω to Iω ,

obtained from the n-point Gauss-Christoffel quadrature, is bounded as

|∆nω,ω| ≤

∣∣∣∣∣

∫ U

L

ps(λ)f [ξ1, . . . , ξs, λ] dω(λ) −

∫ U

L

ps(λ)f [ξ1, . . . , ξs, λ] dω(λ)

∣∣∣∣∣

+

∣∣∣∣∣

∫ U

L

f(λ) dω(λ) −

∫ U

L

f(λ) dω(λ)

∣∣∣∣∣

.

Page 19: Matching moments and matrix computations

Z. Strakoš 19

3 Take very simple model boundary value problem

−∆u = 16η1η2(1− η1)(1− η2)

on the unit square with zero Dirichlet boundary conditions. Galerkin finiteelement method (FEM) discretization with linear basis functions on theregular triangular grid with the mesh size h = 1/(m + 1), where m is thenumber of inner nodes in each direction. Discrete (piecewise linear)solution

uh =N∑

j=1

ζj φj(η1, η2) .

Computational error

u− u(n)h

︸ ︷︷ ︸

total error

= u− uh︸ ︷︷ ︸

discretisation error

+ uh − u(n)h

︸ ︷︷ ︸

algebraic error

.

Page 20: Matching moments and matrix computations

Z. Strakoš 20

3 Local discretization and global computation

Discrete (piecewise linear) solution

uh =N∑

j=1

ζj φj(η1, η2) .

● If ζj is known exactly, then u(n)h = uh , and the global information is

approximated as the linear combination of the local basis functions.

● Apart from trivial cases, ζj , which supplies the global information,is not known exactly.

Page 21: Matching moments and matrix computations

Z. Strakoš 21

3 Energy norm of the error

Theorem

Up to a small inaccuracy proportional to machine precision,

‖∇(u− u(n)h )‖2 = ‖∇(u− uh)‖2 + ‖∇(uh − u

(n)h )‖2

= ‖∇(u− uh)‖2 + ‖x− xn‖2A .

Using zero Dirichlet boundary conditions,

‖∇(u− uh)‖2 = ‖∇u‖2 − ‖∇uh‖2 .

Page 22: Matching moments and matrix computations

Z. Strakoš 22

3 Solution and the discretization error

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Exact solution u of the PDE

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0

1

2

3

x 10−4 Discretisation error u−u

h

Exact solution u of the Poisson model problem (left)and the MATLAB trisurf plot of the discretization error u− uh (right).

Page 23: Matching moments and matrix computations

Z. Strakoš 23

3 Algebraic and total errors

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

−6

−4

−2

0

2

4

6

x 10−4 Algebraic error u

h−u

hCG with c=1 and α=3

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

−4

−2

0

2

4

6

8

10

x 10−4 Total error u−u

hCG with c=1 and α=3

Algebraic error uh − u(n)h (left) and the MATLAB trisurf plot of the total

error u− u(n)h (right)

‖∇(u− u(n)h )‖2 = ‖∇(u− uh)‖2 + ‖x− xn‖

2A

= 5.8444e− 03 + 1.4503e− 05 .

Page 24: Matching moments and matrix computations

Z. Strakoš 24

3 Algebraic and total errors

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

−6

−4

−2

0

2

4

6

8

x 10−5 Algebraic error u

h−u

hCG with c=0.5 and α=3

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0

1

2

3

x 10−4 Total error u−u

hCG with c=0.5 and α=3

Algebraic error uh − u(n)h (left) and the MATLAB trisurf plot of the total

error u− u(n)h (right)

‖∇(u− u(n)h )‖2 = ‖∇(u− uh)‖2 + ‖x− xn‖

2A

= 5.8444e− 03 + 5.6043e− 07 .

Page 25: Matching moments and matrix computations

Z. Strakoš 25

3 One can see 1D analogy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−0.5

0

0.5

1

1.5

2

2.5

3x 10

−3Errors with the algebraic normwise backward error 6.6554e−017

alg.errortot. error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−2

0

2

4

6

8

10x 10

−3 Errors with the algebraic normwise backward error 0.0020031

alg.errortot. error

The discretization error (left),the algebraic and the total error (right),

Papež (2011).

Page 26: Matching moments and matrix computations

Z. Strakoš 26

3 Adaptivity?

We need a-posteriori error bounds which are:

● Locally efficient,

● fully computable (no hidden constants),

● and allow to compare the contribution of the discretization error and thealgebraic error to the total error.

Page 27: Matching moments and matrix computations

Z. Strakoš 27

Conclusions

● History is important for the presence and future.

● An example: Thinking in term of matching moments can be useful.

● Many Thanks and Congratulations!

Page 28: Matching moments and matrix computations

Z. Strakoš 28

Ideas and people I

● Euclid (300BC), Hippassus from Metapontum (before 400BC), ...... ,

● Bhascara II ( 1150), Brouncker and Wallis (1655-56): Three termrecurences (for numbers)

● Euler (1737, 1748), ...... , Brezinski (1991), Khrushchev (2008)

● Gauss (1814), Jacobi (1826), Christoffel (1858, 1857), ....... ,Chebyshev (1855, 1859), Markov (1884), Stieltjes (1884, 1893-94):Orthogonal polynomials, quadrature, analytic theory of continuedfractions, problem of moments, minimal partial realization,Riemann-Stieltjes integralGautschi (1981, 2004), Brezinski (1991), Van Assche (1993),Kjeldsen (1993),

● Hilbert (1906, 1912), ...... , Von Neumann (1927, 1932), Wintner (1929)resolution of unity, integral representation of operator functions inquantum mechanics

Page 29: Matching moments and matrix computations

Z. Strakoš 29

Ideas and people II

● Krylov (1931), Lanczos (1950, 1952, 1952c), Hestenes and Stiefel(1952), Rutishauser (1953), Henrici (1958), Stiefel (1958), Rutishauser(1959), ...... , Vorobyev (1958, 1965), Golub and Welsh (1968), ..... ,Laurie (1991 - 2001), ......

● Gordon (1968), Schlesinger and Schwartz (1966), Reinhard (1979), ... ,Horácek (1983-...), Simon (2007)

● Paige (1971), Reid (1971), Greenbaum (1989), .......

● Magnus (1962a,b), Gragg (1974), Kalman (1979), Gragg, Lindquist(1983), Gallivan, Grimme, Van Dooren (1994), ....

−→ Euler, Christoffel, Chebyshev (Markov), Stieltjes !

Page 30: Matching moments and matrix computations

Z. Strakoš 30

Thank you for your kind patience