M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

15
m.apollonio am041207 1 M. Apollonio University of Oxford update on STEP III
  • date post

    22-Dec-2015
  • Category

    Documents

  • view

    217
  • download

    0

Transcript of M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

Page 1: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 1

M. Apollonio University of Oxford

update on STEP III

Page 2: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 2

the case for STAGE III

first demonstration of cooling with solid absorber(s) ?

Page 3: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 3

Matching Coils currents

Set up a procedure to find the right MC currents for a matched beam:a) (trk1-2)=1/, =0b) fix (min)

Z (m)

Chosen configuration must comply with coil/physics constraints:1- max current2- temp. margin3- (min) minimise m.s.

B (

T)

(m

)

Page 4: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 4

800 mm

Page 5: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 5

800 mm

T=97.9 % T=98.4 %

emi=10 mm rad(a) (b)

(a)

(b)

Page 6: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 6

NB: beta_min = 49 cm (was 60cm at CM14)

means M1 1.4x, M2 0.7xmain issuesa)current increase: is it within

tolereances?b)magnet forces?c)MC distance = 800 mm. Can it be

changed?

300 A!

Page 7: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 7

emittance growth in vacuum

Z (m)

T (f

inal

)/ T

(in

itia

l)

i=1.0 cm rad

0 1 2 3 4 5 6

T/T=2.8%

2.8 %T/

T Z (m)

T (cm rad)

Page 8: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 8

xqByPxPxqB

PqBx

xPxPP

qBxP

P

qBxP

P

PxPP

P

xPcm

xxxy

xy

xyz

zx

z

zy

z

xxx

z

xNN

2

2222

: emittance evolution in a cylindrical symmetric channel

non uniform Bz can cause growth (e.g. flip region)

Z (m)

T (

m r

ad)

ecalc9

MUC-NOTE 0071 prediction

Most of the effect explainedMost of the effect explained

Page 9: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 9

(a) 13 cm LiH absorber in the middle

Page 10: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 10

-7.3%

-3%

-3%

Pz vs Zemi vs Z

Beta= 70cm

Beta= 50 cm

Page 11: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 11

(b) 13 cm LiH absorber in the II solenoid

Page 12: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 12

vacuum (no absorbers)

LiH absorberLiH absorber - vacuum

Page 13: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 13

00

1

eq

p

p

00

1

eq

p

p

equilibrium

vacuum growth subtracted

emi. % variation

Page 14: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 14

Page 15: M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

m.apollonio am041207 15

Conclusion

1)Slow B flip emi growth. Has to be minimized

2)a single absorber seems to work better

3) the middle point cannot have a low beta cooling effect reduced

4) reduce beta_centre increase M1 currents forces

5) better to place abs inside the II solenoid

uneasy6) transmission: large radius spool

piece doesn’t seem to create dramatic effects