Marine Ecosystem Modeling & Genomics

36
Ocean & Climate Atmospheric CO 2 , DMS, … Ocean/Atmosphere Circulatio Dust-Iron Influx, pH Ocean Nutrient Fields Ecosystem State Biomass Primary Productivity Net Production/Expor t Community Structure Marine Ecosystem Modeling & Genomics Scott Doney, WHOI Biological Dynamics Environmental Genomics Physiology Population Ecology

description

Biological Dynamics Environmental Genomics Physiology Population Ecology. Marine Ecosystem Modeling & Genomics. Scott Doney, WHOI. Ecosystem State Biomass Primary Productivity Net Production/Export Community Structure. Ocean & Climate Atmospheric CO 2 , DMS, … - PowerPoint PPT Presentation

Transcript of Marine Ecosystem Modeling & Genomics

Page 1: Marine Ecosystem Modeling & Genomics

Ocean & Climate Atmospheric CO2, DMS, …

Ocean/Atmosphere CirculationDust-Iron Influx, pHOcean Nutrient Fields

Ecosystem StateBiomassPrimary ProductivityNet Production/ExportCommunity Structure

Marine Ecosystem Modeling & GenomicsScott Doney, WHOI

Biological DynamicsEnvironmental GenomicsPhysiologyPopulation Ecology

Page 2: Marine Ecosystem Modeling & Genomics

D. Karl (2004)

-Regulation of atm. CO2 & other radiative gases-Responses & feedbacks to warming, dust, …-Predictions require mechanistic understanding

Page 3: Marine Ecosystem Modeling & Genomics

-Aggregate into trophic levels/functional groups-Rates/processes from limited culture/field studies-Many aspects empirically based-Data poor for validation (rates, grazing, loss terms)

“State of the Art” Model

Page 4: Marine Ecosystem Modeling & Genomics

Marine Genomic Revolution

-Leverage advances in Biotech & Human Genome-rapid gene sequencing-O(10) => O(100) marine microbial genomes-“microarrays” => 104-106 simultaneous samples-Environmental genomics:-sample whole communities;-“cultivation independent” techniques

Prochlorococcus Genome mapRocap et al. (2003)

Page 5: Marine Ecosystem Modeling & Genomics

DNA

Brief Genomic Tutorial

-Proteomics-Physiologicalrates

Proteins/EnzymesmRNA

-Gene expression-Response toenvironmental forcing

-Phylogeny-Diversity(DNA, rRNA)-Metabolicpathways

-Phylogeny-Diversity(DNA, rRNA)-Metabolicpathways

-Gene expression-Response toenvironmental forcing

Page 6: Marine Ecosystem Modeling & Genomics

-dominance of uncultured microbes-large number of species/taxa-new metabolic pathways-deeper genetic “potential” (genotype) often unexpressed

Recent Findings

Light-drivenproton pump

Photosynthesis

Page 7: Marine Ecosystem Modeling & Genomics

Sargasso Sea “Shotgun”Analysis(C. Venter)

-filter 2000 liters-collect genome fragments-assemblein silico

~1.2M genes~1800 new“species”

Venter et al. 2004

Page 8: Marine Ecosystem Modeling & Genomics

Bridging Genomics & Ecosystem Modeling

-New processes/dynamics-Data for model evaluationspecies compositionmetabolic rates-Adapt current modelsexpand predicted variablesincrease species diversity(more boxes)model cellular metabolism(more complex boxes)

Page 9: Marine Ecosystem Modeling & Genomics

Molecular Detection of Trichodesmium Phosphorus Stress

+P

-P

Assay development: Cultures grown with (+P) or without (-P) phosphorus.

St. 2

7.5 nM PO7.5 nM PO443-3-

St. 5

7.5 nM PO7.5 nM PO443-3-

12.1 nM PO12.1 nM PO443-3-Dyhrman et al. 2002

Page 10: Marine Ecosystem Modeling & Genomics

Genomics & Modeling

New model paradigms-multi-scale models (e.g., individual based models; continuous distributions) (more flexible “boxes”)nesting; SGS parameterization

-simulate ecological functions, not species “genotype” => “phenotype”(abandon boxes)

-ecological/evolutionary rules for ecosystem assembly(e.g., resiliance; optimal energy/mass flow)

Page 11: Marine Ecosystem Modeling & Genomics

Ocean & Climate Atmospheric CO2, DMS, …

Ocean/Atmosphere CirculationDust-Iron Influx, pHOcean Nutrient Fields

Ecosystem StateBiomassPrimary ProductivityNet Production/ExportCommunity Structure

Biological DynamicsEnvironmental GenomicsPhysiologyPopulation Ecology

How do we build a credible model?How much complexity is enough?Do we know the key processes for climate change?

Genomic data will help to quantify processes & environmental sensitivity

Page 12: Marine Ecosystem Modeling & Genomics
Page 13: Marine Ecosystem Modeling & Genomics
Page 14: Marine Ecosystem Modeling & Genomics

Phylogentic Tree fornifH (N2 fixation) gene

Chesapeake Bay

Jenkins et al. (2004)

Page 15: Marine Ecosystem Modeling & Genomics
Page 16: Marine Ecosystem Modeling & Genomics
Page 17: Marine Ecosystem Modeling & Genomics
Page 18: Marine Ecosystem Modeling & Genomics
Page 19: Marine Ecosystem Modeling & Genomics
Page 20: Marine Ecosystem Modeling & Genomics
Page 21: Marine Ecosystem Modeling & Genomics

Molecular Detection of Trichodesmium Phosphorus Stress

+P

-P

Assay development: Cultures grown with (+P) or without (-P) phosphorus.

St. 2

7.5 nM PO7.5 nM PO443-3-

St. 5

7.5 nM PO7.5 nM PO443-3-

Dyhrman et al. 2002

12.1 nM PO12.1 nM PO443-3-

Species Heterogeneity

Page 22: Marine Ecosystem Modeling & Genomics

Prochlorococcus genomeRocap et al. (2003)

GenomeSequences

-novel metabolic pathways-

Page 23: Marine Ecosystem Modeling & Genomics

Environmental Controls on Plankton Species Distributions: An Example for Coccolithophores

SeaWiFS

Model estimate (probability distribution)

Universal distribution => local selection

Step 1: Satellite mapping of coccolithophorid blooms

Step 2: Compare with modern physical variables (SST, nutrients, light, mixing depth)

Step 3: Develop “conditional probability function”

Step 4: Project future using results of climate models

Future (2060-2070)Iglesias-Rodreguiz (2002)

Page 24: Marine Ecosystem Modeling & Genomics

0.01

28

27

78

12

43

131

SA

11

NZ

BA

Distinct genetic populations of Emiliania huxleyia in Northern and Southern Hemisphere blooms => different physiological responses to environmental forcing

Amplified Fragment Length Polymorphism (AFLP)

Page 25: Marine Ecosystem Modeling & Genomics

DNAProteins/Enzymes

mRNA

-Phylogeny (evolutionary relationships):dominance of uncultured microbesArchea (new Domain of life)

-Diversitylarge number species/taxa, many unidentifiedrelative number of organisms

-Metabolic pathwaysnew functions or unexpected capabilitiesdeeper genetic “potential” (genotype)

mRNA Proteins/Enzymes

Genes to Physiology

Page 26: Marine Ecosystem Modeling & Genomics

DNAProteins/Enzymes

mRNAProteins/Enzymes

Genes to Physiology

-Gene expression-Responses to environmental forcing (physcial, chemical, biological)

Page 27: Marine Ecosystem Modeling & Genomics

DNA

Brief Genomic Tutorial

-Proteomics-PhysiologicalRates-“Phenotype”

Proteins/EnzymesmRNA

-Gene Expression-Response toenvironmental forcing

-Diversity(DNA, rRNA)-Metabolicpathways-Genetic potential“genotype”

-Diversity(DNA, rRNA)-Metabolicpathways-Genetic potential“genotype”

-Gene Expression-Response toenvironmental forcing

Page 28: Marine Ecosystem Modeling & Genomics

Molecular/genomic data-validation-new metabolism-why are some pathways turned on-improved

Page 29: Marine Ecosystem Modeling & Genomics

Current generation models-many aspects empirically based-aggregate trophic levels-geochemical functional groups

Increased biological complexity

-biological “sub-grid-scale” parameterization

Molecular/genomic data-validation-new metabolism-why are some pathways turned on-improved

Page 30: Marine Ecosystem Modeling & Genomics

-Microbes dominate marine ecology/biogeochem.-Regulation of atm. CO2 & other radiative gases-Responses & feedbacks to warming, dust, …-Predictions require mechanistic understanding

Page 31: Marine Ecosystem Modeling & Genomics

Boyd and Doney (2002)

Regional changes in ecosystem boundaries, productivity & community structure

Warming & stratification Increased N2 fixation

Reduced dust??Increased N2 fixation

Page 32: Marine Ecosystem Modeling & Genomics

Phytoplankton

Fixed C/N/P, Variable Fe/C, Chl/C, Si/C

Diatoms (C, Chl, Fe, Si)

Diazotrophs (C, Chl, Fe)

Picoplankton /Coccolithophores (C, Chl, Fe, CaCO3)

Zooplankton (C)

Nutrients

Ammonium

Nitrate

Phosphate

Silicate

Iron

Dissolved Organic Material (C, N, P, Fe)

Sinking Particulate Material (C, (N, P), Fe, Si, CaCO3, Dust)

ECO-C3 Marine Ecosystem Component

Page 33: Marine Ecosystem Modeling & Genomics

Ecosystem Modeling

-Population dynamics based-Multiple limiting nutrients-Plankton community structure (size, geochemical functionality)-Embed in full global 3-D physics model

Page 34: Marine Ecosystem Modeling & Genomics
Page 35: Marine Ecosystem Modeling & Genomics

DNA

Brief Genomic Tutorial

-Proteomics-PhysiologicalRates-“Phenotype”

Proteins/EnzymesmRNA

-Gene Expression-Response toenvironmental forcing

-Diversity(DNA, rRNA)-Metabolicpathways-Genetic potential“genotype”

-Diversity(DNA, rRNA)-Metabolicpathways-Genetic potential“genotype”

-Gene Expression-Response toenvironmental forcing

Page 36: Marine Ecosystem Modeling & Genomics