Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

26
Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos

Transcript of Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

Page 1: Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

Marisa BernalNeysa Alicea

Angélica BáezBeatriz Ramos

Page 2: Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

if you loose any of your limbs?

Page 3: Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

OutlineDesignPurposeApplicationsEngineering ConsiderationsUniquenessChallengesAreas of OpportunitiesNew Techniques

Page 4: Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

Prosthetic LegLINER

FEET

SOCKET

KNEE

Page 5: Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

Socket

Page 6: Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

PurposeImprove the design of the prosthesis socket,

making it more comfortable for the user, and thus improving the quality of life of people with disabilities.

Page 7: Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

ApplicationsFor medical purposes, related to athletes

with disabilities.

Page 8: Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

Engineering ConsiderationsUse impact analysis in our calculationsUse the safest approximations for our design

Proper material selection

Page 9: Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

Material CharacteristicsLightweight low densityStiff high Elastic Modulus

Minimize

Maximize

Page 10: Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

Material Characteristics

Page 11: Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

Material CharacteristicsMaterial Possibilities

WoodTechnical CeramicsCompositesCarbon Fiber Reinforced Plastics (CFRP)

Carbon Fiber Reinforced Plastic (CFRP)Density: 1.8 g/ccModulus of Elasticity: 225 GPa Sut: 3800 Mpa

Page 12: Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

UniquenessA prosthesis has to be designed to fit the

needs of a specific person.It is customized for each user

Page 13: Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

ChallengeConsider that the product is a medical deviceConvert our project to shapes that we can

analyze with the concept learned in class

Page 14: Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

Material Selection

Page 15: Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

Static Loads Analysis

Page 16: Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

Static Load AnalysisFor this analysis we used the following

equations and obtained the shown values.

28.115m

KN

I

My

262.4

2

3

m

KN

A

V

EICxC

xCqxx

1

26)( 32

21

3

)(x 2.68 x 10-6m= 2.6 x 10-3mm

Page 17: Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

Dynamic Load Analysis

Page 18: Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

Dynamic Load AnalysisImpact Load

Maximum Elongation

M=mass v=velocity at impact L=length E=Elastic Modulus A=area

Page 19: Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

Dynamic Load AnalysisImpact Load

Maximum stress

E = Elastic Modulus δmax = maximum elongation L = length

Page 20: Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

Dynamic Load AnalysisWe calculated the values of:

=3195.38KN = = 128.69MPa =

Using stress concentrator factor Kf = 1.5 = 192.95MPa = 192.95MPa

We calculated the fatigue strength: = 0.4 SUT =1520MPa

amplitudePmeanP

meanamplitude

SCamplitude,

SCmean,

'fS'fS

Page 21: Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

Dynamic Load AnalysisStress concentration factors:

MPaS

S

K

K

K

K

K

f

f

yreliabilit

retermperatu

surface

load

size

5.497

)620.0)(1)(7841.0)(85.0)(792.0(

620.0

1

7841.0

85.0

792.0

Page 22: Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

Dynamic Load AnalysisUsing Modified Goodman theory to calculate

the safety factor:

28.2

3800

95.192

5.497

95.19211

,,

MPa

MPa

MPa

MPan

UTf S

mvm

S

avm

Page 23: Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

Component lifeAproximated it to the behavior of aluminum

a=19922.54, b= -0.2815N = 1.3 x 107 cycles

Sm

Sf

5 x 1081.3 x 107

Sm

Page 24: Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

Areas of OpportunityAssumed values were used since data for our

material was not availableDesign uniqueness.

A different analysis is needed for each person

Page 25: Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

New KnowledgeReinforce teamwork skillsLoads distribution in prosthetic devicesImpact loads

Page 26: Marisa Bernal Neysa Alicea Angélica Báez Beatriz Ramos.

Any Questions???