Matching fixed-order Matrix Elements and Parton - Indico - Cern

30
Toy model MC@NLO POWHEG Truncated PS Uncertainties Matching fixed-order Matrix Elements and Parton Showers Stefan H¨ oche SLAC NAL Theory Group MCnet-LPCC School on Event Generators for LHC CERN, 25/07/12 StefanH¨oche Matching ME and PS

Transcript of Matching fixed-order Matrix Elements and Parton - Indico - Cern

Toy model MC@NLO POWHEG Truncated PS Uncertainties

Matching fixed-order Matrix Elementsand Parton Showers

Stefan Hoche

SLAC NAL Theory Group

MCnet-LPCC School on Event Generators for LHC

CERN, 25/07/12

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

The structure of MC events

�������������������������

�������������������������

������������������������������������������������������������

������������������������������������������������������������

������������������������������������

������������������������������������

������������������������������������

������������������������������������

���������������������������������������������������������

���������������������������������������������������������

������������

������������

������������������

������������������

��������������������

��������������������

������������������

������������������

��������������������

��������������������

������������������

������������������

��������������������

��������������������

��������������������

��������������������

������������������������

������������������������

������������������������

������������������������

��������������������

��������������������

������������������

������������������������

������������

������������������

���������������

���������������

������������������

������������������

�������������������������

�������������������������

���������������

���������������

������������������

������������������

������������������������

������������������

������������������

������������

������������

������������������

������������������

����������

����������

����������

����������

������������������

������������������ ���

������������

���������������

������������������

������������������

���������������

���������������

����������

����������

������������������

������������������

������������

������������

���������������

���������������

��������������������

��������������������

������������

������������

������������������

������������������

������������������������������������

��������������������������������������

����������

������������

���������������

���������������

���������������

���������������

I Hard interaction

I QCD evolution

I Secondary hard interactions

I Hadronization

I Hadron decays

I Higher-order QED corrections

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

Parton showers (PS)PS LO

LO

LO

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

Matrix elements (ME)

ME

LO LO LO LO

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

ME PS merging (MEPS)

ME

PS LO

LO

LO

LO

LO

LO LO

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

NLO PS matching (NLOPS)PS NLO

NLO

NLO

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

MEPS merged with NLOPS (MENLOPS)

ME

PS NLO

NLO

NLO

LO

LO

LO LO

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

NLOPS merging with NLOPS (MEPS@NLO)

ME

PS NLO

NLO

NLO

NLO

NLO

NLO NLO

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

Outline of Lecture I

I Parton Showers

I Toy model for matching to NLO

I Matching prescriptions for QCDI MC@NLOI POWHEG

I Uncertainties

I Truncated parton showers

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

Parton showersPS LO

LO

LO

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

Parton showers

I Start with leading-order parton-level event

dσMC = dΦnBn(Φn)

Φn - point in n-particle phase spaceBn - Leading order (Born) matrix element

I Generate emissions according to Sudakov form factor

∆(PS)n (t′, t′′) = exp

{−∫ t′′

t′dΦ1 Kn(Φ1)

}dΦ1 ∝ dtdz dφ/2π - one-emission phase spaceKn =

∑a,b

αs

2π t Pab - sum of evolution kernels for n-particle final state

I Differential event rate up to O(αs)

dσMC@LO = dΦnBn(Φn)

[∆

(PS)n (tc, µ

2Q) +

∫ µ2Q

tc

dΦ1Kn(Φ1)∆(PS)n (t(Φ1), µ2Q)

]

LO LO

l l

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

Shortcomings of the parton shower model

0 25 50 75 100 125 150 175 200

pT [GeV]

10-4

10-3

10-2

10-1

100

101

/dp

T [

pb/G

eV]

CDF 2000CS show. + Py 6.2 had.

CS show. + Py 6.2 had. (enhanced start scale)

pT(e

+e

-) @ Tevatron Run1

0 5 10 15 20

pT [GeV]

5

10

15

20

25

30

/dp

T [

pb

/GeV

]

I Maximum evolution scale µQ should be fixed by factorization scale µFbut emissions can be significantly harder, especially at the LHC

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

Shortcomings of the parton shower model

20 30 40 50 60 70 80 90

10-3

10-2

10-1

/ d

ET

[

pb

/ G

eV ]

LONLOCDF data

20 30 40 50 60 70 80 90

Third Jet ET [ GeV ]

0.5

1

1.5

2 LO / NLOCDF / NLO

NLO scale dependence

W + 3 jets + X

BlackHat+Sherpa

LO scale dependence

ET

jet > 20 GeV, | η

jet | < 2

ET

e > 20 GeV, | η

e | < 1.1

ET

/ > 30 GeV, MT

W > 20 GeV

R = 0.4 [siscone]

√s = 1.96 TeV

µR = µ

F = E

T

W

I Cross section / event rate is given at leading order,but many processes now computed at NLO

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

NLO PS matchingPS NLO

NLO

NLO

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

Toy model

[Frixione,Webber] hep-ph/0204244

I Assume system of charged particleswhich radiates “photons” of fractional energy x.

I Predicting infrared-safe observables Oamounts to computing expectation values

〈O〉 = limε→0

∫ 1

0dxx−2εO(x)

[(dσ

dx

)B

+

(dσ

dx

)V

+

(dσ

dx

)R

]

I Born, virtual and real-emission contributions given by(dσ

dx

)B,V,R

= B δ(x),

(Vf +

BC

)δ(x),

R(x)

x

Real-emission behaves as limx→0 R(x) = BC

Virtual correction

{Vf − finite piece

BC/2ε − singular piece

Implicit: All higher-order terms proportional to coupling α

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

Subtraction

I Perform NLO calculation in subtraction method

〈O〉R = BC O(0)

∫ 1

0dxx−2ε

x+

∫ 1

0dx

R(x)O(x)− BC O(0)

x1+2ε

I Second integral non-singular → set ε = 0

〈O〉R = −BC

2εO(0) +

∫ 1

0dx

R(x)O(x)− BC O(0)

x

I Combine everything with Born and virtual correction

〈O〉 =(

B + Vf

)O(0) +

∫ 1

0

dx

x

[R(x)O(x)− BC O(0)

]Both terms separately finite

I Rewrite for further reference

〈O〉 =(

B + V + I)O(0) +

∫ 1

0

dx

x

[R(x)O(x)− SO(0)

]I = −BC/2ε → Integrated subtraction termS = BC → Real subtraction term

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

Modified subtraction

I In the parton shower, any number of photons can be emittedI Emission probability controlled by Sudakov form factor

∆(x1, x2) = exp

{−∫ x2

x1

dx

xK(x)

}Evolution kernel behaves as lim

x→0K(x) = C

I Define generating functional of PS →F (n)

MC(x) ↔ PS starting from n emissions at x

I F (n)MC(x) now replaces observable O Naively:

O(0) ⇔ start MC with 0 emissions → F (0)MC

O(x) ⇔ start MC with 1 emission → F (1)MC(x)

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

Modified subtraction

I Combined generating functional would be[(B + V + I

)−∫ 1

0

dx

xS

]F(0)

MC +

∫ 1

0

dx

xR(x)F(1)

MC(x)

I This is wrong because

F(0)MC = ∆(xc, 1) +

∫ 1

xc

dx

xK(x)∆(x, 1)

I So BF (0)MC generates an O(α) term that spoils NLO accuracy(

dx

)MC

O(x) = B

[−

K(x)

xO(0) +

K(x)

xO(x)

]

LO LO

l l

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

Modified subtractionI The proper MC@NLO is obtained by subtracting this O(α) contribution

FMC@NLO =

[(B + V + I

)+

∫ 1

0

dx

x

(BK(x)− S

)︸ ︷︷ ︸

NLO-weighted Born cross section

]F(0)

MC

+

∫ 1

0

dx

x

[R(x)− BK(x)

]︸ ︷︷ ︸modified subtraction

F(1)MC(x)

I Like at fixed order, both terms are separately finite

I We call events from the first term S-events (Standard)and events from the second term H-events (Hard)

I For further reference, define D(K)(x) := BK(x) as well as

B(K) =(

B + V + I)

+

∫ 1

0

dx

x

(D(K)(x)− S

), H(K)(x) = R(x)−D(K)(x)

→ compact notation

FMC@NLO = B(K) F(0)MC +

∫ 1

0

dx

xH(K)(x)F(1)

MC(x)

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

MC@NLO

[Frixione,Webber] hep-ph/0204244

I Apply toy model to QCD, but include 1/x-terms in coefficient functionsAlso need to sum over all flavour contributions at real-emission level

B(K)n (Φn) =

(Bn(Φn) + Vn(Φn) + In(Φn)

)+

∫dΦ1

(D

(K)n (Φn+1)− Sn(Φn+1)

)H

(K)n (Φn+1) = Rn(Φn+1)−D

(K)n (Φn+1)

I Full differential event rate at O(αs)

dσMC@NLO = dΦnB(K)n (Φn)

[∆

(PS)n (tc, µ

2Q)

+

∫ µ2Q

tc

dΦ1Kn(Φ1)∆(PS)n (t(Φ1), µ2Q)

]+ dΦn

∫dΦ1 H

(K)n (Φn+1)

B

B LO LO

l l−

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

MC@NLO features

[Nason,Webber] arXiv:1202.1251

pp→ tt+X @ 14 TeV

I MC@NLO interpolates smoothly between real-emission ME and PS

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

MC@NLO features

[Torrielli,Frixione] arXiv:1002.4293

pp→W +X @ 14 TeV

MC@NLO+Pythia

MC@NLO+Herwig

Pythia (no MEC)

I MC@NLO with different PS agree at high pT ↔ NLO

I Differences at low pT due to differences in PS

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

POWHEG

[Nason] hep-ph/0409146

I Aim of the method: Eliminate negative weights from MC@NLO

I Set D(R)n := Rn → no H-events ⇒ B

(R)n positive in physical region

I Differential event rate at O(αs) is

dσPOWHEG = dΦnB(R)n (Φn)

[∆

(R)n (tc, shad)

+

∫ shad

tc

dΦ1Rn(Φn+1)

Bn(Φn)∆

(R)n (t(Φ1), shad)

]

I µ2Q has changed to hadronic centre-of-mass energy squared, shad,

as full phase space for real-emission correction, Rn, must be coveredI Absence of H-events leads to enhancement of high-pT region by

K =Bn

Bn= 1 +O(αs)

Formally beyond NLO, but sizeable corrections in practice

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

POWHEG features

[Alioli,Nason,Oleari,Re] arXiv:0812.0578

I Large enhancement at high pT,hI Can be traced back to large NLO correction

I Fortunately, NNLO correction is also large → ∼ agreement

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

Improved POWHEG

I To avoid problems in high-pT region, split real-emission MEinto singular and finite parts as Rn = Rs

n + Rfn

I Treat singular piece in S-events and finite piece in H-eventsSimilar to MC@NLO with redefined PS evolution kernels

I Differential event rate at O(αs)

dσPOWHEG = dΦnB(Rs)n (Φn)

[∆

(Rs)n (tc, shad)

+

∫ shad

tc

dΦ1Rsn(Φn+1)

Bn(Φn)∆

(Rs)n (t(Φ1), shad)

]+ dΦn

∫dΦ1 Rfn(Φn+1)

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

Improved POWHEG features[Alioli,Nason,Oleari,Re] arXiv:0812.0578

I Singular real-emission part here defined as

Rsn = Rh2

p2T + h2

I Can “tune” NNLO contribution by varying free parameter h

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

Truncated parton showers

I Usually want to match hardest emission to matrix elements

I Thus need to identify hardness with evolution parameter

I What if evolution parameter of parton shower differs?

[Nason] hep-ph/0409146

I Must implement additional emissions to account formissing Sudakov form factor “above” predefined branching

I Must also veto on emissions harder than matched branching

I Truncated, vetoed parton shower

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

Effect of truncated showers on matching[Richardson,Tully] arXiv:0806.0290

I Small effect, but also insensitive observable

I In general effects not small, see next lecture

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

Which uncertainties are large? MPI

variation

µF, µR

variation

µQ

variation

Sherpa+BlackHat

b

b

b

b

b

b ATLAS data

Eur.Phys.J. C71 (2011) 1763Sherpa MC@NLO

µR = µF = 14 HT , µQ = 1

2 p⊥

µR, µF variation

µQ variation

MPI variation10 2

10 3

10 4

10 5

10 6

Inclusive jet multiplicity (anti-kt R=0.4)

σ[pb]

b b b b b

2 3 4 5 6

0.5

1

1.5

Njet

MC/data

Sherpa+BlackHat

b

b

b

b

b

b CMS data

JHEP 1111 (2011) 148Sherpa MC@NLO

µR = µF = 14 HT , µQ = 1

2 p⊥

µF, µR variation

µQ variation

MPI variation

0

100

200

300

400

500

600

700Forward energy flow in dijet events, p

jets⊥ > 20 GeV

dE/d

η[G

eV]

b b b b b

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8

0.8

1

1.2

1.4

η

MC/data

I Jet multiplicity → uncertainty due to choice of µ2Q

I Forward energy flow → major uncertainty from underlying event

Stefan Hoche Matching ME and PS

Toy model MC@NLO POWHEG Truncated PS Uncertainties

Summary

I Matching NLO parton-level calculationsto parton-showers requires modified subtraction

I Practical implementations differ inI Choice of evolution kernelsI Choice of higher-order termsI Parton-shower algorithms

I Largest uncertainties fromI Choice of resummation scaleI Choice of higher-order terms

I Truncated vetoed parton showers necessary ifPS evolution variable differs from hardness measure

Stefan Hoche Matching ME and PS