Manual for SOA Exam MLC. - Binghamton...

35
1/35 Chapter 11. Poisson processes. Manual for SOA Exam MLC. Chapter 11. Poisson processes. Section 11.3. Interarrival times. c 2008. Miguel A. Arcones. All rights reserved. Extract from: ”Arcones’ Manual for SOA Exam MLC. Fall 2009 Edition”, available at http://www.actexmadriver.com/ c 2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

Transcript of Manual for SOA Exam MLC. - Binghamton...

  • 1/35

    Chapter 11. Poisson processes.

    Manual for SOA Exam MLC.Chapter 11. Poisson processes.Section 11.3. Interarrival times.

    c©2008. Miguel A. Arcones. All rights reserved.

    Extract from:”Arcones’ Manual for SOA Exam MLC. Fall 2009 Edition”,

    available at http://www.actexmadriver.com/

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 2/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Arrival time

    For n ≥ 1, let Sn be the arrival time of the n–th event, i.e.

    Sn = inf{t ≥ 0 : N(t) = n}.

    Notice that N(Sn) = n and N(t) < n, for t < Sn.

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 3/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    An useful relation between N(t) and Sn is

    {Sn ≤ t}={the n−th occurrence happens before time t}={there are n or more occurrences in the interval [0, t]}={N(t) ≥ n}.

    Since {Sn ≤ t} = {N(t) ≥ n},

    {Sn > t} = {N(t) < n}

    and

    {N(t) = n} = {N(t) ≥ n} ∩ {N(t) < n + 1}={Sn ≤ t} ∩ {Sn+1 > t} = {Sn ≤ t < Sn+1}.

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 4/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Theorem 1For each integer n ≥ 1 and each t ≥ 0,

    P{Gamma(n, 1) > t} = P{Poisson(t) ≤ n − 1}.

    Proof.Using that

    ∫xn

    n! e−x dx = −e−x

    ∑nj=0

    x j

    j! + c ,

    P{Gamma(n, 1) > t} =∫ ∞

    t

    xn

    n!e−x dx = −e−x

    n∑j=0

    x j

    j!

    ∣∣∣∣∞t

    =− e−tn∑

    j=0

    t j

    j!= P{Poiss(t) ≤ n − 1}.

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 5/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Theorem 2Sn has a gamma distribution with parameters α = n and β =

    1λ .

    Proof.By Theorem 1,

    P{Sn > t} = P{N(t) < n} = P{Poiss(λt) ≤ n − 1}

    =P{Gamma(n, 1) > λt} = P{

    Gamma(

    n,1

    λ

    )> t

    }.

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 6/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Since Sn has a gamma distribution with parameters α = n andβ = 1λ , Sn has density function

    fSn(t) =λntn−1e−λt

    (n − 1)!, t ≥ 0,

    E [Sn] =nλ and Var(Sn) =

    nλ2

    .The c.d.f. of Sn is

    FSn(t) = P{Sn ≤ t} = P{N(t) ≥ n} =∑∞

    j=n e−λt (λt)j

    j! .

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 7/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Example 1

    Let {N(t) : t ≥ 0} be a Poisson process with rate λ = 3. Let Sndenote the time of the occurrence of the n–th event. Calculate:(i) P{S3 > 5}.(ii) The density of S3.(iii) Find the expected value and the variance of S3.(iv) P{S2 > 3,S5 > 7}.

    Solution:

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 8/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Example 1

    Let {N(t) : t ≥ 0} be a Poisson process with rate λ = 3. Let Sndenote the time of the occurrence of the n–th event. Calculate:(i) P{S3 > 5}.(ii) The density of S3.(iii) Find the expected value and the variance of S3.(iv) P{S2 > 3,S5 > 7}.

    Solution:(i)

    P{S3 > 5} = P{N(5) ≤ 2} = e−15(

    1 + 15 +152

    2

    )=0.00003930844818.

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 9/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Example 1

    Let {N(t) : t ≥ 0} be a Poisson process with rate λ = 3. Let Sndenote the time of the occurrence of the n–th event. Calculate:(i) P{S3 > 5}.(ii) The density of S3.(iii) Find the expected value and the variance of S3.(iv) P{S2 > 3,S5 > 7}.

    Solution:(ii) S3 has a gamma distribution with α = 3 and β =

    13 . Hence, the

    density of S3 is

    fS3(t) =33t2e−3t

    3!=

    9t2e−3t

    2, t ≥ 0.

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 10/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Example 1

    Let {N(t) : t ≥ 0} be a Poisson process with rate λ = 3. Let Sndenote the time of the occurrence of the n–th event. Calculate:(i) P{S3 > 5}.(ii) The density of S3.(iii) Find the expected value and the variance of S3.(iv) P{S2 > 3,S5 > 7}.

    Solution:(iii)

    E [S3] = 3(1/3) = 1 andVar(S3) = 3(1/3)2 = 1/3.

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 11/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    (iv)

    P{S2 > 3,S5 > 7} = P{N(3) ≤ 1,N(7) ≤ 4}=P{N(3) = 0,N(7) ≤ 4}+ P{N(3) = 1,N(7) ≤ 4}=P{N(3) = 0}P{N(7)− N(3) ≤ 4}

    + P{N(3) = 1}P{N(7)− N(3) ≤ 3}

    =e−9e−12(

    1 + 12 +122

    2+

    123

    6+

    124

    24

    )+ e−9(9)e−12

    (1 + 12 +

    122

    2+

    123

    6

    )=e−21(1237) + e−21(3357) = (3.483428261)10−6.

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 12/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Theorem 3The joint density of (S1, . . . ,Sn) is

    fS1,...,Sn(s1, . . . , sn) = λne−λsn , if 0 < s1 < s2 < · · · < sn.

    Proof: Given 0 < s1 < s2 < · · · < sn, take h > 0 small enough.Then,

    P{S1 ∈ (s1, s1 + h], . . . ,Sn ∈ (sn, sn + h]}=P{N(s1) = 0,N(s1 + h)− N(s1) = 1,N(s2)− N(s1 + h) = 0, . . . ,

    N(sn)− N(sn−1 + h) = 0,N(sn + h)− N(sn) = 1}=e−λs1e−λhλhe−λ(s2−s1−h) · · · e−λ(sn−sn−1−h)e−λhλh=λnhne−λsn

    fS1,...,Sn(s1, . . . , sn)

    = limh→0+

    P{S1 ∈ (s1, s1 + h], . . . ,Sn ∈ (sn, sn + h]}hn

    = λne−λsn .

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 13/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    The distribution of (S1, . . . ,Sn−1) given Sn is uniform on0 < s1 < s2 < · · · < sn, i.e.

    fS1,...,Sn−1|Sn(s1, . . . , sn−1|sn) =fS1,...,Sn(s1, . . . , sn)

    fSn(sn)

    =λne−λsn

    λnsn−1n e−λsn(n−1)!

    =(n − 1)!

    sn−1n, for 0 < s1 < s2 < · · · < sn.

    Since a Poisson process is a stationary process, we should expectthis distribution.

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 14/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Let Tn = Sn − Sn−1 be the time elapsed between the (n − 1)–thand the n–th event. Tn is called the interarrival between the(n − 1)–th and the n–th event.

    Theorem 4{Tn}∞n=1, are independent identically distributed exponentialrandom variables having mean 1λ .

    Theorem 4 says that if the rate of events is λ events per unit oftime, then the expected waiting time between events is 1λ .Theorem 4 implies that E [Tn] =

    1λ , Var(Tn) =

    1λ2

    and Tn hasdensity function

    fTn(t) = λe−λt , t ≥ 0.

    Theorem 4 implies that for k1 < k2 < · · · < km,

    Sk1 ,Sk2 − Sk1 ,Skm − Skm−1

    are independent r.v.’s.

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 15/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Proof.We have that (S1, . . . ,Sn) = (T1,T1 + T2, . . . ,T1 + · · ·+ Tn).This transformation has Jacobian one. Hence, the density of(T1, . . . ,Tn) is

    fT1,...,Tn(t1, . . . , tn) = fS1,...,Sn(t1, t1 + t2, . . . , t1 + · · ·+ tn)

    =λne−λ(t1+···+tn) =n∏

    j=1

    λe−λtj .

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 16/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Given a sequence of independent identically distributed r.v.’s{Tn}∞n=1 with an exponential distribution with mean 1λ , define

    N(t) = sup{n ≥ 0 : Sn ≤ t}, t ≥ 0,

    where Sn =∑n

    j=1 Tj , n ≥ 1, Sn = 0. It is possible to prove that{N(t) : t ≥ 0} is a Poisson process with rate λ. Hence, from aPoisson process we can obtain a sequence of independentidentically distributed r.v.’s with an exponential distribution, andreciprocally from a sequence of independent identically distributedr.v.’s with an exponential distribution, we can obtain a Poissonprocess.

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 17/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Example 2

    Let {N(t) : t ≥ 0} be a Poisson process with rate λ = 3. Let Sndenote the time of the occurrence of the n–th event. LetTn = Sn − Sn−1 be the elapsed time between the (n − 1)–th andthe n–th event. Calculate:(i) The density of T6.(ii) Find the expected value and the variance of T6.(iii) Find Cov(T3,T8).(iv) Find Cov(S2,S9).

    Solution:

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 18/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Example 2

    Let {N(t) : t ≥ 0} be a Poisson process with rate λ = 3. Let Sndenote the time of the occurrence of the n–th event. LetTn = Sn − Sn−1 be the elapsed time between the (n − 1)–th andthe n–th event. Calculate:(i) The density of T6.(ii) Find the expected value and the variance of T6.(iii) Find Cov(T3,T8).(iv) Find Cov(S2,S9).Solution:(i) T6 has an exponential distribution with mean

    13 . Hence, the

    density of T6 isfT6(t) = 3e

    −3t , t ≥ 0.

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 19/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Example 2

    Let {N(t) : t ≥ 0} be a Poisson process with rate λ = 3. Let Sndenote the time of the occurrence of the n–th event. LetTn = Sn − Sn−1 be the elapsed time between the (n − 1)–th andthe n–th event. Calculate:(i) The density of T6.(ii) Find the expected value and the variance of T6.(iii) Find Cov(T3,T8).(iv) Find Cov(S2,S9).Solution:(ii)

    E [T6] = (1/3),Var(T6) = (1/3)2 = 1/9.

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 20/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Example 2

    Let {N(t) : t ≥ 0} be a Poisson process with rate λ = 3. Let Sndenote the time of the occurrence of the n–th event. LetTn = Sn − Sn−1 be the elapsed time between the (n − 1)–th andthe n–th event. Calculate:(i) The density of T6.(ii) Find the expected value and the variance of T6.(iii) Find Cov(T3,T8).(iv) Find Cov(S2,S9).Solution:(iii) Cov(T3,T8) = 0.

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 21/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Example 2

    Let {N(t) : t ≥ 0} be a Poisson process with rate λ = 3. Let Sndenote the time of the occurrence of the n–th event. LetTn = Sn − Sn−1 be the elapsed time between the (n − 1)–th andthe n–th event. Calculate:(i) The density of T6.(ii) Find the expected value and the variance of T6.(iii) Find Cov(T3,T8).(iv) Find Cov(S2,S9).Solution:(iv)

    Cov(S2,S9) = Cov(S2,S2+S9−S2) = Cov(S2,S2) = 2(1/3)2 = 2/9.

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 22/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Theorem 5Given 0 ≤ n < m and t > 0,

    P{Sm − t > s|N(t) = n} = P{Sm−n > s}, s > 0,

    andE [Sm|N(t) = n] = t + E [Sn−m].

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 23/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Theorem 5Given 0 ≤ n < m and t > 0,

    P{Sm − t > s|N(t) = n} = P{Sm−n > s}, s > 0,

    andE [Sm|N(t) = n] = t + E [Sn−m].

    Proof: We have that

    P{Sm − t > s|N(t) = n} = P{Sm > t + s|N(s) = n}=P{N(t + s) < m|N(t) = n}=P{N(t + s)− N(t) < m − n|N(t) = n}=P{N(t + s)− N(t) < m − n} = P{N(s) < m − n} = P{Sm−n > s}.

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 24/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Theorem 5Given 0 ≤ n < m and t > 0,

    P{Sm − t > s|N(t) = n} = P{Sm−n > s}, s > 0,

    andE [Sm|N(t) = n] = t + E [Sn−m].

    Proof:

    E [Sm|N(t) = n] = t + E [Sm − t|N(t) = n]

    =t +

    ∫ ∞0

    P{Sm − t > s|N(t) = n} ds

    =t +

    ∫ ∞0

    P{Sm−n > s} ds = t + E [Sm−n].

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 25/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Theorem 5Given 0 ≤ n < m and t > 0,

    P{Sm − t > s|N(t) = n} = P{Sm−n > s}, s > 0,

    andE [Sm|N(t) = n] = t + E [Sn−m].

    A Poisson process is a Markov process. it starts anew. The numberof occurrences observed after time t has the same distribution asthe number of occurrences observed after time zero. Hence, givenN(t) = n the waiting time after time t until the m–th occurrence isobserved has the distribution of the waiting time until the (m−n)–thoccurrence is observed.

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 26/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Example 3

    Let {N(t) : t ≥ 0} be a Poisson process with rate λ = 3. Let Sndenote the time of the occurrence of the n–th event. LetTn = Sn − Sn−1 be the elapsed time between the (n − 1)–th andthe n–th event. Calculate:(i) E [S3|N(4) = 1].(ii) P{S3 > 7|N(4) = 1}.(iii) P{T3 > 7|N(4) = 1}.

    Solution:

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 27/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Example 3

    Let {N(t) : t ≥ 0} be a Poisson process with rate λ = 3. Let Sndenote the time of the occurrence of the n–th event. LetTn = Sn − Sn−1 be the elapsed time between the (n − 1)–th andthe n–th event. Calculate:(i) E [S3|N(4) = 1].(ii) P{S3 > 7|N(4) = 1}.(iii) P{T3 > 7|N(4) = 1}.Solution:(i) E [S3|N(4) = 1) = 4 + E [S3−1] = 4 + (3− 1)13 =

    143 .

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 28/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Example 3

    Let {N(t) : t ≥ 0} be a Poisson process with rate λ = 3. Let Sndenote the time of the occurrence of the n–th event. LetTn = Sn − Sn−1 be the elapsed time between the (n − 1)–th andthe n–th event. Calculate:(i) E [S3|N(4) = 1].(ii) P{S3 > 7|N(4) = 1}.(iii) P{T3 > 7|N(4) = 1}.Solution:(ii)

    P{S3 > 7|N(4) = 1} = P{S3−1 > 7− 4} = P{S2 > 3}=P{N(3) ≤ 1} = e−9(1 + 9) = 0.001234.

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 29/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Example 3

    Let {N(t) : t ≥ 0} be a Poisson process with rate λ = 3. Let Sndenote the time of the occurrence of the n–th event. LetTn = Sn − Sn−1 be the elapsed time between the (n − 1)–th andthe n–th event. Calculate:(i) E [S3|N(4) = 1].(ii) P{S3 > 7|N(4) = 1}.(iii) P{T3 > 7|N(4) = 1}.Solution:(ii) Alternatively,

    P{S3 > 7|N(4) = 1} = P{N(7) ≤ 2|N(4) = 1} = P{N(3) ≤ 1}=e−9(1 + 9) = 0.001234.

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 30/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Example 3

    Let {N(t) : t ≥ 0} be a Poisson process with rate λ = 3. Let Sndenote the time of the occurrence of the n–th event. LetTn = Sn − Sn−1 be the elapsed time between the (n − 1)–th andthe n–th event. Calculate:(i) E [S3|N(4) = 1].(ii) P{S3 > 7|N(4) = 1}.(iii) P{T3 > 7|N(4) = 1}.Solution:(iii)

    P{T3 > 5|N(4) = 1} = P{T3 > 5|T1 ≤ 4 < T1 + T2}=P{T3 > 5} = e−15.

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 31/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Theorem 6Given that N(t) = n, the n arrival times S1, . . . ,Sn haveconditional density

    fS1,...,Sn|N(t)=n(s1, . . . , sn) =n!

    tn, 0 < s1 < s2 < · · · < sn ≤ t.

    The proof of the previous theorem is in Arcones’ manual.It follows from the previous theorem that the distribution ofT1, . . . ,Tn given N(t) = n, is

    fT1,...,Tn|N(t)=n(t1, . . . , tn) =n!

    tn, 0 < t1, t2, . . . , tn, t1+t2+· · ·+tn ≤ t.

    It also follows from the previous theorem that the distribution ofthe n arrival times S1, . . . ,Sn given N(t) = n, is the distribution oforder statistics corresponding to n independent random variablesuniformly distributed on the interval (0, t).

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 32/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Theorem 7Given s < t and k ≤ n,

    P{N(s) = k|Sn = t} =(

    n − 1k

    ) (st

    )k ( t − st

    )n−k−1.

    Previous theorem says that given Sn = t, the number ofoccurrences in the interval [0, s] has a binomial distribution withn − 1 trials and success probability st .

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 33/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Proof:

    P{N(s) = k|Sn = t}= lim

    �→0+P{N(s) = k|N(t) = n,N(t − �) = n − 1}

    = lim�→0+

    P{N(s) = k,N(t) = n,N(t − �) = n − 1}P{N(t) = n,N(t − �) = n − 1}

    = lim�→0+

    e−λs (λs)k

    k! e−λ(t−�−s) (λ(t−�−s))n−1−k

    (n−1−k)! e−λ�λ�

    e−λ(t−�) (λ(t−�))n−1

    (n−1)! e−λ�λ�

    =

    (n − 1

    k

    ) (st

    )k ( t − st

    )n−k−1.

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 34/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Example 4

    Claims arrive to an insurance company website according with aPoisson rate of 100 claims per day. Suppose that in one day the10–th claim after midnight arrived at 5:15 am. Calculate theprobability that more than two claims arrived between midnightand 1:00 am.

    Solution: The conditional distribution is binomial with n = 9 andp = 60(5)(60)+15 =

    421 . Hence, the probability that more than two

    claims arrived between midnight and 1:00 am. is

    1−(

    9

    0

    ) (4

    21

    )0 (1721

    )9−

    (9

    1

    ) (4

    21

    )1 (1721

    )8=1− 0.1493023487− 0.3161696796 = 0.5345279717.

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

  • 35/35

    Chapter 11. Poisson processes. Section 11.3. Interarrival times.

    Example 4

    Claims arrive to an insurance company website according with aPoisson rate of 100 claims per day. Suppose that in one day the10–th claim after midnight arrived at 5:15 am. Calculate theprobability that more than two claims arrived between midnightand 1:00 am.

    Solution: The conditional distribution is binomial with n = 9 andp = 60(5)(60)+15 =

    421 . Hence, the probability that more than two

    claims arrived between midnight and 1:00 am. is

    1−(

    9

    0

    ) (4

    21

    )0 (1721

    )9−

    (9

    1

    ) (4

    21

    )1 (1721

    )8=1− 0.1493023487− 0.3161696796 = 0.5345279717.

    c©2008. Miguel A. Arcones. All rights reserved. Manual for SOA Exam MLC.

    Chapter 11. Poisson processes.Section 11.3. Interarrival times.