Masterprogram i geovitenskap – prosjekt for søkere vår 2018 · GEOV 242 Magmatisk og metamorf...

41
Masterprogram i geovitenskap – prosjekt for søkere vår 2018 Master project in Earth Science – project for spring 2018 Prosjekttittel: Tracing microbial iron cycling with Fe isotopes in marine sediments from the Arctic Mid-Ocean Ridge system Hovedveileder: Desiree Roerdink Med-veileder(e): Steffen Leth Jørgensen, Ida Steen, Ingunn Thorseth Prosjektbeskrivelse/ Project description: Motivation (background): Microbial iron cycling in marine sediments plays an important role in the biogeochemical cycles of carbon and sulfur. Unfortunately, tracing the activity of iron reducing bacteria in modern sediments by microbiological techniques is complicated, and often not possible in older sediments and sedimentary rocks. Stable isotopes of iron (δ 56 Fe) may provide additional information, as microbial iron reduction has been found to produce large shifts in Fe isotope ratios. Yet, it remains debated if abiotic processes can blur the ultimate Fe isotope signature of sediments. Hypothesis (scientific problem): Can we use Fe isotopes to detect microbial iron reduction in marine sediments from the Arctic Mid-Ocean Ridge, and to what extent are these signatures blurred by abiotic processes related to nearby hydrothermal activity? Test (work): This project proposes to measure Fe isotopes in well-studied sediment cores that were previously collected at different sites in the Arctic Mid-Ocean Ridge system (rift valleys, flanks, abyssal plains). An important part of the project includes the comparison of isotope data with previously collected microbiological and geochemical data, as well as novel mineralogical data to assess the origin of Fe isotopic variations. Krav for opptak/ Prerequisites: Bachelor in Earth Sciences with GEOV-109 or equivalent course in geochemistry. The project is suitable for a student with a background in geochemistry, who is interested to work on an interdisciplinary project that involves both stable isotopes and geomicrobiology. Eksterne data? / External data?: No external data. Material to be analyzed was already collected during previous research cruises by the Centre for Geobiology. Microbiological and supporting geochemical data have already been collected/analyzed. Felt-, lab- og analyse- arbeid / Field and laboratory work: Possible participation in 2018 research cruise to the Arctic Mid-Ocean Ridge to assist with sampling of new sediment cores. The project involves a significant amount of lab work, including: (1) preparation of sediment and pore water samples for Fe isotope analyses in the clean lab (some method development may be needed), (2) measurement of Fe isotopes by multi-collector ICP-MS, and (3) XRD analyses of sediments. Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: GEOV-243 Aquatic geochemistry (10 sp), GEOV-244 Principles of geobiology (10 sp), GEOV-245 Geomicrobiology (10 sp), GEOV-231 Marine geological field and laboratory course (10 sp), GEOV-342 Radiogenic and stable isotope geochemistry (10 sp), GEOV-347 Instrumental methods in analytical geochemistry (5 sp), GEOV-300 Selected topics in geoscience (5 sp).

Transcript of Masterprogram i geovitenskap – prosjekt for søkere vår 2018 · GEOV 242 Magmatisk og metamorf...

Masterprogram i geovitenskap – prosjekt for søkere vår 2018 Master project in Earth Science – project for spring 2018 Prosjekttittel: Tracing microbial iron cycling with Fe isotopes in marine sediments from the Arctic Mid-Ocean Ridge system

Hovedveileder: Desiree Roerdink

Med-veileder(e): Steffen Leth Jørgensen, Ida Steen, Ingunn Thorseth

Prosjektbeskrivelse/ Project description: Motivation (background): Microbial iron cycling in marine sediments plays an important role in the biogeochemical cycles of carbon and sulfur. Unfortunately, tracing the activity of iron reducing bacteria in modern sediments by microbiological techniques is complicated, and often not possible in older sediments and sedimentary rocks. Stable isotopes of iron (δ56Fe) may provide additional information, as microbial iron reduction has been found to produce large shifts in Fe isotope ratios. Yet, it remains debated if abiotic processes can blur the ultimate Fe isotope signature of sediments. Hypothesis (scientific problem): Can we use Fe isotopes to detect microbial iron reduction in marine sediments from the Arctic Mid-Ocean Ridge, and to what extent are these signatures blurred by abiotic processes related to nearby hydrothermal activity? Test (work): This project proposes to measure Fe isotopes in well-studied sediment cores that were previously collected at different sites in the Arctic Mid-Ocean Ridge system (rift valleys, flanks, abyssal plains). An important part of the project includes the comparison of isotope data with previously collected microbiological and geochemical data, as well as novel mineralogical data to assess the origin of Fe isotopic variations.

Krav for opptak/ Prerequisites: Bachelor in Earth Sciences with GEOV-109 or equivalent course in geochemistry. The project is suitable for a student with a background in geochemistry, who is interested to work on an interdisciplinary project that involves both stable isotopes and geomicrobiology.

Eksterne data? / External data?: No external data. Material to be analyzed was already collected during previous research cruises by the Centre for Geobiology. Microbiological and supporting geochemical data have already been collected/analyzed.

Felt-, lab- og analyse- arbeid / Field and laboratory work: Possible participation in 2018 research cruise to the Arctic Mid-Ocean Ridge to assist with sampling of new sediment cores. The project involves a significant amount of lab work, including: (1) preparation of sediment and pore water samples for Fe isotope analyses in the clean lab (some method development may be needed), (2) measurement of Fe isotopes by multi-collector ICP-MS, and (3) XRD analyses of sediments.

Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: GEOV-243 Aquatic geochemistry (10 sp), GEOV-244 Principles of geobiology (10 sp), GEOV-245 Geomicrobiology (10 sp), GEOV-231 Marine geological field and laboratory course (10 sp), GEOV-342 Radiogenic and stable isotope geochemistry (10 sp), GEOV-347 Instrumental methods in analytical geochemistry (5 sp), GEOV-300 Selected topics in geoscience (5 sp).

Masterprogram i geovitenskap – prosjekt for søkere vår 2018 Master project in Earth Science – project for spring 2018 Prosjekttittel: Do microbes care about sediments? Testing connections between deep marine sediment geochemistry, pore fluids and microbiology

Hovedveileder: Steffen Leth Jørgensen

Med-veileder(e): Desiree Roerdink, Willem van der Bilt, Bjarte Hannisdal

Prosjektbeskrivelse/ Project description: Motivation (background): Deep marine sediments represent one of the largest habitats for micro-organisms on Earth, both in areal extent and volume. Microbial communities in these sediments are strongly interconnected with the geochemistry of sediment pore fluids, for example by the consumption of electron acceptors such as oxygen, nitrate and sulfate and addition of dissolved inorganic carbon via organic matter degradation. However, linkages between microbial communities and the geochemistry and mineralogy of sediments are less clear. Recent work on two sediment cores sampled close to a hydrothermal vent field in the Norwegian-Greenland sea demonstrated connections with iron and manganese minerals in the sediments (Jørgensen et al, 2012), but more work remains to be done to obtain insights into links between the microbiology, pore fluid geochemistry and the geochemistry and mineralogy of deep marine sediments. Hypothesis (scientific problem): Is there a correlation between the geochemistry and mineralogy of deep marine sediments in the Norwegian-Greenland sea and their microbial communities? Test (work): This project proposes to analyze the sediment geochemistry of a selection of sediment cores from different settings in the Norwegian-Greenland Sea (mid-ocean ridge rift valleys, ridge flanks, abyssal plains), using X-Ray Fluorescence (XRF) core scanning and X-Ray Diffraction (XRD). An important part of the project includes the statistical comparison of geochemical and mineralogical data with previously collected microbiological and pore fluid data. Krav for opptak/ Prerequisites: Bachelor in Earth Science with GEOV-103 (Introduction to mineralogy), GEOV-109 or equivalent. This project is suitable for a student interested in working on an interdisciplinary project that covers geochemistry, mineralogy, microbiology and sedimentology.

Eksterne data? / External data?: No external data. Material to be analyzed was already collected during previous research cruises by the Centre for Geobiology/K.G. Jebsen Centre for Deep Sea Research. Microbiological and pore fluid geochemical data have already been collected/analyzed.

Felt-, lab- og analyse- arbeid: Possible participation in 2018 research cruise to the Arctic Mid-Ocean Ridge to assist with sampling of new sediment cores. The project involves laboratory work to analyze sediment geochemistry, including XRF core scanning and XRD mineralogical analyses.

Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: GEOV-243 Aquatic geochemistry (10 sp), GEOV-244 Principles of geobiology (10 sp), GEOV-245 Geomicrobiology (10 sp), GEOV-231 Marine geological field and laboratory course (10 sp), GEOV-342 Radiogenic and stable isotope geochemistry (10 sp), GEOV-300 Selected topics in geoscience (5 sp), GEOV-347 Instrumental methods in analytical geochemistry (5 sp)

Masterprogram i geovitenskap – prosjekt for søkere våren 2018

Prosjekttittel: Prosessering og tolkning av SVALEX seismikk

Hovedveileder: Rolf Mjelde

Medveileder(e): Bent Ole Ruud

Prosjektbeskrivelse (norsk og engelsk): Motivasjon (bakgrunn): Vestlige deler av Spitsbergen er et ideelt laboratorium for å studere kompresjon av kontinentalskorpe. Hypotese (vitenskapelig problem): Viktige aspekter ved kompresjon av kontinentalskorpe kan forstås ved prosessering og tolkning av multikanals seismiske data. Test (arbeid): Prosessere og tolke multikanals seismiske data innsamlet i Isfjorden og Van Mijenfjorden, Spitsbergen. Prosesseringen vil involvere alle standard moduler som filtrering, dekonvolusjon, hastighetsanalsyse, stakking og migrasjon, mens tolkningen vil utføres på Petrel. Motivation (background): The western part of Spitsbergen is an ideal laboratory for studies of compression of continental crust. Hypothesis (scientific problem): Important aspects concerning compression of continental crust can be understood by processing and interpretation of multi-channel seismic data. Test (work): Perform processing and interpretation of multi-channel seismic data acquired in Isfjorden and Van Mijenfjorden, Spitsbergen. The processing will involve all standard modules like filtering, deconvolution, velocity analysis, stacking and migration, while the interpretation will be done on Petrel.

Krav for opptak:

Intet spesielt.

Eksterne data

Alle data er innsamlet.

Felt-, lab- og analyse- arbeid:

Prosessering/tolkning på PC. Foreslåtte emner i spesialiseringen (60 sp): GEOV113, GEOV272, GEOV375

Masterprogram i geovitenskap – prosjekt for søkere høst 2017 Master project in Earth Science – project for spring 2017 Prosjekttittel: A geochronological-structural investigation of the Øygarden Complex – key for the better understanding of the Bergen Arc System?

Hovedveileder: Prof. Joachim Jacobs

Med-veileder(e): MSc. Johannes Wiest, Prof. Haakon Fossen

Prosjektbeskrivelse/ Project description: The Øygarden Complex is a dome-shaped tectonic window that exposes Baltican basement in the core of the Bergen Arc System. The evolution of the large-scale structure of the Øygarden Complex and the Bergen Arcs are incompletely understood, however, a recently started PhD project at the department will test if they could be explained by Devonian core-complex exhumation. Core complexes are domal structures composed of ductilely deformed rocks and associated intrusions underlying an extensional ductile-to-brittle high-strain zone. They form when the lithosphere is highly extended and the brittle upper crust thins by normal faulting, allowing the rapid ascent of hot material through ductile flow. Yet, very few geochronological ages are available from the Øygarden Complex to test this model. This MSc project encompasses a structural and geochronological study of the main lithologies in the Øygarden Complex. Fieldwork will be an important part of the project and include mapping of primary lithological relationships, detailed structural analysis of important outcrops, petrographic descriptions and sampling for geochronology. U-Pb zircon geochronology will be applied to constrain precise formation ages and evaluate possible high-grade metamorphic events, including migmatization. This project will significantly contribute to our understanding of the tectonic evolution of the Øygarden Complex and the Bergen Arc System and help to refine regional geological models.

Krav for opptak/ Prereqesites:

Applicants should be motivated for fieldwork and have a background in structural geology. Participation in GEOV 252 Feltkurs i geologisk kartlegging (10 stp.) is mandatory.

Eksterne data? / External data?:

Data acquired through the PhD project of Johannes Wiest will be integrated in the project.

Felt-, lab- og analyse- arbeid:

• Field mapping, structural analysis and sampling of designated key localities in the Øygarden Complex

• Sample preparation of ca. 8 U-Pb zircon geochronology samples • U-Pb zircon geochronology analysis of ca. 8 samples • Petrographic and structural description of thin section

Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree:

GEOV 241 Mikroskopi (10 stp.),

GEOV 242 Magmatisk og metamorf petrologi (10 stp.)

GEOV 251 Videregående strukturgeologi (10 stp.),

GEOV 252 Feltkurs i geologisk kartlegging (10 stp.)

GEOV 341 Termokronologi og tektonikk (5 stp.)

GEOV 342 Radiogen og stabilisotop geokjemi (10 stp.)

GEOV 345 Regionalgeologisk feltkurs til Vestlandet (5 stp.)

Masterprogram i geovitenskap – prosjekt for søkere vår 2018 Master project in Earth Science – project for spring 2018 Prosjekttittel: Modelling temporal changes in gravity field due to earthquakes in Nankai Subduction zone in Japan

Hovedveileder: Kuvvet Atakan (GEO)

Med-veileder(e): Martha Lien (OCTIO Gravitude AS), Shiuchi Kodaira (JAMSTEC)

Prosjektbeskrivelse/ Project description: Motivation (background): The largest earthquakes on Earth occur in subduction zones, the most recent examples being 2011 Japan (Mw9.0); 2012 Chile (Mw8.8); and 2004 Sumatra (Mw9.1). All of these earthquakes resulted in a large number of causalities both due to ground shaking and tsunamis. Large plate deformation occurs both before, during and after such events, and more information is needed to better understand the tectonic processes in subduction zones for earthquake risk and tsunami risk mitigation.

The focus region in this project is the Nankai Trough off the south-eastern coast of Japan, which has a history of very large and devastating earthquakes. The area from Tokyo and south is the most densely populated area of Japan, and it is exposed to a large earthquake potential. Therefore, the Japanese earthquake monitoring initiatives are extensive.

Hypothesis (scientific problem): Large tectonic forces and fluid flow on the fault planes causes changes in gravity across the subduction zones. Monitoring of changes in gravity is not part of any of the current seafloor monitoring systems in Japan. Currently, satellite (GRACE data), airborne and shipborne gravity measurements are used when gathering gravity information above subduction zones. Detailed and repeated gravity measurements can therefore provide valuable information on tectonic processes.

Seafloor gravity measurements as applied for hydrocarbon monitoring offer orders of magnitude higher accuracy compared to other methods for gravity monitoring. While research exists on the correlation of large scale, deviatoric gravity anomalies (TPBA) with asperities causing significant rupture along subduction interfaces (Raeesi and Atakan, 2009), no research has been performed to date on the use of time-lapse gravity on the seafloor during the interseismic periods (between two large earthquakes).

Expected work: The methodology will consist in modelling subduction zone dynamics to obtain the expected time-lapse gravity signal throughout the earthquake cycle. The feasibility of seafloor time-lapse gravity will be assessed through:

• Modelling of the expected time-lapse gravity signal from geophysical processes in the subduction zone

o Modelling of expected time-lapse gravity signal o Study oceanographic and tidal effects in the area of interest

• Assessment of the required accuracy of seafloor time-lapse gravity measurements • Feasibility of seafloor gravity monitoring above subduction zones

Krav for opptak/ Prerequisites:

None, but the student should have some mathematical background and interest.

Eksterne data? / External data?:

Earthquake data and GPS-velocities from ISC, USGS, JMA, NIED; detailed bathymetry and interpreted seismic reflection/refraction profiles from JAMSTEC; gravity data from GRACE.

Felt-, lab- og analyse- arbeid/Field-work, lab-analysis:

Numerical modelling of gravity field.

Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: Seismotektonikk, Teoretisk seismologi, Prosessering av jordskjelvsdata, Anvendt seismologi, Computational methods in solid Earth physics

Masterprogram i geovitenskap – prosjekt for søkere vår 2018

Studieretning: Geodynamikk

Prosjekttittel: Crustal stresses in Norway

Hovedveileder: Kuvvet Atakan (GEO)

Medveileder(e): Mathilde B. Sørensen (GEO), Lars Ottemöller (GEO)

Prosjektbeskrivelse (norsk og engelsk): The World Stress Map (WSM - http://www.world-stress-map.org/) is a global compilation of information on the crustal present-day stress field maintained since 2009 at the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences. It is a collaborative project between academia and industry that aims to characterize the crustal stress pattern and to understand the stress sources. World Stress Map is being updated regularly and in this context, there is an ongoing effort at a regional scale among the Nordic countries. As a part of this initiative, Norwegian crustal stress data will be compiled.

All earthquake focal mechanisms available in Norway will be compiled into a database for subsequent analysis for stress inversion. Norwegian National Seismic Network (NNSN) database at GEO together with contributions from NORSAR will be used as a basis for this compilation. New focal mechanisms will be computed in cases this is necessary and a quality assessment will be done. Analysis results from the stress inversion will be used to provide insights to the crustal stress conditions in Norway. Distribution of stresses in the crust will be investigated and analysed with regard to the potential seismogenic fault sources capable of generating large earthquakes. The outcome of the thesis is expected to be a Norwegian Stress Map and a dedicated earthquake focal mechanism database which will also be integrated to the EPOS-Norway (http://www.epos-no.org/) data-portal.

Krav for opptak: None, but the student should have some mathematical background and interest.

Eksterne data Available from NNSN at GEO and NORSAR

Felt-, lab- og analyse- arbeid: None

Foreslåtte emner i spesialiseringen (60 sp): Seismotektonikk, Teoretisk seismologi, Prosessering av jordskjelvsdata, Anvendt seismologi, Computational methods in solid Earth physics

Masterprogram i geovitenskap – prosjekt for søkere høst 2017 Master project in Earth Science – project for autumn 2017 Prosjekttittel: Earthquake triggered rockslides in Norway

Hovedveileder: Mathilde B. Sørensen (GEO)

Med-veileder(e): Atle Nesje (GEO), NN (NGI)

Prosjektbeskrivelse/ Project description:

Historical records show that large earthquakes have triggered rockslides in Norway in the past. However, we still have a limited understanding of the potential for such triggering. Some of the key questions remaining are: “what is the potential for earthquake triggered rockslides in Norway?”, “What earthquake magnitude is required at various distances to trigger a rockslide?” and “How do these magnitude/distance limits depend on the degree of water saturation in the slope?” This project aims to address these questions.

The work on the project will be planned in three stages:

1. Work through historical reports of large earthquakes in Norway to identify reports of slope failures triggered by the ground shaking.

2. Compare historical rockslide data from the skrednett.no database to the Norwegian earthquake database to look for temporally and spatially coinciding events.

3. Perform numerical slope stability modelling for selected slopes to evaluate the level of earthquake shaking required for triggering slope failure, and how that depends on the degree of water saturation in the slope.

Krav for opptak/ Prereqesites:

BSc in geophysics, or similar competence in math, physics and programming.

Eksterne data? / External data?:

Historical landslide data will be made available from NVE.

Felt-, lab- og analyse- arbeid:

Numerical modeling using software available at NGI. Some Matlab programming will be required. Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree:

GEOV217, GEOV219, GEOV255, GEOV355, GEOV322

Masterprogram i geovitenskap – prosjekt for søkere høst 2017 Master project in Earth Science – project for autumn 2017 Prosjekttittel: Development of a ground motion prediction equation for Norway.

Hovedveileder: Mathilde B. Sørensen (GEO)

Med-veileder(e): Lars Ottemöller (GEO)

Prosjektbeskrivelse/ Project description:

Having a reliable method for evaluating the level of earthquake ground shaking as a function of magnitude and distance is an important prerequisite for evaluating the seismic hazard in a region. In many applications, ground motion is evaluated using a ground motion prediction equation (GMPE), which is an empirically derived relation between ground shaking, magnitude, distance and, potentially, other parameters. Deriving a GMPE requires a high-quality dataset of earthquake ground motions covering a wide magnitude- and distance range.

Norway is a region of low to moderate seismicity, and earthquakes with magnitude larger than 5 are rare. There is thus a lack of ground motion data for high-magnitude events, which makes it challenging to derive a reliable GMPE for Norway. In regions of similar tectonics to Norway (e.g. in Eastern North America), this challenge has been addressed by supplementing the database of recorded ground motions with stochastically simulated ground motions for large magnitude events.

The aim of this project is to derive a GMPE for Norway. Stochastic simulation of ground motion will be used to supplement the ground motion database for Norway with large-magnitude events. The joint dataset of recorded and simulated ground motions will then be used to derive a new GMPE through regression analysis.

Krav for opptak/ Prereqesites:

BSc in geophysics, or similar competence in math, physics and programming.

Eksterne data? / External data?:

No

Felt-, lab- og analyse- arbeid:

Stochastic simulation of ground motion using EXSIM (freely available). Some Matlab programming will be required. Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree:

GEOV219, GEOV355, GEOV357, GEOV359

Masterprogram i geovitenskap – prosjekt for søkere vår 2018 Master project in Earth Science – project for spring 2018 Prosjekttittel: Isavsmeltingshistorie og havnivåendringer i munningen av Sognefjorden (2 OPPG.) Hovedveileder: John Inge Svendsen (GEO) Medveileder: Henriette Linge (GEO)

Prosjektbeskrivelse/ Project description: Motivasjon (bakgrunn): Den overordna målsetningen er å få ny kunnskap om utbredelsen, tykkelsen og dynamikken av den Skandinaviske innlandsisen i Vest-Norge gjennom avsmeltingsperioden og hvordan samspillet med havnivå- og klimaendringene var. En god forståelse av prosessene er også en forutsetning for å kunne gjøre gode prediksjoner om hvordan isdekkene på Grønland og i Antarktis vil bli influert av den globale oppvarmingen. Dette krever at det fremskaffes nye geologiske data som kan utnyttes til å rekonstruere ismarginen i ulike faser, havnivåendringene, strandlinjegeometrien og hvordan alt dette henger sammen med klima og topografi. I dette prosjektet skal det bl.a. gjøres målinger av isskuring, datering av flyttblokker med kosmogene nuklider (10Be) og det skal utføres boringer i innsjøbassenger. Hypotese (vitenskapelig problem): Eksisterende data tyder på at isen under siste istids glasiale maksimum for omkring 20,000 år siden strømmet mot vest og nordvest nokså uavhengig av topografien. Mange skuringsobservasjoner fra lavtliggende områder viser imidlertid at fjordene og andre terrengformer i senere faser var bestemmende for strømningsretningen. Dateringsresultater fra borekjerner viser at Værlandet ble isfritt senest for 15,000 år siden, men det er uklart om isfronten da trakk seg videre innover i fjordene eller om fronten stoppet opp ved ytterkysten. I sluttfasen av istiden, i yngre dryas (12,800-11,600 før nåtid), la innlandsisen på seg igjen og brefronten rykket frem før den til slutt stabiliserte seg ved munningen av Sognefjorden. Det ble da avsatte kraftige morener som kan kartlegges rundt hele Skandinavia. Fra tidligere boringer i et innsjøbasseng er det funnet indikasjoner på at isen under kulminasjonsfasen av dette brefremstøtet har nådd helt ut til Værlandet. Uavhengig av dette er også funnet spor etter store havnivåendringer, men hvor store disse har vært og det eksakte forløpet er ukjent. Test (arbeid): Det skal i dette prosjektet gjøres feltundersøkelser på Værlandet og i områdene ved munningen av Sognefjorden. Glasiale landformer og strandlinjer skal kartlegges ved hjelp av LIDAR DEM data (luftbåren radar) og feltobservasjoner. Isskuringsobservasjoner fra fjellblotninger skal måles og observasjoner fra eksisterende litteratur skal sammenstilles i en digital database. Det skal samles inn prøver for eksponeringsdatering (10Be-datering) og gjøres boringer i isolasjonsbassenger. Det er en fordel at to studenter samarbeider om prosjektet, men det vil være ulik faglig fokusering. Det er meningen at en skal ha fokus på isdynamikk (isskuring) og eksponeringsdatering, mens den andre skal ha innsjøboring som sin hovedaktivitet. Motivation (background): The main objective is to gain new knowledge about the early deglaciation history and the shoreline displacement in western Norway, and the relation to past climatic changes. A good knowledge of processes and causal connections is a prerequisite for making reliable predictions of the ice sheet response on Greenland and Antarctica due to global warming. This will require new geological data that can be used to reconstruct the shape of the former ice margin during retreat, the three-dimensional shoreline configuration as well as records of past climatic changes. In this project it is the intention to measure glacial striations on bedrock surfaces, exposure datings (10Be) of glacially transported erratics as well as coring of lake basins. Hypothesis (scientific problem):

Existing data indicate that during the Last Glacial Maximum (LGM) some 20,000 years ago the ice sheet was flowing due west more or less independent of the underlying topography. In contrast, striations measured in low lying areas and along fjords shows that the topography became much more important during the last stage of the deglaciation. Dating results from sediment cores reveal that the islands in the Værlandet aregion was deglaciated around 15,000 yrs ago or shortly before, but it is not clear if the ice front then retreated further inland or if it stopped at the outer coast. During the final stage of the ice age (the Younger Dryas period 12,800-11,600 BP), the ice sheet once again became thicker and the ice front then advanced towards the west where it stabilized at the mouth of Sognefjorden. During this time distinct moraines, which can be traced all around Scandinavia, were deposited. On Værlandet there exist some dating results from a lake basin suggesting that the ice front reached this far west, but this needs verification. Independent of this possible ice sheet advance there are also traces of major sea-level changes have also been recorded, but the course and amplitudes of these fluctuations are not known, Test (work): In this project it is the intention to do field investigations in the area Værlandet and at the mouth of Sognefjorden. Glacial landforms and shorelines will be mapped by using LiDAR DEM data and field observations. Striations will be measured from bedrock surfaces and observations from existing literature will be compiled in a database. Samples for exposure dating will be collected from glacially transported boulders and sediment cores will be retrieved from lake basins. It is to be desired that two students collaborate on this project, but the focus for the master thesis will not be the same. One student will focus on the ice sheet dynamic (striations) and exposure dating whereas the other will concentrate on lake coring and sea-level history.

Krav for opptak/ Prerequisites: GEOV 110. Prosjektet vil kreve en hel del feltarbeid, også utenfor bebygde områder, for bl.a. å gjøre boringer i innsjøbassenger og å hente prøver for eksponeringsdatering. Studentene bør derfor være i rimelig bra fysisk form og ha nødvendig entusiasme og pågangsmot til å gjøre slikt feltarbeid. Prosjektet vil ta i bruk GIS software. Erfaring med GIS og feltkartlegging er en fordel, men ikke noe absolutt krav. Eksterne data? / External data?: LiDAR data fra Kartverket. UiB har gratis tilgang ved Norges Digitalt. Felt-, lab- og analysearbeid: Arbeidet baseres på feltundersøkelser i områdene omkring munningen av Sognefjorden og på Værlandet i Sogn og Fjordane. Dette innbefatter analysearbeid og dokumentasjon av innsamlet materiale, herunder både geologiske og geofysiske data (CHIRP/georadar/ LIDAR). Prøver for eksponeringsdatering skal prepareres og borekjerner skal analyseres ved hjelp av diverse laboratoriemetoder (datering, grunnstoffbestemmelse, sedimentologi, mikrofossiler). Feltarbeidet vil kunne ha 2-4 ukers varighet og bestemmes etter avtale. Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: GEOV225 Feltkurs i kvartærgeologi og paleoklima (10 sp); GEOV226 Kvartærgeologisk felt- og laboratorie-kurs (10 sp); GEOV326 Kvartære miljø, prosesser og utvikling (10 sp); GEOV222 Paleoklimatologi (10 sp); GEOV223 Kvartære havnivåendringer (10 sp); GEOV228 Kvartærgeologiske dateringsmetoder (10 sp) eller GEO215 Geografiske informasjonssystem (10 sp). Finansiering / Financing: Masterprosjektet finansieres delvis av eksternt prosjekt: Eurasian Ice Sheet and Climate Interaction (EISCLIM), 229788/E10 (NFR Prosjekt)

x

JA

Nei

Masterprogram i geovitenskap – prosjekt for søkere vår 2018 Master project in Earth Science – project for spring 2018 Prosjekttittel: Ice-rafted Detritus Evidence for Patagonian Ice Sheet fluctuations during Antarctic Warming Event 1 (30-44 ka): ODP Site 1233

Hovedveileder: Kikki Flesche Kleiven

Med-veileder(e): Nil Irvali and Ulysses Ninnemann

Prosjektbeskrivelse/ Project description: Motivasjon (bakgrunn): Kunnskap om fortidens klima er viktig for å kunne skille naturlige klimaendringer fra de menneskeskapte. Nye høyoppløselige datasett fra det sørøstlige Stillehavet viser betydningen av Sørishavet i klimasystemet og er de marine analogene til de Antarktiske iskjernene. Rekonstruksjonen av endringer i temperatur og saltinnhold i både overflate og intermediære vannmasser er basert på stabil isotop analyser av mikrofossiler i materialet hentet fra havet utenfor den Chilenske kysten. Her kan man registrere både variasjoner i det sørlige vestavinds belte og i de Antarktiske intermediære vannmassene som har stor betydning for jordens klima. De nye resultatene viser at forandringer i havtemperaturen i det sørlige Stillehavet kan ha betydelig innflytelse på tropiske vannmasser og dermed tropiske klimaforandringer. Resultatene viser raske og betydelige tiårs- og hundreårsvariasjoner i temperatur og saltinnhold i overflate vann og intermediært vann i Stillehavet. Hvis slike naturlige variasjoner oppstår i dag kan de vekselvis minske eller forsterke de menneskeskapte klimaendringene. Resultatene kan brukes i modeller som simulerer både fortidens, nåtidens og fremtidens klimaendringer. Hypotese (vitenskapelig problem):

• Å analysere variabiliteten til det Patagonianske Isdekket over AIM1 • Teste om klimasignalet i det sørøstlige Stillehavet (overflate datasett fra Site 1233) og

Chile (IRD og pollen fra Site 1233) kan korreleres med de som er registrert i Antarktis (EPICA Dronning Maud Land (EDML) iskjernen) og sørishavet som helhet, og hvis disse klimamønstrene kan påvirke det ekvatoriale Stillehavet med hensyn til den bipolare “seesaw”-hypotesene.

Test (arbeid): I denne oppgaven skal klimavariabiliteten i denne regionen studeres i enda større detaljgrad ved å applikere nye analysemetoder. Oppgaven er basert på allerede innsamlet maringeologisk kjernemateriale fra det sydøstlige Stillehavet (ODP Site 1233) og dekker et varmt intervall i marin isotoptrinn (MIS) 3. Formålet med prosjektet er 1) å analysere og studere i detalj hav-atmosfære sirkulasjons endringer over et varmt intervall i Marin Isotoptrinn 3 med fokus på overflate temperatur variabilitet og endring i front posisjoner 2) rekonstruere isdekke variabilitet ved hjelp av istransporterte sediment korn i kjernemateriale.

Motivation (background): Knowledge about the climate of the past is important in order to distinguish natural climate change from man-made. New high-resolution data sets from the southeastern Pacific show the importance of the Soutern Ocean in the climate system and are the marine analogues of

the Antarctic ice-cores. The reconstruction of changes in temperature and salt content in both surface and intermediate water masses is based on stable isotopic analyzes of microfossils in the material derived from the sea off the Chilean coast. Here you can register both variations in the southern westerly windbelt and in the Antarctic intermediate water masses that are of major importance to the Earth's climate. The new results show that changes in ocean temperatures in the southern Pacific can have a significant impact on tropical waters and thus tropical climate change. The results show rapid and significant decadal and centennial variations in temperature and salt content in surface water and intermediate water in the Pacific. If such natural variations arise today, they can alternately reduce or amplify man-made climate changes. The results can be used in models that simulate the climate change of both the past, the present and the future. Hypothesis (scientific problem):

• To resolve the variability of the Patagonian Ice Sheet over AIM1 • Test if the climate signal in the the southeast Pacific (near surface water records at Site

1233) and Chile (lithic records and pollen at Site 1233) align with those recorded in Antarctica (EPICA Dronning Maud Land (E D M L) ice core) and the S outhern ocean as a whole and if these climate patterns can influence the equatorial Pacific with respect to the bipolar see-saw hypotheses.

Test (work): In this thesis, climate variability in this region will be studied in an even greater detail by applying new analytical methods. The task is based on already collected marine core material from the southeastern Pacific (ODP Site 1233) and covers a warm interval during marine isotope stage (MIS) 3. The purpose of the project is 1) to analyze and study in detail ocean atmosphere circulatory changes over a warm Interval in Marin Isotope stage 3 focusing on surface temperature variability and change in front positions 2) Reconstruct ice sheet variability using ice-transported sediment grains in core material.

Krav for opptak/ Prereqesites:

None

Eksterne data? / External data?:

Alle sedimentprøver er på huset

Felt-, lab- og analyse- arbeid:

Det er ikke felt eller tokt relatert til denne oppgaven

Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: GEOV 217 (10stp) GEOV 222 (10stp) GEOV 231 (10stp) GEOV 300 (5stp) GEOV 324 (5stp) GEOV 331 (5stp) GEOV 342 (10stp)

Masterprogram i geovitenskap – prosjekt for søkere vår 2018 Master project in Earth Science – project for spring 2018 Prosjekttittel: When medicine meets geology: using CT scanning for 3D visualization of volcanic ash horizons in sediment cores from Greenland

Hovedveileder: Haflidi Haflidason

Med-veileder(e): Willem G.M. van der Bilt, Sarah M.P. Berben, Eivind Støren, Christine Lane

Prosjektbeskrivelse/ Project description: Motivation (background): Volcanic ash (tephra) markers represent a powerful geochronological tool: rapid widespread deposition allows synchronization of geological records across vast areas. Such exercises offer paleoclimatologists the unique opportunity to study the behaviour of Earth`s climate system through time and across space. Analytical progress over the past decades now allow the identification of smaller ash shards ever further from their source volcanoes, expanding the potential of the method. However, the potential of this exciting tool remains underutilized across large geographical areas and periods as lab routines are both laborious and specialized. Computer Tomography (CT) scanning helps us to overcome this limitation by rapidly visualising ash horizons in sediment cores in 3D. Hypothesis (scientific problem): Can the CT-based visualization of tephra ash replicate the results of traditional lab routines? Moreover, can CT-scanning improve the stratigraphical placement of tephra markers? Finally, what additional insight into depositional processes can we gain from 3D tephra visualization? Test (work): This project will focus on dated sediment cores from East Greenland. Owing to the proximity of this region to the major active volcanic centers on Iceland, we expect to find substantial amounts of volcanic ash. By focusing on the well-studied Holocene period, this project will benefit from existing regional framework of characterized and dated eruptions. In addition, all targeted cores have existing or forthcoming tephra stratigraphies, allowing the candidate to validate CT-scanning results. Using pure ash for calibration, the candidate will visualize tephra with our new ProCon CT scanner – a state-of-the-art instrument that is in high demand in medicine and industrial manufacturing. When successful, this project will make a major scientific contribution by significantly reducing the costs and workload involved in generating tephra stratigraphies on sediment cores: we foresee publication. Finally, collaboration with the University of Cambridge (Christine Lane) provides the successful candidate a unique opportunity to strengthen his/her credentials.

Krav for opptak/ Prereqesites:

None

Eksterne data / External data:

No external data. The to-be-worked-on sediment cores were collected during field expeditions in 2013/2015. All cores have been radiocarbon-dated and supporting physical and geochemical data are available.

Felt-, lab- og analyse- arbeid / Field and laboratory work:

This project primarily focuses on the acquisition and analysis of CT imagery using our new in-house ProCon scanner. Additional analyses of supporting physical and geochemical will be carried out if deemed necessary.

Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: GEOV222 / Paleoklimatologi (10p.) GEOV226 / Lab- og metodekurs i kvartærgeologi (10p.) INF252 / Visualisering (10p.) GEOV324 / Paleoklima i polare strok (5p.) GEOV302 / Geostatistikk (5p.) GEOV326 / Kvartære miljø, prosessar og utviklinga (10p.) GEOV322 / Masterekskursjon i kvartærgeologi (5p.) GEOV228 / Kvartærgeologiske dateringsmetodar (10p.)

Masterprogram i geovitenskap – prosjekt for søkere vår 2018 Master project in Earth Science – project for spring 2018 Prosjekttittel: More data with less effort at a lower cost: using hyperspectral scanning to calibrate paleotemperature measurements from Svalbard lake sediments

Hovedveileder: Jostein Bakke

Med-veileder(e): Willem G.M. van der Bilt, Eivind W. Støren, William D`Andrea

Prosjektbeskrivelse/ Project description: Motivation (background): The past decades have seen the emergence of paleothermometers: biogeochemical proxies that allow the quantitative reconstruction of past temperatures from geological records. By expanding our knowledge of temperature change beyond the short instrumental record, these novel tools allow us to place ongoing climate change in a long-term perspective. Paleothermometer work is, however, laborious and expensive, restricting the temporal resolution of generated reconstructions. Hyperspectral imaging opens the promising prospect of overcoming these limitations by means of calibrating discrete measurements against high-resolution scanning data. Hypothesis (scientific problem): Can the spectral signal of specific organic (chlorin) compounds in lake sediment sequences replicate measurements of the 𝑈𝑈37𝐾𝐾 paleothermometer? And can we use this approach to reconstruct past temperature change at much higher resolution for a fraction of the cost with minimal effort? Test (work): This project focuses on three dated sediment cores from West Spitsbergen on Svalbard. 𝑈𝑈37𝐾𝐾 paleothermometer values were measured on each of these archives, allowing calibration against scanning data. For this purpose, the candidate will use the new in-house Specim Single Core Scanner (SCS) – a cutting-edge tool that is highly demanded in resource exploration and environmental sciences. The work will be carried out with the involvement of Columbia University (William D`Andrea) in New York – a world-class research institute. This collaboration provides the successful candidate with a unique opportunity to strengthen his/her credentials. When successful, this project will make two major scientific contributions: I) enhancing the potential of paleothermometry by reducing costs and workload while increasing sampling resolution and II) resolving past temperature change on human-relevant timescales scales in Earth`s most rapidly warming region – the Arctic. We foresee publication.

Krav for opptak/ Prereqesites:

Eksterne data / External data: No external data. The to-be-worked-on sediment cores were collected during field expeditions in 2012/2014. In addition to 𝑈𝑈37𝐾𝐾 paleothermometer measurements, all three records have been radiocarbon-dated. Supporting physical and geochemical data are also available.

Felt-, lab- og analyse- arbeid / Field and laboratory work:

This project primarily focuses on the acquisition and analysis of hyperspectral imagery using our new in-house Specim SCS scanner.

Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: GEOV222 / Paleoklimatologi (10p.) GEOV226 / Lab- og metodekurs i kvartærgeologi (10p.) INF252 / Visualisering (10p.) GEOV324 / Paleoklima i polare strok (5p.) GEOV302 / Geostatistikk (5p.) GEOV326 / Kvartære miljø, prosessar og utviklinga (10p.) GEOV322 / Masterekskursjon i kvartærgeologi (5p.) GEOV245 / Geomikrobiologi (10p.)

Masterprogram i geovitenskap – prosjekt for søkere vår 2018 Master project in Earth Science – project for spring 2018 Prosjekttittel: Automated counts of ice rafted debris to trace Heinrich events off SE Greenland

Hovedveileder: Eystein Jansen (GEO)

Medveileder(e): Lisa Griem (GEO), Trond M. Dokken (Uni research), Eivind W. Nagel Støren (GEO)

Prosjektbeskrivelse/ Project description: Motivation (background): The aim of the project is to enable inferences on the Arctic Ocean and Greenland Ice Sheet iceberg discharge during the abrupt climate changes in Marine Isotope Stage 3 referred to as Dansgaard-Oeschger events. In combination with other proxies like foraminifer counts and stable isotope measurements the produced record of ice rafted debris (IRD) will help to understand the variability of surface water properties during stadials and interstadials and thus the location of the Polar Front. By identifying Heinrich events which are suggested to be a consequence of a AMOC slow down we might be able to link the marine record to Greenland ice core records and furthermore find whether iceberg discharge is the cause or the result of the stadials. The marine Ice2Ice core GS16-204-18CC from SE Greenland will be used for the project. This study will experimentally compare a manual and automated methodology of IRD counts. Hypothesis (scientific problem): Are we able to trace particularly Heinrich Events 3 and 4 outside the Heinrich belt? Test (work): The material needed has been sampled in August 2017 and a stable isotope record of the core has been developed. An age model, foraminifer counts as well as a manually counted IRD record will be produced in low resolution (every 2 cm). The master student will contribute to the project developing a high-resolution IRD record using the automated counting method published by Becker et al., 2017.

Krav for opptak/ Prereqesites:

Bachelor I geovitenskap

Eksterne data? / External data?:

No

Felt-, lab- og analyse- arbeid:

Laboratory work including the analyses, pre-and post-processing of the provided sediment sampled using the instrument `Morphologi G3`from Malvern Instruments Limited located in the Earthlab (GEO). The work will be done in a team of post docs and PhD students in the Ice2Ice project.

Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: Anbefalte emner: GEOV331, GEOV222, GEOF338, GEOV324,

Master project in Earth Science – project for spring 2018 Prosjekttittel: A tephra-based marine-ice core synchronization of Greenland Interstadial 4.

Hovedveileder: Eystein Jansen, GEO

Med-veileder(e): Trond Dokken, Uni Research; Sarah Berben, GEO , Henrik Sadatzki (UiB),

Prosjektbeskrivelse/ Project description: Motivasjon (bakgrunn): The aim of this project is to investigate the potential existence of tephra layers within a marine sediment core (MD99-2284) similar to 4 previously recorded horizons in the Greenland ice cores spanning Greenland Interstadial 4. The geochemical compositions of these tephra horizons indicate different volcanic sources and can therefore be discriminated from one another. When similar stratigraphically separated volcanic horizons can be detected in marine sediments, it provides the potential for a marine-ice core cross-correlation and thereby, precise age constraints of this time interval. The latter will contribute to constraining the timing of rapid transitions and therefore add to the understanding of the controlling mechanisms of abrupt climate changes.

Hypotese (vitenskapelig problem): Are there tephra horizons in MD99-2284 that can be tied to the existing volcanic events recorded in the Greenland ice cores during Greenland Interstadial 4? Test (arbeid): Based on an existing age model of MD99-2284, the Greenland Interstadial 4 interval spans ca. 50 cm to be sampled. Separation techniques and counting of tephra concentrations of different size fractions using light microscopy will be followed by a geochemical analysis of stratigraphically separate volcanic events using electron-probe microanalysis. The work will be done in a team of post docs and PhD students as part of the ice2ice project. If it turns out that in the unlikely event that no tephra is found, there are alternate intervals in need for detailed investigations where tephras already have been identified.

Krav for opptak/ Prereqesites:

Bachelor i geovitenskap

Eksterne data? / External data?:

All data to be worked on are in-house data, or published reference material.

Felt-, lab- og analyse- arbeid:

Laboratory work on tephrochronology, including electron-microprobe analysis at the University of Edinburgh. Agreement from Edinburgh exist within the ice2ice project.

Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: Anbeflate emner: GEOV228, GEOV222, GEOV331, GEOV360, GEOV324

Master project in Earth Science – project for spring 2018 Prosjekttittel: Investigating the role of Nordic Seas sea ice cover in abrupt climate change using dinoflagellate cysts

Hovedveileder: Eystein Jansen (UiB),

Med-veileder(e): Stijn De Schepper (Uni Research Climate)

Prosjektbeskrivelse/ Project description: Motivation (background): The ice2ice research project investigates the cause of past abrupt climate changes in Greenland and its implications for the future. Based on North Atlantic and Nordic Seas marine core records, ice2ice researchers are reconstructing the climatic conditions during times of abrupt climate change known as Dansgaard–Oeschger oscillations. The mechanisms responsible for the rapid climate changes are not fully understood, and have been related to changes in Atlantic Meridional Overturning Circulation due to fresh water perturbations, and to abrupt changes in sea ice cover.

Hypothesis (scientific problem): Abrupt changes in the North Atlantic sea ice cover cause rapid climate shifts during Dansgaard-Oeschger oscillations. Test (work): Dinoflagellate cyst studies are a frequently-used and proven tool for sea ice reconstructions in the Nordic Seas. In the MSc project, the student will analyse the dinoflagellate cysts (marine phytoplankton) from core MD99-2284 in the Nordic Seas to reconstruct the sea surface conditions and sea ice evolution during Dansgaard–Oeschger cycles. The actual work involves identifying dinoflagellate cysts using a light microscope and analysis of the data for sea surface temperature and sea ice reconstructions (potentially using transfer functions). This work will be integrated with ongoing work on the same core within the ice2ice project.

Krav for opptak/ Prereqesites: GEOV110

Eksterne data? / External data?: No

Felt-, lab- og analyse- arbeid: No field work. Microscope work ca. 6 months.

Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree:

Autumn:

GEOV222 (10P) Paleoklimatologi GEOV228 (10P) Kvartærgeologiske dateringsmetodar GEOV223 (10P) Kvartære havnivåendringer GEOV324 (5P) Paleoklima i polare strok

Spring: GEOV301 (5P) Geostatistikk or GEOV331 (5P) Utvalgte emner i paleoseanografi GEOV231 (10P) Maringeologisk felt- og laboratoriekurs GEOV326 (10P) Kvartære miljø, prosessar og utviklinga,

Masterprogram i geovitenskap – prosjekt for søkere vår 2018 Master project in Earth Science – project for spring 2018 Prosjekttittel: Early Pleistocene climate in the tropical West Pacific – a stalagmite study

Hovedveileder: Nele Meckler

Med-veileder(e): Thomas Leutert

Prosjektbeskrivelse/ Project description: Motivation (background): Climate change in the tropics is among the most uncertain aspects of future climate change. Fortunately, geologic archives of past climate allow us to study how climate in these regions varied under large climatic changes in the past. Stalagmites are particularly valuable archives, as they can cover large time intervals and can be dated with U-series dating. We have studied stalagmite samples from Borneo that cover the last ~550,000 years in detail, but have one sample that is much older, approximately 1.5 million years old (dated with U/Pb). Only very few studies have been carried out on stalagmites of this age, because they are challenging to date precisely. However, the old sample that we have in hand is exceptionally clean, shows undisturbed growth, and good preservation. It will be very interesting to compare geochemical variations (reflecting climate) in this unique early Pleistocene sample to the many observations we already have from the younger, late Pleistocene, stalagmites in Borneo. Hypothesis (scientific problem): During the early Pleistocene, glacial-interglacial cycles where shorter (41 kyr duration) and glaciations were less pronounced than in the late Pleistocene. Is this difference reflected in tropical climate? Do we see the same pattern of changes in the early Pleistocene that we know from the late Pleistocene, and are the variations as pronounced? Test (work): The master student will have the opportunity to work on stalagmite sample SSR04 from Borneo, which is 1.4 m long in total and dated with U/Pb dating to 1.5 Ma. The work will consist of milling out samples in 1-2 mm resolution along the growth axis and analysing them for O isotopes (a proxy for rainfall) on a mass spectrometer. Doing these measurements on a specialized instrument, we can at the same time also test the applicability of clumped isotope thermometry, a new proxy for temperature. All data will be compared to existing late Pleistocene data from the same caves.

Krav for opptak/ Prerequisites:

GEOV106/108 eller GEOV110, anbefalt GEOV109

Eksterne data? / External data?:

Nei Felt-, lab- og analyse- arbeid:

Ingen feltarbeid, labarbeid ca. 6 måneder

Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: Emner skal bestemmes sammen, nedenfor følger et foreslag: Vårsemester: GEOV 225 (10P) GEOV342 (10P) GEOV347 (5P) GEOV331 (5P) Høstsemester: GEOV222 (10P) GEOV221 (10P) GEOV228 (10P)

Masterprogram i geovitenskap – prosjekt for søkere vår 2018 Master project in Earth Science – project for spring 2018 Prosjekttittel: Temperature change in the Indo-Pacific Warm Pool from the warm Pliocene to today

Hovedveileder: Nele Meckler

Med-veileder(e): Niklas Meinicke

Prosjektbeskrivelse/ Project description: Motivation (background): The Pliocene was characterized by global warmth and elevated atmospheric CO2 level similar to those projected for the end of this century, rendering it a potential analogue for future climate. For the tropical region of the Indo-Pacific Warm Pool (IPWP), it is much debated whether Pliocene temperatures were significantly warmer than today. This is mostly due to imperfections of the tools (proxies) used for climate reconstruction in this region. At the same time, future changes in this region will affect a large fraction of the global population, increasing the importance of good constraints from the (warmer) past. Clumped isotope thermometry is a novel technique for reconstructing temperatures from carbonates based on the ordering ("clumping") of stable isotopes within the molecules. Unlike other carbonate-based temperature proxies, this method is independent of limiting assumptions about source water composition, thereby allowing to better constrain paleotemperature estimates. Furthermore, this approach is of great interest to other earth science disciplines (e.g., tectonics, petroleum science, planetary science). Hypothesis (scientific problem): This master student will be part of a team that studies Pliocene climate change based on carbonate clumped isotope thermometry on foraminifera from selected marine core locations. The goal of the master project will be to determine whether (and by how much) the IPWP was warmer than today. Test (work): The samples will come from a recent expedition of the International Ocean Discovery Program (IODP) which PhD candidate Niklas Meinicke took part in. Foraminifera will be picked from the sediment samples and prepared for analysis. Measurements are done on a clumped isotope mass spectrometer under guidance. Clumped isotope values will be converted to temperature estimates using a calibration curve. The data will be compared to data from other proxies from the same and nearby sites and to other clumped isotope data from a nearby site studied by Niklas Meinicke.

Krav for opptak/ Prerequisites:

GEOV106/108 eller GEOV110, anbefalt GEOV109

Eksterne data? / External data?: Nei Felt-, lab- og analyse- arbeid:

Ingen feltarbeid, labarbeid ca. 6 måneder

Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: Emner skal bestemmes sammen, nedenfor følger et foreslag: Vårsemester: GEOV231 (10P) GEOV331 (5P) GEOV342 (10P) GEOV347 (5P)

Høstsemester: GEOV222 (10P) GEOV300 (5P) GEOV324 (5P) GEOV228 or GEOF236 (10P)

Masterprogram i geovitenskap – prosjekt for søkere vår 2018 Master project in Earth Science – project for spring 2018

Prosjekttittel: Lille istids botnbreaktivitet i Trollstigen og Geiranger-Herdalen landskapsvern-områder (2 OPPG.) Hovedveileder: Atle Nesje (GEO) Medveileder: Henriette Linge (GEO)

Prosjektbeskrivelse/ Project description: Bakgrunn: Målsetningen til prosjektene er å få ny kunnskap om botnbreers utbredelse i tid og rom på indre Sunnmøre. Den lille istiden er nær oss i tid og kan gi detaljert informasjon om geografiske, topografiske og tidsmessige forskjeller, noe som er viktig for studier av naturlige klimasvingninger. Vitenskapelig problem: Breer på Vestlandet ekspanderte i løpet av den lille istiden. På indre Sunnmøre har man spor etter lokalglasiasjon (botnbreer) utenfor innlandsisens utbredelse i yngre dryas (12.8-11.7 ka). Botnene som har små breer i dag har ofte en eller flere markerte morenerygger nær dagens isrand. Det antas at disse moreneryggene er fra den lille istiden. Stemmer dette, og i så fall, når var botnbreene på sitt største? Nådde alle botnbreene sin maksimale utbredelse samtidig, eller var det lokale forskjeller? Prosjektene kan for eksempel omfatte problemstillinger som er knyttet til regionalt klima, lokale geografiske/klimatiske forhold og kronologisk presisjon. Arbeid: Begge prosjektene inkluderer feltundersøkelser i Trollstigen og Geiranger-Herdalen landskapsvernområder. Randmorener til eksisterende botnbreer skal kartlegges og aldersbestemmes med relative og numeriske metoder (f.eks. lichenometri, forvitringsgrad, C-14, Be-10). Det er en fordel at to studenter samarbeider om prosjektet, av både faglige og sikkerhetsmessige grunner. Begge prosjektene vil bruke relative og numeriske metoder, men vil ha ulike feltlokaliteter. Background: The overall aim of the projects is to obtain new knowledge in the extent of cirque glaciers in time and space on inner Sunnmøre. The Little Ice Age is a recent event, and can provide us with detailed information on geographic, topographic and temporal differences, vital for studies of natural climate oscillations. Scientific problem: Glaciers in western Norway expanded during the Little Ice Age. Inner Sunnmøre has traces of local glaciation (cirque glaciation) outside of the extent of the inland ice sheet during Younger Dryas (12.8-11.7 ka). The cirques that are occupied by small glaciers today often have one or several terminal moraines close to the present ice margin. It is assumed that these ridges stem from the Little Ice Age. Is that correct, and if so, when did the cirque glaciers reach their maximum extent? Did all cirque glaciers culminate at the same time, or were there local differences? The projects can include questions related to regional climate, local geographic/climatic conditions, and chronological precision. Work: Both projects are based on field investigations in the Trollstigen and Geiranger-Herdalen landscape conservation areas. Terminal moraines close to existing cirque glaciers will be mapped and dated using relative and numeric methods (such as lichenometry, degree of weathering, C-14, Be-10). It is advisable that two students collaborate in the project, from both safety and subject reasons. Both projects will use relative and numeric dating tools, but will have different field sites.

Krav for opptak/ Prerequisites: GEOV110. God fysisk form kreves for å kunne gjennomføre feltarbeidet. Eksterne data? / External data?: Nei Felt-, lab- og analysearbeid: Prosjektet krever feltarbeid over tregrensen og dermed gode værforhold for å kunne gjennomføres. Feltarbeidet kan utføres på 2-4 uker avhengig av vær- og snøforhold. Laboratoriearbeid avhenger av ekstern finansiering, men dersom aktuelt vil det utgjøre ca. 2 måneders arbeid. Analyse av felt- og laboratoriedata involverer enkle statistiske metoder. Prosjektet kan ikke gjennomføres på tre semestre. Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: GEOV225 (10 sp); GEOV230 (10 sp); GEOV326 (10 sp); GEOV222 (10 sp); GEOV228 (10 sp); GEO215 (10 sp).

Masterprogram i geovitenskap – prosjekt for søkere vår 2018 Prosjekttittel: Sedimentære prosesser og avsetningsmiljø i nordlege Nordsjø under siste deglasiasjon

Hovedveileder: Berit Oline Hjelstuen, GEO

Medveileder: Hans Petter Sejrup, GEO

Prosjektbeskrivelse: Motivasjon (bakgrunn): Nordsjøen har periodevis vore dekka av store isdekker under dei store glasialane på den nordlege halvkule dei siste 2.7 millionar åra og i løpet av kvartær tid har ei sedimentær lagpakke, opp mot 1000 meter mektig, vorte avsett i dette havområdet. Denne lagpakka utgjer eit unikt marint arkiv der ein kan analysere kva for sedimentære prosessar og avsetningsmiljø som har vore aktive gjennom tid. Å ha kunnskap om prosessar og miljø ved slutten av siste nedisning i Nordsjøen vil bidra inn mot vår forståing av marine isdekker og deira stabilitet. Dette er kunnskap som er viktig med hensyn på hva som vil skje med dagens isdekker på Grønland og i Antarktis under global oppvarming. Hypotese (vitenskapelig problem): I denne oppgåva skal ein identifisere og studere sedimentære prosessar og avsetningsmiljø i nordlege Nordsjø under siste deglasiasjon, som tok til for omlag 19 000 år sidan. Tidlegare studiar i området har vist at ein har hatt ei samansatt avsetningshistorie i dette området, med både jøkulhaup og fluviale prosessar.

Test (arbeid): Hovudarbeidet i masteroppgåva vert å analysere ein 12 meter lang sedimentkjerne samt TOPAS høgoppløyselege seismiske data der ein blant anna skal: (1) Bestemme litologi, kornfordeling, strukturer og alder på sedimenta i den innsamla sedimentkjerna, (2) Studere seismisk mønster (facies) og kartlegge seismisk stratigrafi, (3) Koble kjernestratigrafi mot etablert seismisk stratigrafi i TOPAS dataene, og (4) Identifisere sedimentære prosesser og avsetningsmiljø. ______________________________________________________________________

Krav for opptak: GEOV108 eller GEOV110. Kandidaten som velger denne oppgaven må like å jobbe med PC-baserte programmer (PETREL, ArcGIS, Excel, CorelDraw). Arbeidet på sediment-laboratoriet krever presisjon, nøyaktighet og en systematisk tilnærming.

Eksterne data: Vi skal kun benytte data (kjerner og seismikk) samla inn på våre egne tokt. Alle data er tilgjengelege for prosjektet

Felt-, lab- og analyse- arbeid: Det vil bli ein del analysearbeid på vårt sedimentlaboratorie (2-3 månader) samt tolking av TOPAS data i tolkeprogrammet Petrel (heile MSc-perioden)

Foreslåtte emner i spesialiseringen (60 sp):

Desse emna bør inngå i spesialiseringa GEOV272, GEOV231, GEOV222, GEOV372. Elles så står studenten ganske fritt til å ta dei kursa som ynskjes.

Masterprogram i geovitenskap – prosjekt for søkere vår 2018 Master project in Earth Science – project for spring 2018

Prosjekttittel: “From outcrop to synthetic seismic: an integrated study of Botneheia, central

Spitsbergen”

Hovedveileder: Isabelle Lecomte (UiB/GEO)

Med-veileder(e): Kim Senger (UNIS), Simon Buckley (UiB/Uni CIPR), Christian Haug Eide

(UiB/GEO)

Prosjektbeskrivelse/ Project description:

Motivasjon (bakgrunn):

Geoscientists often work across different scales, from core plugs to basin-scale grav-mag

measurements. In exploration and reservoir characterization, the resolution gap between

outcrop analogue data and seismic data is particularly important to constrain. Well data

provide some constraints but are extremely limited spatially, especially in offshore

exploration. Synthetic seismic modelling of “seismic-scale” outcrops can help to close this

resolution gap by conducting forward models on selected outcrops to identify the features

that should be identifiable on seismic data. Such integrated case studies are also very

valuable for educational purposes and the present study fits well with the ongoing University-

of-the-Arctic (UArctic) project “Circum-Arctic Geology for Everyone: An integrated approach

to learning and teaching in the Arctic” where UiB/GEO cooperates with UNIS, Uni/CIPR and

other partners (2017/2018).

Hypotese (vitenskapelig problem):

The geological features exposed at Botneheia, i.e., igneous intrusions, fault systems,

stratigraphic variation, in central Spitsbergen represent a range of seismic and sub-seismic

features. Understanding the seismic imaging potential of these features is important both in

the context of CO2 storage onshore Svalbard but also for petroleum exploration in volcanic

basins.

Test (arbeid):

To test the hypothesis, the candidate will first compile all data sets (LiDAR, photogrammetric

models, geological logs, relevant well data) available at Botneheia and in nearby

Adventdalen and Isfjorden where real 2D seismic exists. This will be used to construct a

model of the mountain that comprises the geometry from the field populated with the relevant

properties (Vp, Vs, density) from relevant wells or literature studies. This model will serve as

a foundation to run a matrix of test cases addressing the seismic imaging potential of various

features as a function of a) rock property variation b) size of the features and c) seismic

acquisition parameters (i.e., frequency, depth, survey, overburden etc.).

Krav for opptak/ Prereqesites:

BSc in Geology (minimum of geophysics required and interest in seismic) or Geophysics

(geology specialization required)

Eksterne data? / External data?:

The candidate will have access to relevant data from onshore Svalbard and the Barents shelf

(UNIS), including well and seismic data.

Felt-, lab- og analyse- arbeid: Fieldwork (ca 1 week) might be undertaken in summer 2018 to complement the present data set with additional photogrammetric models, using drones. Depending on external funding (e.g., application to Arctic Field Grant fall 2018 for field summer 2019), more fieldwork and UNIS stay could be planned.

Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree:

Gjøres etter avtale med veileder, vil avhenge av studentens bakgrunn (geologi/geofysikk) og

interesse, men følgende emner kan bl.a. vurderes, både på UiB og UNIS:

GEOV274 Reservoir Geophysics

AG-335 Arctic Seismic Exploration (10ECTS)

AG-334 Arctic Petroleum Provinces (10ECTS)

AG-336 Rift Basin Reservoirs: from outcrop to model (10ECTS)

AG-349 Geological Constraints on CO2 storage (5ECTS)

Note: AG-335 and AG-334 are part of a MSc package with AG-322 (Fold & Thrust Belts) that

will run in spring 2018 and spring 2020. AG-336 will run autumn 2018 and can be combined

with AG-323 (Sequence Strat).

Masterprogram i geovitenskap – prosjekt for søkere vår 2018 Master project in Earth Science – project for spring 2018

Prosjekttittel: «Seismic mapping of onshore-offshore transition zones – a modelling study”

Hovedveileder: Isabelle Lecomte, UiB/GEO

Med-veileder(e): Bent Ole Ruud og Tor Arne Johansen (UiB/GEO); eventuelt fra NGU.

Prosjektbeskrivelse/ Project description:

Motivasjon (bakgrunn):

Detaljert kartlegging av geologiske strukturer i overgangen land - sjø er viktig for å forstå

geologisk historie og landskapsutvikling. Refleksjonsseismikk er den mest anvendelige

geofysiske metoden for å gjøre slik kartlegging. I overgangen land - sjø vil dette være

praktisk vanskelig fordi det ofte er grunne områder som vanskeliggjør tradisjonell data

innsamling. En måte å gjøre dette på er å bruke luftkanoner til å generere akustiske bølger i

vannlaget og å registrere på land. Dette gir mulighet til både å studere reflekterte og

refrakterte seismiske bølger. Arbeidet i oppgaven skal hovedsakelig ved seismiske

modelleringseksperimenter undersøke mulige eksperimentelle oppsett for denne typen

kartlegging. Arbeidet vil basere seg på et konkret data eksempel fra Andøya, som nylig gitt ut

av NGU i rapporten «Ramså Basin, Northern Norway: an Integrated Study».

Hypotese (vitenskapelig problem):

Målet med arbeidet er å undersøke mulige seismiske innsamling oppsett via modellering, for

å kunne best avbilde geologiske strukturer i overgangen land-sjø.

Test (arbeid):

Arbeidet består i å generere syntetiske seismiske data for forskjellige seismisk innsamling

oppsett, og bruke disse for å teste deres evne til å avbilde overgangen land-sjø.

Motivation (background):

Detailed mapping of geological structures on onshore-offshore transition zones is important

for a better understanding of geological history and landscape development. Reflection

seismic is the most suitable geophysical method for such mapping. In the transition between

onshore and offshore, practical issues are however faced because this often corresponds to

specific shallow zones making difficult traditional acquisition. One way to approach that

problem is to generate acoustic waves offshore in the water layer and record on land. This

gives the possibility to both study reflected and refracted waves. The proposed work will

mainly consist into investigating possible acquisition survey geometries via seismic modelling

to help designing proper seismic experiments. The study will make use of a real case study

at Andøya, as newly published in a report from the Geological Survey of Norway, NGU,

“Ramså Basin, Northern Norway: an Integrated Study”.

Hypothesis (scientific problem):

The aim of the work is to investigate potential seismic acquisition setup via seismic modelling

for an optimal seismic imaging of the onshore-offshore geological structures.

Test (work):

The work consists into generating synthetic seismic data for various seismic acquisition

experiences and use them to test their ability to image the onshore-offshore transition zone.

Krav for opptak/ Prerequesites:

geofysikk (geologisk eller matematisk retning)

Eksterne data? / External data?:

seismiske data tilgjengelig på UiB/GEO. Andre data fra NGU kan vurderes.

Felt-, lab- og analyse- arbeid:

ikke nødvendig

Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree:

Gjøres etter avtale med veileder, vil avhenge av studentens bakgrunn og interesse, men følgende emner er anbefalt:

GEOV219 - Computational methods in solid earth physics (10 stp)

GEOV274 - Reservoir Geophysics (10 stp)

GEOV276 - Theoretical Seismology (10 stp)

GEOV375 - Advanced Applied Seismic Analysis (10 tsp)

Masterprogram i geovitenskap – prosjekt for søkere vår 2018 Master project in Earth Science – project for spring 2018

Prosjekttittel: Modeling of Elastic Wave Polarization

Hovedveileder: Henk Keers

Med-veileder(e): Lars Ottemöller

Prosjektbeskrivelse/ Project description:

Motivasjon (bakgrunn):

Seismisk bølger er veldig nyttig, da den danner grunnlaget for metoder for å konstruere

bilder av Jorden. Vanligvis beskrives seismisk bølgeutbredelse ved hjelp av elastiske bølger.

Derfor mange aspekter av elastiske bølger har blitt studert gjennom årene. Et aspekt av

elastisk bølgeutbredelse som ikke har blitt studert så mye, og som også gir visse teoretiske

og numeriske utfordringer, er polariseringen av elastiske bølger. I dette masterprosjektet vil

polariseringen av elastiske bølger bli studert ved hjelp av ulike modelleringsmetoder.

Hypotese (vitenskapelig problem):

Polarisering av elastiske bølger er svært nyttig for å studere jorden på ulike skalaer: fra små

skalaer med applikasjoner i miljø- og letingsgeofysikk til globale skalaer. I dette prosjektet vil

ulike typer modellering av polarisasjon av elastiske bølger bli vurdert, spesielt polarisasjon av

bølger på regional and global skala. Hovedmodellmetoden vil være ’ray’-basert, men andre

kan også vurderes. Modellen vil gi ryggraden til studiet av polariserte bølger og særlig til

studiet av anisotropi i skorpe og mantel.

Test (arbeid):

Elastisk bølgemodellering gjøres typisk ved hjelp av ’ray’-baserte metoder. I dette prosjektet

blir elastiske bølger og deres polarisering modellert ved hjelp av ’ray’-baserte teknikker. Hvis

tiden tillater det, vil modellerings methoder bli sammenlignet. Modelleringsteknikkene vil bli

brukt til å teste forskjellige inversjonsmetoder som kan brukes til å bestemme den

heterogene anisotropiske strukturen til skorpe og mantel.

Motivation (background):

Seismic wave propagation through the Earth is very useful as it forms the basis for methods

to construct images of the Earth. Typically seismic wave propagation is described using

elastic waves and therefore many aspects of elastic waves have been studied over the

years. One aspect of elastic wave propagation that has not been studied as much, and that

provides also certain theoretical and numerical challenges, is the polarization of elastic

waves. In this master project the polarization of elastic waves will be studied using various

modelling methods.

Hypothesis (scientific problem):

Polarization of elastic waves should be very useful for studying the Earth on various scales:

from small scales with applications in environmental and exploration geophysics to global

scales. In this project various types of modelling of polarization of elastic waves will be

considered, especially the polarization of waves on a regional/global scale. The main

modelling method will be ray based, but others can also be considered. The modelling will

provide the backbone to the study of polarized waves and in particular to the study of

anisotropy in the crust and mantle.

Test (work):

Elastic wave modeling typically is done using ray based methods or finited difference

modeling. In this project elastic waves and their polarization will be modelled using ray based

techniques. If time allows the ray based modeling will be compared with finite difference

modeling. The modeling techniques will be used to test various inversion methods that can

be used to determine the heterogeneous anisotropic structure of the crust and mantle.

Krav for opptak/ Prereqesites: Bachelor in geophysics (mathematics direction); this

project requires a strong background and interest in theoretical geophysics and

programming.

Eksterne data? / External data?: No

Felt-, lab- og analyse- arbeid: No

Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree:

Geov219, Geov355, Geov357, Mat260, Mat265, Mat234

Master project in Earth Science - Petroleum Geoscience Full waveform inversion in time-lapse mode using scattering theory Main supervisor: Professor Morten Jakobsen Co-supervisor: Associate Professor Einar Iversen Project goals and methods In order to monitor changes in the fluid saturations, stress and pore fluid pressure in a pe-troleum reservoir under production, one can compare seismic data corresponding to differ-ent time steps. Conventional time-lapse (or 4D) seismics is based on the analysis of changes in the travel times or seismic amplitude versus offset. However, one can poten-tially obtain more detailed information about production-induced changes in a petroleum reservoir by performing a full waveform inversion of time-lapse seismic data (Jakobsen and Ursin, 2011). The conventional adjoint state approach to full waveform inversion in the 4D as well as 3D case is very expensive computationally. However, by using a scattering theoretical approach, one can focus the inversion on a particular (4D) target of interest, un-der the assumption that the rest of the model is known (see Jakobsen and Ursin, 2015). The idea of using scattering theory for full waveform inversion method in time-lapse mode is not new (e.g., Muhumuza, 2015), but there are still plenty of room for further develop-ment of this promising approach. In this study, the student should study the advantages and disadvantages of using differ-ent strategies for inverting time-lapse seismic waveform data. Also, the student should in-vestigate the use of different scattering theoretical methods for reducing the computational cost of a full waveform inversion in time-lapse mode. The inversion methods and codes developed by the student in this project should be tested on synthetic data that have been contaminated with random noise to make the numerical experiments more realistic. 4D re-peatability issues and other sources of uncertainty (model errors) should also be investi-gated. References Jakobsen, M. and Ursin, B., 2011. T-matrix approach to the nonlinear waveform inversion problem in 4D seismics. Expanded abstract, 73rd EAGE meeting, Vienna. Jakobsen, M. and Ursin, B., 2015. Full waveform inversion in the frequency domain using direct iterative T-matrix methods. Journal of Geophysics and Engineering, 12, 400-418. Muhumuza, K., 2015. Modelling and inversion of time-lapse seismic data using scattering theory. Master thesis, University of Bergen. A. Asnaashari, R. Brossier, S. Garambois, F. Audebert, P. Thore and J. Virieux, 2015. Time-lapse seismic imaging using regularized full-waveform inversion with a prior model: which strategy? Geo-physical Prospecting, 63, 78–98

Important information: This project requires a strong background in signal theory as well as wave propagation and inversion. It will also be strictly required to have good skills or a talent for computer programming. External data: Not relevant Field work: Not relevant Laboratory work: Not relevant Funding: Not relevant Size of project: 60 stp. Suggested courses: GEOV276 - Theoretical Seismology (10 stp) GEOV219 - Computational methods in solid earth physics (10 stp) GEOV274 - Reservoir Geophysics (10 stp) GEOV375 - Advanced Applied Seismic Analysis (10 tsp) MAT265/ - Parameter estimation and inverse problems (10 stp) Special syllabus on FWI and signal theory (10 stp) ____________________________________________ date/signature main supervisor/project leader

Master project in Earth Science Integral equation methods for electromagnetic reservoir monitoring

Main supervisor: Professor Morten Jakobsen. Co-supervisor: Forsker Svenn Tveit (CIPR)

The seismic method, which is based on wave propagation, provides good structural information about the (petroleum, CO2 or geothermal) reservoir. However, it is often very difficult to recover all the elastic parameters needed for an accurate prediction of both lithol-ogy and fluid content in the exploration phase, or to estimate changes in both fluid pressure and saturation changes from from 4D seismic data. In an attempt to improve the sensitivity to fluid saturation, several oil companies have started to use controlled source electromagnetic (CSEM) data as a supplement to seismic data. So far the CSEM method, has mostly been used in the exploration phase, but the results of recent research (see Stav, 2010; Musisi, 2014; Tveit et al., 2016) suggests that the CSEM method can also be very useful within a reservoir monitoring context. The principal aim of this project is to develop integral equation methods for inversion of CSEM data, that may lead to a better fluid and reservoir characterization. The main idea be-hind the project is that one can use similar integral equation methods for the modelling and inversion of CSEM and seismic waveform data (see Jakobsen and Ursin, 2015; Tveit et al., 2017). Traditionally, workers in the seismic and electromagnetic geophysical communities have not communicated much with each other, although there is a great potential in the modi-fication of methods originally developed for use in seismic geophysics for use in electromag-netic geophysics, and vice-versa. The volume integral equation methods of Jakobsen and Ur-sin (2015) and Tveit et al.. (2017) we propose to develop in this project will relevant for both exploration and production, although the numerical experiments performed by the master stu-dent should be biased towards applications to geophysical reservoir monitoring. The student should first develop direct iterative T-matrix methods for CSEM inversion based on the work of Jakobsen and Ursin (2015), and then perform a series of computer simulations (numerical experiments or inversion tests based on synthetic CSEM data) to investigate how close the inverted models associated with different inversion strategies are to the true model under various conditions of random noise. The main focus should be on the use of determinis-tic inversion methods, where the goal is to search for a single best-fitting model (e.g., of a complex salt structure), but the student may also consider the use of Bayesian (statistical) in-version methods that also provide uncertainty information (see Tveit et al., 2016), depending on the progress and research interest of the student. It may also be possible to combine this work with rock physics modelling, since we also have significant experience with the devel-opment and application of effective medium theories for electrical conductivity of fluid-satu-rated porous media. In any case, this project represents a natural continuation of two previous master projects within electromagnetic geophysical methods (Stav, 2009; Musisi, 2015) as well as a related research project funded by the Research Council of Norway. References

Jakobsen, M. and Ursin, B., 2015. Full waveform inversion in the frequency domain using di-rect iterative T-matrix methods. Journal of Geophysics and Engineering, 12, 400-418.

Musisi, N., 2014. Modeling and inversion of CSEM data using Green’s function methods. Master thesis, University of Bergen. (Supervised by Jakobsen, M.).

Stav, A., 2010. Forovermodellering og inversjon av 3D og 4D CSEM-data basert på integral-ligningsmetoder. Master thesis, University of Bergen (Supervised by Jakobsen, M.).

Tveit, S., Mannseth, T. and Jakobsen, M., 2016. Discriminating time-lapse saturation and pressure changes in CO2 monitoring from seismic waveform and CSEM data using ensemble-based Bayesian inversion. Expanded abstract, 86th Annual Meeting, Society of Exploration Geophysicists, Dallas.

Admission requirements:

This project requires a relatively good mathematical background. It is also an ad-vantage if the student have some skills within programming (e.g., in matlab).

Eksterne data: Not relevant

Felt-, lab- og analyse- arbeid:

Not relevant

Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree:

PTEK218 – Rock physics (10 stp).

GEOV276 - Theoretical Seismology (10 stp)

GEOV219 - Computational methods in solid earth physics (10 stp)

GEOV274 - Reservoir Geophysics (10 stp)

GEOV375 - Advanced Applied Seismic Analysis (10 stp)

Special syllabus on electromagnetic geophysical methods (10 stp).

Financing: Not relevant

Masterprogram i geovitenskap – prosjekt for søkere vår 2018 Master project in Earth Science – project for spring 2018

Prosjekttittel: Sedimentology of the Battfjellet Formation, Liljevalchfjellet, Svalbard

Hovedveileder: William Helland-Hansen

Med-veileder(e): Sten-Andreas Grundvåg (Universitetet i Tromsø)

Prosjektbeskrivelse/ Project description:

The exceptionally well-exposed Battfjellet Formation in the Central Tertiary Basin of Svalbard is extensively investigated in many areas, but there are still localities that has been poorly studied. Liljevalchfjellet (close to Svea) is one such area. Along the slopes of this mountain excellent outcrops provides opportunity for detailed facies description and correlation. Acquiring data along the mountain will enable the student to establish a reservoir-scale documentation of the deposits. The main scope of the work will be to document facies types, reconstruct paleoenvironment and construct paleogeographic maps.

Krav for opptak/ Prereqesites:

Field work will be carried out at Liljevalchfjellet at relatively high altitudes (500-800m a.s.l.) Accommodation may partly in the buildings at Svea and partly in tent. It is expected that the student has significant experience in camp-based outdoor-life and can manage field work in steep slopes and under harsh conditions. The candidate will have to be in good physical condition in order to stand long daily hikes on scree-covered slopes. The student will be provided with an assistant.

Foreslåtte emner i spesialiseringen (60 sp) / Proposed course plan during the master degree: GEOV360 (10), GEOV362 (5), AG323/GEOV361 (10), GEOV364 (5), GEOV372 (5), GEOV352 (5), GEOV272 (10), GEOV241 (10), possibly substitute with UNIS courses AG322/334/336/338

Masterprogram i geovitenskap – prosjekt for søkere Våren 2017

Prosjekttittel: Using drones to investigate cliffs for rockfall hazard assessment

Hovedveileder: Prof. William Helland-Hansen

Medveiledere: Dr. Casey Nixon, Dr. Christian Haug Eide & Prof. Atle Nesje (all at GEO)

Project description: Motivation: Rockfall is a hazard which causes significant damage both on housing and infrastructure in Western Norway, and significant areas are off-limits to construction due to avalanche hazard. Bedrock fracture patterns and properties are important factors that determines the susceptibility of exposed slopes to rockfall and the size of falling blocks. The link between fracture patterns and types, rockfall recurrence times and block size has not yet been investigated in western Norway.

Hypothesis: 3D models of slopes susceptible to rockfall can be acquired using drones and used to quantify fracture patterns and size of fallen blocks. This can be combined with rockfall records, sedimentary evidence and avalanche modelling to investigate how fracture patterns influence rockfall activity, block size and rockfall hazard.

Test: Virtual outcrop models will be acquired using a drone from a variety of cliffs with rockfall activity in Western Norway, primarily around Bergen. This will be combined with field investigating of the unstable cliffs and their deposits, and avalanche modelling in RockyFor3D.

Outcomes: This project is an opportunity to work on hazards which occur in populated areas in communities around Bergen. It is also an opportunity to use modern data acquisition techniques combined with traditional field work. It will teach the student to integrate knowledge from outcrop and public records, and learn about the relationship between lithology, fracture patterns and rockfal activity. This project will equip the student with expertise which is very relevant for a career both in local management, administration and research.

3D model of unstable rock slopes in a populated area in Selje Municipality. The color shading to the left indicates slope angle.

Krav for opptak: Bachelorgrad i geovitenskap.

Eksterne data: -

Felt, Lab og analyse-arbeid: Field work W Norway to acuire drone data and investigate cliffs and avalanche deposits Processing of virtual outcrop data Interpretation of virtual outcrop data Avalanche modelling

Foreslåtte emner i spesialiseringen (60 sp): GEOV217 Geofarer 10 GEOV228 Kvartærgeologiske dateringsmetodar 10 GEOV229 Geomorfologi 10 GEOV251 Videregåande strukturgeologi 10 GEOV300 Utvalgte emner i geovitenskap 5 GEOV345 Regionalgeologisk feltkurs til Vestlandet 5

GEOV362 Pyreneene feltkurs i tektonikk og sedimentologi 5