Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L. Pope 1

35
Trace gases measurements from the Global Hawk Whole Air Sampler during the Airborne Tropical Tropopause Experiment 2013 (ATTREX-2) Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L. Pope 1 1) Division of Marine and Atmospheric Chemistry, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA 2) Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, Colorado, USA with data from MMS and NOAA O3 groups 1

description

Trace gases measurements from the Global Hawk Whole Air Sampler during the Airborne Tropical Tropopause Experiment 2013 ( ATTREX-2) . Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L. Pope 1 - PowerPoint PPT Presentation

Transcript of Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L. Pope 1

Page 1: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

1

Trace gases measurements from the Global Hawk Whole Air Sampler during

the Airborne Tropical Tropopause Experiment 2013 (ATTREX-2)

Maria Navarro1, E. Atlas1, R. Lueb1, R. Hendershot2, S. Gabbard2, X. Zhu1, L. Pope1

1) Division of Marine and Atmospheric Chemistry, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA

2) Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, Colorado, USA

with data from MMS and NOAA O3 groups

Page 2: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

2

OBJECTIVES

• Characterize variability and distribution of organic trace gases in the UT/LS

• Evaluate the chemical gradients in the TTL

• Evaluate the budget and partitioning of organic bromine

• Examine source signatures and input of natural vs. anthropogenic trace species in the tropical UT

Page 3: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

3

GWAS on ATTREX-2

RF01

RF03

RF04

RF05

RF06

Altit

ude

(m)

UTC (sec)

388 samples 45 vertical profiles

RF01RF03RF04RF05RF06

Page 4: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

4

ATTREX-2 TRACE GAS SPECIES FROM GWAS

Chlorofluorocarbons Yrs SCFC-11 50 ACFC-12 102 ACFC-113 85 A

HalonsHalon 1211 20 AHalon 2402 20 A

Hydrochlorofluoroarbons/ HydrofluorocarbonsHCFC_141b 9.4 AHCFC-22 13 AHCFC_142b 19.5 A

Solvent Carbon Tetrachloride 40 AMethyl chloroform 4.8 A

OtherCarbonyl Sulfide (COS) 30 N/A/BMethyl Chloride 1.5 N/B

Solvents Yrs SMethylene Chloride 0.3 AChloroform 0.4 A/NTetrachloroethylene 0.3 ATrichloroethylene 0.02 A

Methyl HalidesBromoform 0.1 NMethyl Bromide 0.8 A/N/BMethylene Bromide 0.4 NMethyl Iodide 0.01 NCHxBryClz 0.1 N

Organic nitratesMethyl nitrate 0.08 A/NEthyl nitrate 0.04 A/NPropyl nitrate 0.03 A/N

Non- Methane Halocarbons Ethane (C2H6) 0.2 AEthyne 0.06 A/BPropane 0.04 ABenzene 0.04 A/B

Others1,2 dichloro ethane 0.3 AChlorobenzene 0.05 A

Longer Lived Species Shorter Lived Species Shorter Lived Species

SourcesA= antropogenic/industrialN= natural/marineB=Biomass burning

Page 5: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

5

AREA OF ANALYSIS

27.0

18.3

LAT (deg)

ALT

(Km

)

Page 6: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

6

VERTICAL CHEMICAL GRADIENTS LONGER LIVED SPECIES

420

400

380

360

Thet

a (K

)

600560520480CFC-12 (pmol/mol)

420

400

380

360

Thet

a (K

)

300280260240220200180160CFC-11 (pmol/mol)420

400

380

360

Thet

a (K

)

90858075706560CFC-113 (pmol/mol)

420

400

380

360

Thet

a (K

)

5.04.54.03.53.02.5Halon 1211 (pmol/mol)420

400

380

360

Thet

a (K

)

3028262422201816HCFC 141b (pmol/mol)

420

400

380

360

Thet

a (K

)

11010090807060CCl4 (pmol/mol)

Bins of 10K θ

4% 2%

2% 7%

4%6%

Page 7: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

7

VERTICAL CHEMICAL GRADIENTS SHORTER LIVED SPECIES

420

400

380

360

Thet

a (K

)

10080604020Ethyne (pmol/mol)

420

400

380

360

Thet

a (K

)

600500400300200100Ethane (pmol/mol)

420

400

380

360

Thet

a (K

)

987654Chloroform (pmol/mol)

420

400

380

360

Thet

a (K

)

454035302520Methylene Chloride (pmol/mol)

27% 28%

74% 78%

Bins of 10K θ

Page 8: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

8

420

400

380

360

Thet

a (K

)

1.00.80.60.40.20.0Bromoform (pmol/mol)

VERTICAL CHEMICAL GRADIENTS SHORTER LIVED SPECIES

420

400

380

360

Thet

a (K

)

1816141210861,2 dichloroethane (pmol/mol)

420

400

380

360

Thet

a (K

)

302520151050Methyl nitrate (pmol/mol)

420

400

380

360

Thet

a (K

)

1.21.00.80.60.40.20.0C2Cl4 (pmol/mol)

75% 80%

36%69%

Bins of 10K θ

Page 9: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

9

420

400

380

360

Thet

a (K

)

302520151050Methyl nitrate (pmol/mol)

(?) ARTIFACT19x103

1817161514

ALT

(m)

120x1031101009080UTC (sec)

Page 10: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

10

FRACTIONS AT 366 K

360 380 400 4200

0.4

0.8

1.2

Potential Temperature (K)

Frac

tion

of m

ixin

g ra

tio a

t 366

K

7%

71%

75%

Page 11: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

11

GROUPS FOR ORGANIC BROMINE BUDGET

TOTAL HALONS: HALON 1211+ (2*HALON 2402)+ HALON 1301

CH3Br= CH3Br

TOTAL SHOTER LIVED SPECIES (SLS) = (3* CHBr3)+ (2* CH2Br2) + CHBrCl2+ (2*CHBr2CL)+ CH2BrCL

BROMINATED SPECIES

HalonsHalon 1211 Halon 2402Halon 1301ChlorofluorocarbonsCFC-11 50 ACFC-12 102 ACFC-113 85 AHydrochlorofluoroarbons/ HydrofluorocarbonsHCFC_141b 9.4 AHCFC-22 13 AHCFC_142b 19.5 A

Solvent Carbon Tetrachloride 40 AMethyl chloroform 4.8 A

OtherCarbonyl Sulfide (COS) 30 N/A/BMethyl Chloride 1.5 N/B

Methyl HalidesBromoform Methyl BromideMethylene Bromide Methyl Iodide CHxBryClz

Solvents Yrs SMethylene Chloride 0.3 AChloroform 0.4 A/NTetrachloroethylene 0.3 ATrichloroethylene 0.02 A

Organic nitratesMethyl nitrate 0.08 A/NEthyl nitrate 0.04 A/NPropyl nitrate 0.03 A/N

Non- Methane Halocarbons Ethane (C2H6) 0.2 AEthyne 0.06 A/BPropane 0.04 ABenzene 0.04 A/B

Others1,2 dichloro ethane 0.3 AChlorobenzene 0.05 A

Longer Lived Species Shorter Lived Species Shorter Lived Species

SourcesA= antropogenic/industrialN= natural/marineB=Biomass burning

CBrClF2C2Br2F4CBrF3

• CHBrCl2 Bromodichloromethane• CHBr2Cl Dibromochloromethane• CH2BrCl Bromochloromethane

0.1 N0.8 A/N/B 0.4 N0.01 N 0.1 N

Methyl Bromide CH3Br

Yrs S 20 A20 A

CHBr3

CH2Br2

Page 12: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

12

15

10

5

0

Tota

l Org

anic

Br,

Tota

l Hal

ocar

bons

, Tot

al S

LS, C

H3B

r (pm

ol o

f Br/m

ol)

410400390380370360350Potential Temp (K)

TOTAL ORGANIC BROMINE BUDGET

TOTAL HALONS

CH3Br

TOTAL SLS

TOTAL ORGANIC Br

Bins of 10K θ

Page 13: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

13

ORGANIC BROMINE TENDENCYATTREX 2013 CR-AVE 2006

Total Organic BromineTotal HalonsTotal SLSCH3Br

Total Organic BromineHalonsShort lived BrCH3Br

Bins of 10K θ Measurements

25

20

15

10

5

0390385380375370365360

Potential Temp (K)

pmol

Br/

mol

Page 14: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

14

ORGANIC BROMINE CONTRIBUTIONSGROUP CONTRIBUTIONS

SHORTER LIVED SPECIES DISTRIBUTIONS

41%

24%

35% 43%

20%

37%Total HalonsTotal SLSCH3Br

350-370 K 375-395 K

5%

46%

2%

6%

41%

6%

54%

3%

6%

31%CH2BrClCH2Br2CHBrCl2CHBr2ClCHBr3

Page 15: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

15

TTL ORGANIC BROMINE COMPARISON

ATTREX-2 TC4 CR-AVE Year 2013 2007 2006Potential Temp 350-370 K 375-395K ~ 380-400 K 360-390 K

ppt sd ppt sd ppt sd ppt sd

TOTAL ORGANIC Br 19.46 1.36 18.34 1.20 17.3 1.4 17.1 1.0

SLBr 4.76 0.73 3.70 0.64 0.9 - 1.71 0.92Methyl bromide 6.77 0.23 6.81 0.23 8.1 0.5 7.85 0.17Halons 7.93 0.36 7.83 0.86 7.6 - 7.58 0.27

Fraction SLBr 0.24 0.15 0.20 0.17 0.05 - 0.10 0.05Fraction CH3Br 0.35 0.03 0.37 0.03 0.47 - 0.46 0.02Fraction Halons 0.41 0.04 0.43 0.11 0.43 - 0.44 0.03

Page 16: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

16

43%

20%

37%

ORGANIC BROMINE FROM CAMPAIGNS

CR-AVE 2006

47% CH3Br

24% H1211

17% H1301

5.2 % H24015.2 %

CH2Br22.3%

sls

45.8% CH3Br

10 % SLS

15.2

% H

1301

23.9% H1211 5.2 % H2401

41%

24%

35%

Total HalonsTotal SLSCH3Br

350-370 K 375-395 K

44%

46%

43%

TC4 20075%

ATTREX 2013

Page 17: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

17

SHORTER LIVED SPECIES COMPARISONATTREX 2013

5%

46%

2%

6%

41%

6%

54%

3%

6%

31%

CR-AVE 2006

350-370 K 375-395 K

64.5%

6.7%

4.1% 3.3%

17.4%3.7%

CH2BrClCH2Br2CHBrCl2CHBr2ClCHBr3C2H4Br2HalothaneWHY THE DIFFERENCES?

Page 18: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

18

ATTREX-2 O3 MIXING RATIOS

18x103

17

16

15

14

ALT

(m)

20100-10 LAT (deg)

400

400

390

390

390 380

380

380

370

370

370

360

360

Page 19: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

19

O3 AND SLBr SPECIES COMPARISON

0

50

100

150

200

250

300

350

400

320 340 360 380 400 420 440

ATTREX2TC4CRAVE

Ozo

ne (p

pbv)

THETA

0

50

100

150

200

250

300

350

400

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

ATTREX2TC4CRAVE

O3_

ppbv

BROMOFORM (pptv)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1 1.2 1.4

ATTREX2TC4CRAVE

BR

OM

OFO

RM

CH2BR2

Page 20: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

20

Chlorofluorocarbons Yrs SCFC-11 50 ACFC-12 102 ACFC-113 85 A

HalonsHalon 1211 20 AHalon 2402 20 A

Hydrochlorofluoroarbons/ HydrofluorocarbonsHCFC_141b 9.4 AHCFC-22 13 AHCFC_142b 19.5 A

Solvent Carbon Tetrachloride 40 AMethyl chloroform 4.8 A

OtherCarbonyl Sulfide (COS) 30 N/A/BMethyl Chloride 1.5 N/B

Solvents Yrs SMethylene Chloride 0.3 AChloroform 0.4 A/NTetrachloroethylene 0.3 ATrichloroethylene 0.02 A

Methyl HalidesBromoform 0.1 NMethyl Bromide 0.8 A/N/BMethylene Bromide 0.4 NMethyl Iodide 0.01 NCHxBryClz 0.1 N

Organic nitratesMethyl nitrate 0.08 A/NEthyl nitrate 0.04 A/NPropyl nitrate 0.03 A/N

Non- Methane Halocarbons Ethane (C2H6) 0.2 AEthyne 0.06 A/BPropane 0.04 ABenzene 0.04 A/B

Others1,2 dichloro ethane 0.3 AChlorobenzene 0.05 A

Longer Lived Species Shorter Lived Species Shorter Lived Species

SourcesA= anthropogenic/industrialN= natural/marineB=Biomass burning

NATURAL AND ANTHROPOGENIC SPECIES

Page 21: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

21

18x103

17

16

15

ALT

(m)

20100-10LAT (deg)

400

400

390

390

390 380

380

380

370 370

360

360

18x103

17

16

15

ALT

(m)

20100-10LAT (deg)

400

400

390 390

390 380

380

380

370 370

360

360

LATITUDINAL DISTRIBUTIONETHANE

18x103

17

16

15

ALT

(m)

20100-10LAT (deg)

400 390

380

370

360

TETRACHLOROETHYLENE

BROMOFORM METHYL NITRATE

18x103

17

16

15

ALT

(m)

20100-10LAT (deg)

400

400 390 380 380

370

370

360 360

pptv pptv

pptvpptv

Page 22: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

22

SUMMARYLONGER AND SHORTER LIVED SPECIES• Mixing ratios of longer lived species change by less than 10%, while the mixing ratios of shorter lived species change around 70 to 75 % in the TTL

ORGANIC BROMINE BUDGET• Total organic bromine for ATTREX 2013 range between 19.5± 1.4 and 18.3 ± 1.2 pmol of Br/mol for potential temperature ranges of 350-370 and 375-395 K respectively. This value is also in similar to that found in previous campaigns

• However, contributions of SLS to the total organic bromine budget are slightly higher during ATTREX 2013. Delivery of 4.8 ±0.7 pmol/mol of organic bromine to the base of the TTL is estimated. Further analysis is needed.

NATURAL AND ANTHROPOGENIC SPECIES• Overall distributions reflect emission sources and lifetimes. Origins of higher concentration features will be diagnosed with trajectory analysis and other tracer correlations.

Page 23: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

23

EXTRA SLIDES

Page 24: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

24

GLOBAL HAWK WHOLE AIR SAMPLER (GWAS)

90 sample canisters(custom Entech Inst.)

High vacuum solenoid valves (Parker Series 99)

Dual air compressor (Metal Bellows)

Computer controller (Custom built)

Fig 1: GWAS inside of the Global Hawk (area 61)

Page 25: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

25

GLOBAL HAWK WHOLE AIR SAMPLER (GWAS) Includes:

• High Performance Gas Chromatograph / Mass Selective Detector/ Flame ionization detector / electron capture detector

• Unity 2TM Thermal Desorber

• CIA Advantage

• Variety of compounds analyzed with this instrument ( hydrocarbons, halocarbons, organic nitrates, solvents)

• Mixing ratios are calculated based on previous standard measurements and calibrations

Page 26: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

26

LONGITUDINAL DISTRIBUTION

18x103

17

16

15

14

Alti

tude

(m)

-160 -140 -120 -100LONGITUD (deg)

410

405

400 400

395

395

395 390

390 390

385

385

385 380

380 375

375

375

375

370

370

370

365

365

365

360

360 360 355

355

0.50.1Bromoform

18x103

17

16

15

14

Alti

tude

(m)

-160 -140 -120 -100LONGITUDE (deg)

410

405

400 400

395

395

395 390

390 390

385

385

385 380

380 375

375

375

375

370

370

370

365

365 3

65

360

360 360 355

355

302010Methyl Nitrate

18x103

17

16

15

14

Alti

tude

(m)

-160 -140 -120 -100LONGITUDE (deg)

410

405

400 400

395

395

395 390

390 390 385

385

385

380

380 375

375

375

375

370

370

370

365

365

365

360

360 360 355

355

1.20.80.4Tetrachloroethylene

18

17

16

15

x103

-160 -140 -120 -100

400

400

390 380

380

380 370

370

360 360

500100ETHANE

Page 27: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

27

VERTICAL CHEMICAL GRADIENTS

420

400

380

360

Thet

a (K

)

454035302520Methylene Chloride (pmol/mol)

440

420

400

380

360

Thet

a (K

)

5.24.84.44.0Methyl Chloroform (pmol/mol)

440

420

400

380

360

Thet

a (K

)

0.80.60.40.2Halon 2402 (pmol/mol)

440

420

400

380

360

Thet

a (K

)

300280260240220200180160HCFC-22 (pmol/mol)

440

420

400

380

360

Thet

a (K

)

3028262422201816HCFC 142b (pmol/mol)

440

420

400

380

360

Thet

a (K

)

560520480440400OCS (pmol/mol)

Page 28: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

28

VERTICAL CHEMICAL GRADIENTS

440

420

400

380

360

Thet

a (K

)

8.07.06.05.0Methyl Bromide (pmol/mol)

440420400380360C

H4

TAC

O :-

)

18001750170016501600UTC (sec)

440

420

400

380

360

Thet

a (K

)

8.07.06.05.0Methyl Bromide (pmol/mol)

440420400380360

O3

12008004000UTC

Page 29: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

29

VERTICAL CHEMICAL GRADIENTS

440

420

400

380

360

Thet

a (K

)

0.300.250.200.150.100.050.00CH2BrCl (pmol/mol)

440

420

400

380

360

Thet

a (K

)

0.150.100.050.00-0.05-0.10CH3I (pmol/mol)

440

420

400

380

360

Thet

a (K

)

0.200.150.100.05CHBrCl2 (pmol/mol)

440

420

400

380

360

Thet

a (K

)

0.50.40.30.20.1Chlorobenzene (pmol/mol)

Page 30: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

30

VERTICAL CHEMICAL GRADIENTS

440

420

400

380

360

Thet

a (K

)

50403020100Propane (pmol/mol)

440

420

400

380

360

Thet

a (K

)

4321Ehtyl nitrate (pmol/mol)

440

400

360Thet

a (K

)

1.20.80.40.0Isopropyl nitrate (pmol/mol)

440

400

360Thet

a (K

)

121086420Benzene (pmol/mol)

Page 31: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

31

correlations30

25

20

15

10

5

MeO

NO

2 (p

mol

/mol

)

120010008006004002000O3 (ppb)

4.0

3.8

3.6

3.4Hal

on 1

211

(pm

ol/m

ol)

120010008006004002000O3 (ppb)

1.0

0.9

0.8

0.7

0.6

0.5

CH

2Br2

(pm

ol/m

ol)

120010008006004002000O3 (ppb)

30

25

20

15

10

5

MeO

NO

2 (p

mol

/mol

)

8765CHCl3 (pmol/mol)

Page 32: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

32

8.58.07.57.06.5

390

380

370

360

350

400350300250200

390

380

370

360

350

340

N2O

SF6

Page 33: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

33

0

50

100

150

200

250

300

350

400

0 0.5 1 1.5

ATTREX2TC4

O3_

ppbv

BROMOFORM (pptv)

Page 34: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

34

0

50

100

150

200

250

300

350

400

320 340 360 380 400 420 440

ATTREX2TC4

Ozo

ne (p

pbv)

THETA

Page 35: Maria Navarro 1 , E. Atlas 1 , R. Lueb 1 , R. Hendershot 2 , S. Gabbard 2 , X. Zhu 1 , L.  Pope 1

35

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

ATTREX2TC4

BR

OM

OFO

RM

CH2BR2