MANAGEMENT TEST OF USE OF THE WHITE AMUR FOR …

116
m TECHNICAL REPORT A-78-2 LARGE-SCALE OPERATIONS MANAGEMENT TEST OF USE OF THE WHITE AMUR FOR CONTROL OF PROBLEM AQUATIC PLANTS Report 1 BASELINE STUDIES Volume V The Herpetofauna of Lake Conway, Florida By J. Steve God ley, Roy W. McDiarmid, and G. Thomas Bancroft Department of Biology University of South Florida Tampa, Fla. 33620 June 1981 Report 1 of a Series Approved For Public Release; Distribution Unlimited Prepared for U. S. Army Engineer District, Jacksonville Jacksonville, Fla. 32201 and Office, Chief of Engineers, U. S. Army Washington, D. C. 20314 Under Contract No. DACW39-76-C-0047 Monitored by Environmental Laboratory U. S. Army Engineer Waterways Experiment Station P. O. Box 631, Vicksburg, Miss. 39180

Transcript of MANAGEMENT TEST OF USE OF THE WHITE AMUR FOR …

m

TECHNICAL REPORT A-78-2

LARGE-SCALE OPERATIONS

MANAGEMENT TEST OF USE OF THE WHITE AMUR FOR CONTROL OF PROBLEM AQUATIC PLANTS

Report 1

BASELINE STUDIES

Volume V

The Herpetofauna of Lake Conway, Florida

By J. Steve God ley, Roy W. McDiarmid, and G. Thomas Bancroft

Department of Biology University of South Florida Tampa, Fla. 33620

June 1981

Report 1 of a Series

Approved For Public Release; Distribution Unlimited

Prepared for U. S. Army Engineer District, Jacksonville Jacksonville, Fla. 32201

and Office, Chief of Engineers, U. S. Army Washington, D. C. 20314

Under Contract No. DACW39-76-C-0047

Monitored by Environmental Laboratory U. S. Army Engineer Waterways Experiment Station P. O. Box 631, Vicksburg, Miss. 39180

,#%»

LARGE-SCALE OPERATIONS MANAGEMENT TEST OF USE OF THE WHITE AMUR FOR CONTROL OF

PROBLEM AQUATIC PLANTS

Report 1: Baseline Studies

Volume I: The Aquatic Macrophytes of Lake Conway, Florida

Volume II: The Fish, Mammals, and Waterfowl of Lake Conway, Florida

Volume III: The Plankton and Benthos of Lake Conway, Florida

Volume IV: Interim Report on the Nitrogen and Phosphorus Loading Characteristics

of the Lake Conway, Florida, Ecosystem

Volume V: The Herpetofouna of Lake Conway, Florida

Volume VI: The Water and Sediment Quality of Lake Conway, Florida

Volume VII: A Model for Evaluation of the Response of the Lake Conway, Florida,

Ecosystem to Introduction of the White Amur

Volume VIII: Summary of Baseline Studies and Data

Report 2: First Year Poststocking Results

Report 3: Second Year Poststocking Results

Destroy this report when no longer needed. Do not return

it to the originator.

The findings in this report are not to be construed as an official

Department of the Army position unless so designated

by other authorized documents.

->"sis*>aS'".l#:v..-;;

The contents of this report are not to be used for advertising, publication, or promotional purposes.

Citation of trade names does not constitute an

official endorsement or approval of the use of such commercial products.

Unclassified SECURITY CLASSIFICATION OF THIS PAGE (Whan Dala Entaraif)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS BEFORE COMPLETING FORM

1. REPORT NUMBER

Technical Report A-78-2 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Submit) LARGE-SCALE OPERATIONS MANAGEMENT TEST OF USE OF THE WHITE AMUR FOR CONTROL OF PROBLEM AQUATIC PLANTS; Report 1, BASELINE STUDIES; Vol V: The Herpetofauna of Lake Conway, Florida

5. TYPE OF REPORT & PERIOD COVERED

Report 1 of a series (In 8 volumes)

8. PERFORMING ORG. REPORT NUMBER

7. AUTHORfaJ

J. Steve Godley Roy W. McDiarmid G. Thomas Ranrrnff

8. CONTRACT OR GRANT NUMBERfa)

Contract No. DACW39-76-C-0047

9. PERFORMING ORGANIZATION NAME AND APORESS

University of South Florida Department of Biology Tampa, Fla. 33620

10. PROGRAM ELEMENT, PROJECT, TASK AREA 4 WORK UNIT NUMBERS

Aquatic Plant Control Research Program

M. CONTROLLING OFFICE NAME AND ADDRESS U. S. Army Engineer District, Jacksonville Jacksonville, Fla. 32201 and Office, Chief of Engineers, U. S. Army, Washington, D. C. 20314

12. REPORT DATE

June 1981' 13. NUMBER OF PAGES

111 14. MONITORING AGENCY NAME 6) ADDRESSfff dittatant from Controlling Ollica)

U. S. Army Engineer Waterways Experiment Station Environmental Laboratory, P. 0. Box 631 Vicksburg, Miss. 39180

15. SECURITY CLASS, (ot thlm report)

Unclassified

15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

IS. DISTRIBUTION STATEMENT foi thlm Rapott)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (at tba abatract mtmd in Bloek 20, It dlttarmt from Rtport)

18. SUPPLEMENTARY NOTES

Available from National Technical Information Service, Springfield, Va, 22161

13. K EY WORDS (Contlnum on rmttt mldm If nacaaaaiy and IdMltlty by block numbtr)

Amphibia Lakes Aquatic plant control Reptiles Lake Conway White amur

20. ABSTRACT OCmrtfiju* an Itnru mtam H IWIUUJ mat Identity- by bloc* numbt)

This report summarizes the baseline conditions for the amphibian and rep- tile populations of Lake Conway, Florida, for the 15-month study period, June 1977-September 1978. These results will be used later to determine whether any changes in the herpetofauna result from the introduction of the white amur (Ctenopharynsodon idella) into the lake system to control aquatic vegetation. This baseline report includes detailed descriptions of the herpetofaunal study

(Continued)

DO , FORM JAM 73 1473 EDITION OF t KOV 6S IS OBSOLETE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE flffean Date En farad)

W£&* !Sf!5tKIP?^WBIIIil

Unclassified JBCURITY CLASSIFICATION OF THIS PAOE(TWi«n Dmtm Entmd)

20. ABSTRACT (Continued).

sites and methods and community analyses of the temporal and spatial distribu- tions and densities of the species by pool.

A total of 5,836 individuals representing 11 amphibian species and 16 rep- tilian species were observed or captured on Lake Cbnway during the baseline study period. Approximately 93% of the total species pool was obtained within the first 3,000 specimens, and between 70% and 80% of the predicted herpeto- fauna inhabiting each pool has been recorded. Of the 27 species presently recorded from the Lake Conway complex, 11 occur in all pools and together account for 94.4% of the total sample. The mean relative densities of 11 spe- cies were found to vary significantly between pools. Development of the shore- line for housing during the baseline study period was shown to have a negative impact on some amphibian and reptile populations.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGEfWIwn Oat* Bntmd)

PREFACE

The work described in this volume was performed under Contract No.

DACW39-76-C-0047 between the U. S. Army Engineer Waterways Experiment

Station (WES), Vicksburg, Miss., and the University of South Florida,

Tampa. The work was sponsored by the U. S. Army Engineer District,

Jacksonville, and by the Office, Chief of Engineers, U. S. Army.

This is the fifth of eight volumes that constitute the first of a

series of reports documenting a large-scale operations management test

of use of the white amur for control of problem aquatic plants in Lake

Conway, Florida. Report 1 presents the results of the baseline studies

of Lake Conway; subsequent reports will present the annual poststocking

results.

This volume was written by Mr. J. Steve Godley, Mr. G. Thomas

Bancroft, and Dr. Roy W. McDiarmid of the Department of Biology of the

University of South Florida.

The authors wish to acknowledge Messrs. W. E. Ackerman and M. Lopez

and Mdms. D. T. Gross, N. N. Rojas, and D. A. Sutphen for their help

during the field operations.

The work was monitored at WES in the Environmental Laboratory (EL)

by Mr. R. F. Theriot under the general supervision of Dr. John Harrison,

Chief, EL, and Mr. B. 0. Benn, Chief, Environmental Systems Division (ESD),

and under the direct supervision of Mr. J. L. Decell, Manager, Aquatic

Plant Control Research Program.

Commanders and Directors of WES during the period of the contract

and preparation of the report were COL J. L. Cannon, CE, and COL Nelson P.

Conover, CE. Technical Director was Mr. F. R. Brown.

This report should be cited as follows:

Godley, J. S., McDiarmid, R. W., and Bancroft, G. T. 1981. "Large-Scale Operations Management Test of Use of White Amur for Control of Problem Aquatic Plants; Report 1, Baseline Studies; Vol- ume V: The Herpetofauna of Lake Conway, Florida," prepared by University of South Florida, Tampa, Fla., for the U. S. Army Engineer Waterways Experi- Station, CE, Vicksburg, Miss.

CONTENTS

Page

PREFACE 1

PART I: INTRODUCTION 3

PART II: METHODS AND MATERIALS 5

Sampling Equipment and Techniques 6 Marking and Measuring Procedures 10

PART III: THE LAKE CONWAY SYSTEM 13

South Pool 14 Middle Pool 15 East Pool 16 West Pool 17 Gatlin Canal 18

PART IV: THE HERPETOFAUNA OF LAKE CONWAY 19

Species Distribution and Abundance 20 Permanent Shoreline Sites 20 Deepwater Trapping Stations 33

PART V: DISCUSSION 34

REFERENCES 36

TABLES 1-5

FIGURES 1-42

APPENDIX A: SUMMARY OF PLANT SPECIES AND SUBSTRATUM TYPE FOR ALL PERMANENT SHORELINE HERPETOFAUNAL TRAPPING STATIONS ON LAKE CONWAY DURING THE BASELINE STUDY PERIOD Al

^^^^

LARGE-SCALE OPERATIONS MANAGEMENT TEST OF USE OF THE

WHITE AMUR FOR CONTROL OF PROBLEM AQUATIC PLANTS

BASELINE STUDIES

The Herpetofauna of Lake Conway, Florida

PART I: INTRODUCTION

1. The environment of central Florida with its extensive lake

habitats provides an ideal setting for intensive field studies of

subtropical aquatic ecosystems. With the exception of a few local

studies, no detailed, integrative investigations of aquatic .community

dynamics exist. Thus, the proposal by the U.S. Army Engineer Waterways

Experiment Station (Addor and Theriot 1977) to investigate the suita-

bility of the white amur (Ctenopharyngodon idella, herein referred to

as white amur) as a potential biological control agent of hydrilla

(Hydrilla verticillata), a recently introduced aquatic plant in the

Lake Conway System of central Florida, was particularly interesting and

timely. Not only did the proposed study include an evaluation of the

effectiveness of the white amur as a weed control agent and its impact,

direct or indirect, on the associated biota of the system, but also it

provided an opportunity to do the first detailed study of a community

of amphibians and reptiles in a large aquatic environment.

2. In June of 1977 a study of the herpetofauna of Lake Conway was

initiated with the following objectives: (a) to determine the species

of amphibians and reptiles inhabiting the lake system; (b) to ascertain

the habitat requirements, distribution, ecology, and seasonal activity

of these species in the system; (c) to establish quantitative baseline

population data for the more common or otherwise important species in

each pool in the system including density by habitat, relative age (size)

structure, movements, growth, reproduction, food habits, and related

parameters as deemed feasible; (d) to quantitatively monitor changes in

the species composition or their population parameters during post-

stocking periods; and (e) to determine whether any changes are the result,

directly or indirectly, of the white amur weed control program.

3. This report summarizes the findings of the amphibian and reptile

study on Lake Conway for the 15-month period from June 1977 through

September 1978. Although the white amur was introduced into Lake

Conway in September 1977, only three months after the herpetofaunal

project began, the data presented herein necessarily are considered

"baseline" to which subsequent poststocking periods will be compared.

Included are detailed descriptions of the herpetofaunal study sites,

sampling methods and techniques, and data collection procedures. In

addition, this report provides for the baseline study period a list of

the amphibian and reptile species encountered on Lake Conway, an

analysis of their temporal and spatial densities and distributions, and

a composite of those parameters deemed important to understanding

community dynamics within the system. Future poststocking reports

also will include detailed accounts of the individual species, emphasizing

temporal changes in the herpetofauna of Lake Conway,

r^^^rm^^mmmmm

PART II: METHODS AND MATERIALS

4. The first month of fieldwork was spent surveying the total

Lake Conway system and associated waterways for habitat types. Based

on this reconnaissance, one section of shoreline and one deepwater transect

in each pool of the Lake Conway complex were selected for future

censusing and permanent trapping stations (Figure 1). These sites

contained all the major vegetation types with their associated water

depths and substratum and were representative of the habitats available

to the herpetofauna within the Lake Conway system. Each permanent shore-

line site is described in detail in Part III, "The Lake Conway System."

5. Along the entire length of each permanent shoreline site

numbered stakes were placed 10 m. apart in 30 to 60 cm. of water. The

stakes facilitated location of capture points and subsequent movement of

all marked amphibians and reptiles and served as permanent trapping

stations. At each trapping station estimates of the percent plant

species cover within a 2-sq.-m. area of the trap, water depth, and

substratum were recorded quarterly from October 1977 through September

1978, and biannually thereafter.

6. At the permanent shoreline sites, mark and recapture

population studies were conducted twice a month; destructive samples

for stomach and reproductive analyses of selected species were taken

monthly, or as time permitted, from distant areas of similar habitat

within the lake system. Destructive samples were placed on ice at

capture and frozen for future analysis. Animals that accidentally

drowned in traps or were killed inadvertently during processing also

were frozen*and, when possible, saved for analysis. Later, all samples

were preserved in 10 percent formalin and dissected at the University of

South Florida, For food habit studies, the preserved stomach sample was

blotted dry, then weighed. The number of individuals of a prey taxa and

their estimated percent of total weight were recorded. If a prey taxa made

up more than 50 percent of a stomach sample, its individual weight also was

taken. Reproductive analysis included weighing the testes and epididymes

of males, the ovaries and oviducts of females, and counting, weighing, and

m

measuring the ovarian follicles, oviductal eggs (or embryos), and corpora

lutea of females.

7. The deepwater sites duplicated vegetation transects of the

Florida Department of Natural Resources (Nail and Schardt 1978). Traps

were set for one day 100 m. apart at FDNR sampling points on a

quarterly basis. Only destructive samples were taken in deepwater

benthic traps because it was impossible to prevent drowning of specimens,

Trap success of amphibians and reptiles at deepwater sites during the

first year was extremely low compared to shoreline trapping. These low

densities made it impossible to detect statistical differences in

population parameters as a result of the white amur introduction without

a substantial increase in effort. As a result, deepwater funnel trapping

was discontinued after one year of sampling, and the time was devoted to

more profitable research.

8. Thus, the herpetofaunal sampling program involved spending

3 days and 2 nights every other week on the lake so that each permanent

shoreline site was censused and sampled by traps twice a month, Alternate

weeks were spent in the laboratory processing data and destructive

samples. Deepwater sampling required an additional day and night per

quarter.

Sampling Equipment and Techniques

9. Because of the ecological and behavioral differences that

characterize the amphibian and reptile species of Lake Conway, several

different kinds of collecting equipment and techniques were used, A

5.33-m. (16-ft.) John boat with a 25-h.p. (18.6-kw.) outboard motor was

used in placing and monitoring funnel traps, in conducting alligator

counts, and in censusing shoreline sites. Brief descriptions of these

and other maj or sampling methods are given in the following paragraphs.

Funnel trapping

10. Funnel traps, 60x30x30 cm., were designed specifically

to sample aquatic salamanders, tadpoles, small carnivorous turtles, and

several species of water snakes. Most funnel traps were constructed of

•r*?!"*% wmiiMMMMmm&wmBM

3-nnn. black plastic Vexar netting (Du Pont De Nemours & Co., Model No.

5-59-V-360-BABK) stretched over welded metal frames with funnel entrances

at each end. Some wire mesh funnel traps of the same dimensions were

used in dense stands of cattails (Typha latifolia) at the Middle and

East Pool sites. Wire traps were used at these sites because rice

rats, Oryzomys palustris, were common and gnawed numerous holes in

Vexar traps.

11. All traps were baited with fresh, cut fish and set for a 24-

hr. period. To determine general diel activity patterns for the more

common species, all shoreline traps were checked at dawn and dusk

during the baseline study period. Shoreline, littoral zone traps

were placed on the substratum with the top above water to prevent

drowning of animals; deepwater traps were submerged on the bottom.

12. The number of traps set at permanent shoreline sites was

increased gradually during the first year as newly constructed traps

became available and as the sizes of the permanent sites were expanded

(see Part III, "The Lake Conway System"). By July 1978, the total number

of shoreline trapping stations was stabilized at 77 and traps were set

twice a month at each station. A total of 61 traps was used for quarterly,

deepwater trapping samples (October and December 1977, April and July

1978). Within- and between-site comparisons of the first years' trapping

data are based on seasonal trap success per total number of trap days

per season. The standard notation of trap days (sum of all traps set/

24 hrs.) was used throughout the study.

Herp-patrol

13. In addition to funnel trapping, all permanent shoreline sites

were censused twice a month at night from a boat. Preliminary work

showed that most species of amphibians and reptiles were more active and

much easier to catch at night than during the day. This censusing

technique, termed "herp-patrol," involved use of an electric motor and

two 12-volt, 120,000-candlepower spotlights. During herp-patrols the

permanent shoreline sites were sampled by motoring slowly along the edge

of the littoral zone. One spotlight in the rear was directed towards

#S#!W#^#%%'^

the emergent vegetation while the other in the front was shlned in

adjacent, open water. A third individual collected animals with a

dipnet or by hand. The species, time, location, water depth, vegetation

type, substratum, activity, and behavior for all specimens observed or

heard calling were recorded on standardized data sheets. All captured

individuals were sexed, measured, weighed, marked, and released at the

capture point the following day.

14. Herp-patrol sampling effort was standardized for each perma-

nent shoreline site but varied between sites because of differences in

the lengths of shoreline sampled. Between-site comparisons were based on

the number of animals collected per unit total search time. Beginning

in November 19 77, herp-patrols on permanent sites were replicated each

sampling night and assigned a run number of I or II to provide an estimate

of within-site variance. The same collecting path was used on each run.

Alligator census

15. The alligator population of the entire Lake Conway complex

was estimated using nocturnal censusing techniques. In the first year

the entire shoreline of the lake system was scanned monthly using a

12-volt, 120,000-candlepower spotlight to search for the characteristic

red-orange glow of the alligators' eyes. When an animal was located,

it was approached quietly until the size of the alligator could be

estimated. The number, locations, and approximate sizes of all sighted

individuals were recorded. Because the Lake Conway alligator population

was found to be small, easily monitored, and unlikely to have a signifi-

cant impact on the white amur population, nocturnal censusing of

alligators was reduced to a bimonthly schedule in June 1978.

16. In addition, during the summer nesting season all stretches

of suitable shoreline habitat were searched for nesting females. All

located nests were monitored until the young hatched in the fall.

Juvenile alligator production was estimated by counting the number of

hatched eggs and by counting the number of juveniles seen at the nest

site. Incubating eggs were not counted because nest disturbance

significantly increases predation (T.C. Hines, personal communication).

?^«^^^^

Gill netting

17. All animals collected in gill nets operated by the Florida

Game and Fresh Water Fish Commission (FGFWFC) were taken and used for kill

samples. Two gill nets of various mesh sizes were set monthly in South,

Middle, and West Pool during the baseline study period (Guillory 1979).

18. In addition, several other methods were used as time and

man-power permitted, Although quantifiable, these methods either were

selective in the species taken or were done on an irregular basis in

order to increase the sample for a particular species,

Shoreline census

19. All animals collected or observed while checking or setting

funnel traps, or while walking along the shore at other times, were assigned

to the sampling technique of shoreline census. The data collected and the

procedures used during shoreline censuses were similar to those used

during herp-patrols.

Hyacinth sieving

20. At some sites, dense stands of the introduced waterhyacinth,

Eichhornia crassipes, were sampled with a 0.5635-sq.-m. boxlike hyacinth

sieve. The sampling procedure and device are described in Godley

(1979).

Drift fence

21. At several sites, permanent drift fences (5 m. long, 0.8 m.

high) were set with pairs of unbaited funnel traps at each end. In

South Pool, two drift fences, one upland (20 m. from water) and one

aquatic (perpendicular to shore), were set in November 1977 at markers

160 and 130, respectively. Another aquatic fence was set perpendicular

to shore at marker 1135 in Middle Pool in April 1977. Within a month, the

drift fences at both sites were vandalized or stolen and the sampling

method was discontinued.

Electrofishing

22. Specimens of amphibians and reptiles selectively obtained by

FGFWFC personnel while electrofishing on Lake Conway (Guillory 1979)

generally were used for stomach and reproductive analyses.

' 7: -t -^yt"! -^Sf^f.'if\k*fi|:- ^.".-. v •I'-^if'^'js s*-i> - -r--—••—IJ."? TT •- ^—^^-^. .-.-j^.^^^^.^^,-^^^^-^- •-.•- -~i • v--^. ^(prr^" -—r^j?;*#^p)T?*wY%'jo-,

Marking and Measuring Procedures

23. The Lake Conway herpetofaunal sampling program involved long-

term mark and recapture studies of certain species and incidental and/

or short-term studies of the remaining species. Because of the varied

ecologies and life histories of the species, several different measuring

and marking procedures were required.

Aquatic salamanders

24. Early in the study no permanent marking technique was

available for salamanders of the families Amphiumidae and Sirenidae, and

species either were released unmarked or taken for destructive samples.

From September 1977 through July 1978, adults of these salamanders

were experimentally tagged with plastic numbered Floy fish tags (Model

No. FD-68) similar to those described by Pough (1970). The tags,

measuring 4.8 cm. in total length and weighing 2.0 g., were inserted

through the base of the salamander's tail with the T-portion protruding

through the opposite side (salamanders lack the pterygial bones of

fishes preventing internal anchorage of the T). Specimens were weighed

(to 0.1 g,); then the snout-vent length (SVL = tip of snout to posterior

margin of vent) and total length (TL = tip of snout to end of tail) were

measured by placing the salamander in a V-shaped, clear plexiglas measuring

device. As a secondary means of identification, all bite marks, scars,

and deformities of salamanders were recorded beginning in March 1978.

After processing, all salamanders were released at the capture site,

25. Many salamanders that were Floy-tagged, released in the field,

and subsequently recaptured had lost the tag. Although these

animals could be distinguished as a recapture, positive identification

of individuals often was not possible and Floy-tagging of salamanders

was discontinued. Beginning in August 1978, all Siren and Amphiuma were

cold-branded for 8 to 10 sec. on the abdomen with copper wire numbers

dipped in liquid nitrogen. These brands were recognizable for at least

one year in the field and this method was used for salamanders for the

remainder of the study.

10

Aquatic turtles

26. All species of aquatic turtles in the lake system were

monitored. Standard measurements taken were weight (to nearest 0,1 g.

for turtles < 1000 g.; to nearest 10 g. for turtles > 1000 g.), carapace

length (CL = straight mid-line distance with calipers from anterior-

most to posterior-most point of carapace), and plastron length (PL =

anterior-most to posterior-most point of plastron) to the nearest

millimeter. Throughout the study emydid turtles (Chrysemys floridana,

C. nelsoni, Deirochelys reticularia) were marked by drilling holes in

(adults) or notching (juveniles) the marginal scutes using a numbering

system similar to Cagle's (1939). Other species were toe-clipped from

July 1977 through December 1977 but marked with numbered Floy fish tags

(4.8 cm. total length, 2.0 g.) beginning in January 1978, The Floy tags

were inserted through a hole drilled in a posterior marginal scute of

the turtle.

Alligators

27. American alligators (Alligator mississippiensis) were not

marked for recapture on Lake Conway because (1) the animals are difficult

and dangerous to capture and process, (2) Federal and State permits are

required for these procedures, and (3) the alligator population on Lake

Conway was found to be small and easily monitored by nocturnal censuses

and nest counts.

Larval amphibians

28. The composition, distribution, and relative density of the

tadpole fauna of Lake Conway were estimated for each permanent trapping

station at the five littoral zone sites. Initially, five standard sweeps

of a dipnet were taken before the funnel traps were set at a station. In

addition, the number and identity of all tadpoles collected at littoral

zone and deepwater trapping sites were recorded. Because dipnetting

disturbed the vegetation at trapping stations and was less successful

at collecting tadpoles than funnel traps, dipnetting was discontinued.

Beginning in April 1978, all tadpoles collected in traps were staged

(Gosner 1960) to obtain populational estimates of developmental rates

and larval lifespan.

11

Adult frogs

29. Frog species were monitored by shoreline censuses, herp-patrols,

and funnel traps. Because of their cryptic nature and difficulties in

capturing adequate numbers of most species, adult frogs in general were

not marked for recapture. Instead, the most effective method of monitorin;

the frog populations proved to be recording on data sheets the calling

activities of males during herp-patrols. This sampling technique was

expanded in December 1977 to Include actual counts of calling males per

10-m. increments on all permanent shoreline sites.

Snakes

30. All species of aquatic and semiaquatic snakes on Lake Conway

were monitored by diurnal shoreline censuses, herp-patrols, and funnel

traps. All collected snakes were identified, sexed (adults only),

weighed and measured, individually marked by clipping the ventral scales

(Brown and Parker 1976), and released at the capture site.

12

PART III: THE LAKE CONWAY SYSTEM

31. Lake Conway is a 737.1-ha. urban lake (Figure 1) located in

South Orlando, Orange County, Florida. The lake consists of five inter-

connecting pools, which include Lake Gatlin, Little Lake Conway (East

and West Pool), and Lake Conway (Middle and South Pool), The lake system

is mesotrophic with gradually increasing eutrophic conditions as one

proceeds north through the various pools. The substratum is primarily

sand, except in areas of thick vegetation near shore or in dredged

canals where organic detritus or silt has accumulated. The bottom

contours are rather steep when compared with most central Florida lakes

and greater than 30% of the total lake bottom is deeper than 6.0 tn.

(Nail and Schardt 1978).

32. Illinois pondweed (Potomogeton illinoensis) and eelgrass

(Vallisneria americana) are the dominant shallow-water (<2,0 m.) aquatic

macrophytes in most pools; stonewart (Nitella megacarpa) and hydrilla

(Hydrilla verticillata) predominate in deeper water but do not grow

below 6.0 m. (Nail and Schardt 1978). As is typical of many urban

Florida lakes, most of the emergent vegetation on Lake Conway has been

removed for beach development. However, in some areas a narrow fringe

of maidencane (Panicum hemitomon), lake rush (Fuirena sclrpoides),

pickerelweed (Pontederia lanceolata), or cattail (Typha latifolia)

remains intact.

33. Given below are brief descriptions of each permanent shoreline

herpetofaunal sampling site and a chronology of important events.

Appendix A summarizes the vegetation and substratum characteristics of

each permanent trapping station for all sites during the baseline study

period (June 1977-September 1978). Because deepwater trapping stations

duplicated the vegetation transects of the Florida Department of Natural

Resources (Nail and Schardt 1978) in South (Transect A.-A2), Middle

(Cj-C2) , East (I-j-ip, and West Pool (K^-K^) and Lake Gatlin (N -N„),

these data are not duplicated herein.

13

" "^^^^r^T.^jTW^^M? fn W!r/ r$tn\

South. Fool

34. The South Pool permanent shoreline site was 530 m. in length and

included the only major section of undeveloped shoreline in the pool

(Figure 1). Other small, scattered patches of Panicum or Typha occurred

along the eastern and northeastern shores of South Pool, However,

these patches of emergent vegetation had houses on the upland. The South

Pool site underwent rapid development for housing during the baseline

study period (see below) and was studied intensively during this period to

determine the effects of shoreline development on the herpetofauna.

35. Initially, the site consisted of 460 m. of emergent vegetation

stretching from an offshoot canal (marker 0) to the Perkins Street boat

ramp (460), and 70 m. of urban beach habitat (460-530) to the northwest

of the boat ramp. In order of decreasing abundance, the more common

emergent species were Fuirena scirpoides, Panicum hemitomon, Pontederia

lanceolata, Typha latifolia, and Eichhornia crassipes (see Appendix A).

Undisturbed pine-flatwoods or evergreen bayhead associations occurred

upland from the vegetated shoreline. Potomogeton illinoensis was the

dominant nearshore submergent aquatic plant. The substratum at the

trapping stations was mostly sand except for a buildup of mucky detritus

at markers 0-30 and 450-460 where waterhyacinths occurred. A thin (3-5

cm.) layer of silt usually was present at stations dominated by stands

of P_. lanceolata. Offshore, the water dropped off rapidly to 2.0 m.

in depth except at marker 0 (and offsite eastward from there) and

between markers 320-530 (and northward), where broad shelves of shallow

water (less than 1.5 m.) extended 30 to 60 m. out from shore.

36. As mentioned, development of the South Pool shoreline site

for housing occurred during the baseline study period. Habitat modifica-

tion began in August 1977 and involved the clearing of access roads

through the upland pine-palmetto flatwoods arid abandoned orange groves

west of the site, an area of approximately 20 ha. In late September

1977, construction of two houses began immediately upland between markers

345-460, and another house was started along the shore in mid-October

between markers 240 and 300. In both cases construction activity was

14

limited to the housing sites. The littoral zone and first 30 to 50 m. of

transitional uplands were left undisturbed temporarily. In mid-December

all remaining vegetation in these two areas (240-300, 345-460) from the

houses to within a meter of the waterline was cleared with bulldozers.

This left only a small piece of undisturbed transition zone between

300 and 345, and a larger section from 0 to 230.

37. In late November and December 1977, most of the housing lots

in the pine flatwoods and abandoned orange groves greater than 100 m.

from shore between markers 200-460 were cleared of understory vegetation.

By mid-April 1978, almost all remaining upland habitat (0-200) along the

South Pool site had been cleared to within 30 m. of the shoreline. In

late April, the remaining vegetation from markers 30 to 120 was removed

with bulldozers to the waterline. Small sections of the littoral zone

also were cleared from 240 to 250, 345 to 355, and 390 to 400 by June 1978.

38. In summary, within 10 months of the start of herpetofaunal

sampling of Lake Conway, approximately 78% of upland and transitional

zone habitats bordering the South Pool site was cleared of natural

vegetation. Although most of the emergent littoral zone vegetation was

left intact, most site preparation occurred in winter and early spring.

Middle Pool

39. The Middle Pool permanent shoreline site (Figure 1) was

located at the northern end of a large cattail marsh that extended along

much of the southeastern shore of Middle Pool. Emergent vegetation at

this site was zoned with a broad, 20- to 40-m. outer fringe of cattails

(Typha latifolia) and a narrower, denser inner zone of herbaceous aquatics.

Near the trapping stations, Fuirena scirpoides and Panicum hemitomon

dominated at markers 1000 to 1030, T\ latifolia and Pontederia lanceolata

from markers 1040 to 1170, and Eichhornia crassipes at markers 1180 to 1200.

Upland, the site was bordered by an orange grove. In the cattail zone and

immediately offshore, Potomogeton illinoensis was the only submergent

macrophyte. At this site, P. illinoensis was sparsely distributed, and

percent cover generally was less than 20%. The substratum was coarse

15

^IKW-WJ^VK :*y•«S-fW5f^

sand except in thick vegetation nearshore where a layer of organic

detritus had been deposited. In general, this muck overburden increased

in thickness from markers 1000 to 1200.

40. The band of emergent vegetation at the Middle Pool site was

much broader than at other sites. To more accurately determine habitat

preferences and to monitor the movements of marked animals, three parallel

transects were established along the 200-m, length of this site, A

nearshore transect, where trapping was conducted, was designated the

1000 series. To monitor amphibian and reptile activity within the

cattails and to provide boat access (2000 series) during herp-patrols,

a 2.0-m.-wide swath was removed from the center of the cattail marsh in

October 1977. In addition, the outer edge of the cattails (3000 series)

was herp-patrolled.

41. In April 1978 after nine months of study, all shoreline and

upland vegetation between markers 1000 and 1120 was cleared with bull-

dozers and draglines. This resulted in the removal of all vegetation

from trapping stations 1000 to 1120 and the 2000 series of cattails from

markers 2000 to 2120. A lO-m.-wide outer fringe of cattails and the

3000 series were left intact. To document changes in amphibian and

reptile distribution and abundance at this site as a result of habitat

modification, normal sampling procedures were continued.

East Pool

42. The permanent sampling site in East Pool was located at the

northwest end of an uninhabited island (Figure 1). This site was 200 m,

in total length and consisted of a 10- to 15-m. outer fringe of cattails

(Typha latifolia) and an inner zone of waterhyacinths (EichhornJa crassipt

along most of the distance. A 20-m. stretch of Panicum hemitomon and

Pontederia lanceolata occurred from markers 1025 to 1045, Funnel trapping

was conducted along the inner zone (1000 series) and herp-patrols (2000

series) were run along the outer edge of the emergent vegetation, A 10-

to 25-cm. layer of mucky detritus was present in all areas with water-

hyacinths. Immediately offshore the bottom dropped sharply to over 2,0 m

16

1!" "I:

^4 ••W^/l^n^tn^f~<fX r,-!,^,-,!'—-H--.-.;-ri..,^tr?-rt,rr r-.-M—,- -^, - -.-.. ... T—• -. -• - --" r • rf- >r^r--t -r^W•^7I"^[gp«p»JBf^B?R "^pwMwr#mm^#gp^gp*^

in depth. The submergent aquatic vegetation was primarily Vallisneria

americana with scattered patches of Potomogeton illinoensis on a sand

bottom. No development occurred at this site during the baseline

study period.

West Pool

43. The West Pool permanent shoreline site was 370 m. in total

length. It encompassed the only large, continuous section of emergent

vegetation in the pool and was bordered by beach habitat at both ends.

The site included a 70-m. stretch of beach (markers 0-70) and a larger

section of undisturbed littoral zone (markers 80-370) dominated by

Panicum hemitomon-Pontederia lanceolata or P_. hemitomon-Eichhornia

crassipes with scattered patches of Typha latifolia. An orange grove

which was regularly disked occurred 10 to 15 m. upland of the vegetated

shoreline. The dominant submergent plants at the edge of the emergent

vegetation were Potomogeton illinoensis and Vallisneria americana. The

substratum at the trapping stations consisted of sand along the beach

and a variable (5- to 20-cm.) layer of silt and organic debris in the

vegetated section. The bottom contours along most of the West Pool

site were gradual but several deep holes (to 2.0 m.) occurred immediately

offshore.

44. During the baseline study period, no development occurred on

the West Pool site. To serve as a control for the effects of housing

development in South Pool and to more clearly determine the home ranges

of individuals along a continuous section of habitat, the West Pool site

was gradually enlarged from an original 200 m. (markers 0-200) to 370 m.

(0-370) by July 1978. West Pool was chosen because this site was most

similar to South Pool in terms of size, vegetation, and topography,

and because it was deemed unlikely that it would be developed in the

next five years.

17

II MWIL-rmt ""' "•&*^5}"""j-^*HA'&^^ia^fTfyqF^TLfr^.?•f-r^-^M^ ^vni^^asivTC "^y^w^^^f^^Tt^V^J^IJWVy' -rynML',!',* #*,.,,",,, .^^H^H^|Hji|

Gatlin Canal

45. The permanent shoreline site chosen for Lake Gatlin was the

entire length of the canal from Lake Gatlin to West Pool (470 ra.).

This site represented the most eutrophic site sampled in Lake Conway and

was typical of the many shallow, dredged canals in the system. Most of

the shoreline bordering Gatlin Canal consisted of yards mowed almost to

the waterline. Emergent vegetation along the yards included Panicum

repens, Nymphaea odorata, Nuphar luteum, and Typha latifolia, in order of

decreasing abundance. Away from shore, most of the dredged bottom was

less than 1.0 m. in depth, bare, and with a 0.1- to 1.0-m. layer of

unconsolidated silts and muds. Large mats of floating filamentous algae

were common in summer. Initially the only submergent aquatics included

a small patch of Vallisneria americana on the east side of the canal

between markers 1130 and 1150, Cabomba caroliniana in the west offshoot

canal at marker 150, and some Eleocharis sp. near the bridge (markers 230-

By the end of the baseline study period (September 1978), the (X

caroliniana mat had spread and occurred from markers 1120 to 1150.

46. Unlike all other sites, only one herp-patrol run was done in

Gatlin Canal. However, this run often required 1.5 hrs. and included a

census of both the east and the west sides of the canal. To distinguish

movements of marked animals across the canal, the west side of Gatlin

Canal was designated the 100 series and the east side the 1000 series.

A total of 20 funnel traps were set in Gatlin Canal from markers 0 to 40

and 1050 and 1190 so that all major habitats would be sampled.

47. No major development occurred in Gatlin Canal during the

baseline study period other than normal mowing and yard upkeep.

13

«u

PART IV: THE HERPETOFAUNA OF LAKE CONWAY

48. A total of 5,836 individuals representing 11 species of

amphibians and 16 species of reptiles were observed or captured on Lake

Conway during the 15-month baseline study period (June 1977-September

1978). Only species dependent on Lake Conway proper for some portion of

their life cycle and therefore potentially affected by the introduction

of white amur were considered. Figure 2 shows the cumulative number of

species as a function of the cumulative number of individuals recorded

on Lake Conway. Approximately 96.3% of the sampled herpetofaunal species

was obtained within the first 3,000 specimens and one species thereafter.

Based on this sample, there are three species of salamanders, eight

anurans, one crocodilian, eight turtles, and seven snakes inhabiting the

Lake Conway complex (Table 1). Several other rare species may be present.

49. Table 2 gives the frequency distribution of species by

sampling method. On all subsequent tables, information for the different

life stages (egg, larva, adult) of each species is tabulated separately.

Herp-patrol and funnel traps accounted for 86.54% and 8.10%, respectively,

of all animals observed or captured on Lake Conway. These two methods

also produced the greatest number of captures (of 2,281 individuals,

71.2% and 20.7%, respectively).

50. The probability of capturing or observing a species also

varied by sampling method. Of the 27 amphibian and reptile species

known from Lake Conway, 23 species were identified on herp-patrols and

three (Deirochelys reticularia, Hyla femoralis, H_. squirella) were known

only from herp-patrol activities. No species were taken only in funnel

traps during the baseline study period, but this method did account for

a sizeable portion (>30%) of the observations for Amphiuma means (93.5%),

Siren lacertina (57.8%), Kinosternon subrubrum (49.1%), Nerodia eyelopion

(31.1%), and most anuran larvae. Three species were known only from

shoreline censuses, including a salamander (Eurycea quadridigitata) and

two snakes (Regina alleni, Thamnophia sirtalis). All other species were

taken by at least two sampling methods.

19

^i•"!•*• f.TTj^

Species Distribution and Abundance

51. Table 3 summarizes the distribution of all amphibian and

reptile species recorded from the five pools of the Lake Conway complex.

These figures include the total number of specimens observed or collected

by all sampling methods on and off the permanent stapling sites in each

pool. Because sampling effort and catch varied between pools, these

data provide only a preliminary estimate of the relative species

density and abundance between pools.

52. Judging from the total cumulative species-number curve for Lai

Conway shown in Figure 2 and the total number of observations recorded fc

each pool (Table 3), between 70% and 80% of the total herpetofaunal

species inhabiting each pool has been recorded. South Pool had the

greatest total number of observations (N=1,429) and the highest number oi

recorded species (N=22); West Pool had the lowest total number of obser-

vations (888) and recorded species (14). Other pools had intermediate

values but the species rank order was not in agreement, perhaps indicatii

differences in habitat availability, species evenness, and/or sampling ei

53. The known distribution of herpetofaunal species varied by

pool (Table 3). Of the 27 species presently recorded from the Lake

Conway system, 11 occur in all pools. These 11 species account for

94.44% of the total observations; none represent less than 1.71% of

the species total. Among the 16 species not known from all pools, no

single species contributes more than 1.35% to the species total,

Additional observations in poststocking years should more clearly

define the distribution of rarer amphibians and reptiles within the

Lake Conway system.

Permanent Shoreline Sites

54. Table 4 presents the distribution of the total number of

individuals of all species encountered on permanent shoreline sites in

each pool. These five sites accounted for 71.85% of the 5,836

20

"^T-M ^^^^^^^^^^ mWMMUWM

herpetofaunal observations made during the baseline study period and were

the major locations for funnel trapping and herp-patrolling activities.

Of the 27 species presently known from Lake Conway, 26 were observed on

permanent shoreline sites. One salamander (Eurycea quadridigitata), a

frog (Hyla squirella), three turtles (Chelydra serpentina, Deirochelys

reticularia, Kinosternon bauri), and four snakes (Coluber constrictor,

Regina alleni, Thamnophis sauritus, T. sirtalis) were recorded only on

these permanent sites. The treefrog Hyla femoralis is the only species

on Lake Conway not known from a permanent shoreline site.

55. Table 4 also gives the mean relative density of each species

on the five permanent shoreline sites as determined by the two major

sampling methods: herp-patrol (mean number/hr.) and funnel traps

(mean number/100 trap days) . Between-pool differences in relative

abundance of a species were determined by using the chi-square approxi-

mation of the nonparametric Kruskal-Wallis extension of the Mann-

Whitney U-test (Barr et al. 1979) for herp-patrol trips, and the

difference among proportions chi-square test (Freund 1973) for funnel

trapping. The mean tested on herp-patrols was the mean number of

individuals of a species observed per hour for all trips with run numbers

on a permanent site (i.e., after October 1977). The proportion tested

was the total number of a species captured at a site divided by the total

number of trap days set at that site during the baseline study period,

If significant (P<.05) between-pool differences were found, pair-wise

comparisons of pools were made using the Mann-Whitney U-test (herp-patrols)

or the difference among proportions test (funnel traps). Because the

same data were analyzed for this second test, the alpha level of signi-

ficance was increased to P<.025.

56. The mean relative densities of 11 species were found to vary

significantly between the five permanent shoreline sites during the

baseline study period (Table 3). Funnel trapping showed significant

between-site differences in the relative densities of two salamanders

(Amphiuma means, Siren lacertina), three frogs (Hyla cinerea larvae,

Rana grylio adults and larvae, R. utrlcularia larvae), two turtles

(Kinosternon subrubrum, Sternotherus odoratus), and a snake (Nerodia

21

'•a. • '^^^^)WI^^'!^T'^^^^*^7'^%^r^^^f 7^?"^?^ "*Ti-f— «-npr*rrv 'THpyng? jr-Ty-.?•?•" ?f-r vye? p^ryp* t- ry-wr«nggy^B •jf^r^rt^r^p^ paprgy^? wm Mfflmpi ffiWflSNiWj

cyclopion). The mean number of individuals observed or collected per

hour on herp-patrols varied significantly in four species including one

frog (Acris gryllus) and three turtles (Chrysetnys floridana, CL nelsoni,

J3. odoratus) .

57. Four species of frogs (Hyla cinerea, Gastrophryne carolinensi;

R. grylio, R. utricularia) recorded on herp-patrols differed in the mean

densities of calling males, but the site means were not significantly

different if the entire baseline study period was considered (Table 4).

When only the breeding seasons of these species were analyzed, signifi-

cant between-site differences in mean densities were obtained for

A. gryllus, H. cinerea, R. grylio, and R. utricularia (Table 5).

Apparently, the large number of tied scores introduced by including the

many nights during the nonbreeding season, when no frogs were calling,

biased the rank sums tests and significantly reduced the differences

between sites.

58. Included below are detailed community analyses of the five

permanent shoreline sites on Lake Conway. For each site a "point analys:

and a "trip analysis" are presented. Point analyses show the numerical

distributions of amphibians and reptiles observed or captured along 10-m

increments of the shoreline sites. Trip analyses show the numerical

distributions of species through time on the bimonthly sampling trips

to Lake Conway. Table 1 provides the species codes used in all point

and trip analyses figures cited.

59. For both the point and the trip analyses of each site at

least three figures are given, one for funnel trapping (total captures)

and two for herp-patrols (anurans only, and salamanders and reptiles

only). Each figure provides the total number of funnel traps set at a si

(per trip or per trap station) and for herp-patrols, the total time

(minutes) spent on each herp-patrol trip at a site • Thus, each figure

is scaled by sampling effort. In some cases the total number of indivi-

duals recorded on the point analysis for a site will be less than the

number of individuals recorded on the trip analysis for that site; this

means that some individuals on a trip were not given a sample point

and thus do not appear on the point analysis.

22

X *M

•• r-,- ^nM^K-a^,^ K%^ ?YF^P?7*" *w •"* ^"Wffi-'w^wflWiS^JW'.!'! !>'* 'W-iWPipl

South Fool

60. The South Pool permanent shoreline site had the most diverse

herpetofauna of any site (20 species), but also received the most

sampling effort (Table 4). The relative density of one species

(Kinosternon subrubrum) was significantly greater on South Pool than on

all other sites (Table 4). The highest total number of observations for

11 other species also was recorded from the South Pool site including

two frogs (Acris gryllus, Hyla squirella), four turtles (Chrysemys

floridana, Kinosternon bauri, K. subrubrum, Sternotherus odoratus), and

five snakes (Coluber constrictor, Farancia abacura, Nerodia cyclopion,

Regina alleni, Thamnophis sirtalis). Four of these species (H, squirella,

C^. constrictor, R. alleni, ^T. sirtalis) were encountered only on the

South Pool site during the baseline study period. Thus, many elements of

the Lake Conway herpetofauna are best known from South Pool,

61. During the baseline study the shoreline of the South Pool

site was developed gradually for a housing subdivision (Table Al),

Because shoreline development was gradual, changes in herpetofaunal

populations are expected to be subtle,

62. Point analysis. The distribution of all amphibians and

reptiles captured in funnel traps along the South Pool permanent shore-

line site is presented in Figure 3. Most (91.7%) of the 84 total captures

in South Pool were concentrated between markers 0 and 100 and between mark-

ers 360 and 460, where 48.0% of the total traps was set during the baseline

study period (Figure 3). In general, these more productive trapping areas at

the ends of the transect were characterized by a diverse emergent flora and

a mud substratum; the central, animal-poor region was dominated by

Fanicum hemitomon-Fuirena scirpoides and a sand substratum (see Table

Al). In addition, much of this central region underwent extensive

development near shore during the baseline study period (Table Al).

63. The spatial distribution of reptiles observed or collected on

herp-patrols (Figure 4) was similar to the pattern observed for funnel-

trapped animals (Figure 3) along the same section of shoreline (i.e., mark-

ers 0 to 460; traps were not set between 470 and 530 and thus data from

this section are not comparable). Most observations (67.1%) of reptiles

23

on herp-patrols between markers 0 and 460 were located between 0 and 100

and 360 and 460. However, in this case the concentration of reptiles (es

pecially Sternotherus odoratus and Chrysemys floridana) at the ends of tr

transect may be correlated with offshore habitat preferences rather

than with their preference for emergent vegetation in the littoral zone.

Both turtle species were active in shallow-water regions at night.

On the South Pool site, deep water occurred immediately offshore from

the emergent vegetation except at the ends of the transect (see South

Pool site description, paragraph 36), At the transect ends broad

shelves of shallow (<1.5 m.) water extended out from shore and most

turtles were captured in these areas (Figure 4), It is perhaps signifi-

cant that the greatest concentration of turtles occurred between markers

470 and 530, a section of developed shoreline with extensive shallows

but no emergent vegetation.

64. The distribution of calling frogs on the South Pool site is

given in Figure 5. The cricket frog, Acris gryllus, was the most common

frog on this site (Table 4, Figure 5) and was recorded calling along mosJ

of its length. Other species appeared to have a more patchy distribution

during the baseline study period, but the total number of observations

was small.

65. Trip analysis. Figure 6 shows the temporal distribution of

amphibians and reptiles collected in funnel traps on the South Pool

permanent shoreline site. In general, trap success decreased with time

on the site even though the number of traps set per trip increased. The

highest success rates occurred early in the study, between 21 July-24

September 1977. In this time period the few funnel traps available for

sampling (N=13) were set between markers 0 and 120. These traps account'

for 34 (66.6%) of the 51 total animals taken along this section of shore-

line during the baseline study period (Figure 3). When the trapline was

expanded to include the entire piece of vegetated shoreline (21 March 19'

most subsequent specimens were taken between markers 0 and 120 and betwe*

markers 360 and 460, although rates of capture for 0 to 120 were lower.

66. The relatively low trapping success for any one species makes

seasonal activity patterns difficult to evaluate for this site alone

24

"•AC i ifjE»i|ljj3l|jl^g||qjj|M^

(Figure 6). The only conspicuous change was the absence of the green

water snake (Nerodia cyclopion) from traps between October and February,

During this time N. cyclopion were observed leaving the water and entering

upland overwintering sites.

67. The temporal distributions of all species other than frogs,

and calling frogs, on South Pool herp-patrol trips are given in Figures

7 and 8, respectively. Most individuals of salamanders and reptiles

(Figure 7) generally were observed early in the study (July^November

1977) and decreased thereafter. A secondary peak in total*abundance

occurred in the summer of 1978, The highest peak on 17 November 1977 was

associated with the greatest amount of time spent on the site during a

single trip (187 min.). However, the mean total number of individuals

observed per hour on this trip (23.74/hr.) was 2.48 times the mean for

all trips (9.59/hr.) and truly reflects a high, local density of animals.

68. The stinkpot, Sternotherus odoratus, accounted for a majority

of the reptilian observations on nearly all herp-patrols (Figure 7).

Most apparent seasonal patterns in Figure 7 can be attributed to this

species, but Chrysemys floridana also followed the same trends (i.e.,

the relative densities of both species were high in fall and summer but

low in winter arid spring). Nerodia cyclopion was encountered on herp-

patrols from July to November 1977, but disappeared until 27 March 1978

when a single individual was observed. No other specimens of this snake

species were seen on South Pool herp-patrols throughout the remainder

of the baseline study period.

69. Frog calling activity on the South Pool site varied by

species and by season (Figure 8). Rana utricularia was the only species

heard calling in the late fall and winter months. All other species

called during spring and summer with some activity in early fall.

Middle Pool

70. The Middle Pool site had the second highest number of recorded

species (18), but the mean relative density of any one species was not

significantly higher or lower than other permanent shoreline sites

(Table 4). Middle Pool was the only site where the salamanders

Amphiuma means and Siren lacertina were equally common (A. means was

25

fr^^r^n^KTO^p^^ff^

4.27 times more abundant than _S, lacertina averaged over all sites,

4). Pig frogs (Rana grylio) and ribbon snakes (Thamnophis sauritus)

more common at the Middle Pool site than at any other site. Of the

female alligators (Alligator mississippiensis) known to nest on Lake

during the baseline study period, one nested in the marshes of the &

site and successfully hatched 12 to 16 young in August 1977. The ne

of this female (marker 1110) was destroyed in April 1978 (see below)

the best of the authors' knowledge, she did not nest on Lake Conway

summer of 1978.

71. The Middle Pool site underwent significant changes during

baseline study period (Table A2). On 26 April 1978 all upland and

shoreline vegetation between markers 1000 and 1120 and between 2000

2120 was cleared with bulldozers and draglines for a housing develo]

but markers 1121 to 1200 and 2121 to 2200 were left intact (see par.

To better elucidate changes in the distribution and abundance of tin

fauna as a result of this perturbation, the analyses that follow we:

into several subsets. All transects (1000, 2000, and 3000 series) i

divided into "disturbed" (meters 0 to 120) and "undisturbed" (meter

to 200) sections. In addition, all point and trip analyses were fu

subdivided into before and after disturbance categories.

72. Point analysis. Figures 9 and 10, respectively, show the

spatial distribution of funnel-trapped animals before and after the

Middle Pool site was cleared. Before development (Figure 9), most

(60.84%) occurred between markers 1100 and 1200, where organic detr

thickest and waterhyacinth (Eichhornia crassipes) often was the dom

vegetation (Table A2). In the section with little organic matter

(markers 1000-1090), all captures occurred in the Panicum hemitomon

Fuirena scirpoides zone between markers 1000 and 1020. Trap static

nated by Typha latifolia or Pontederia lanceolata (1030-1090) produ

captures.

73. After habitat modification (Figure 10), only one individu

(a Rana utricularia larvae) was collected in 122 trap days on the d

section (markers 1000-1120); 12 individuals representing 6 species

taken in 180 trap days before this section was cleared (Figure 9).

26

ammmmmmmmmmmmmmmmmmmm

30l

1).

0-

ed

On the undeveloped section (markers 1130^-1190), 10 individuals of 4

species were collected in 50 trap days before the adjacent section was

cleared; 24 individuals of 9 species were recorded in 70 trap days after

clearing. These data suggest that (1) clearing of the emergent

vegetation severely reduced herpetofaunal populations in the altered

areas and (2) surviving individuals may have emigrated to the adjacent,

undisturbed habitat.

74. The spatial distribution of salamanders and reptiles observed

on Middle Pool herp-patrols before and after habitat modification is

given in Figures 11-14. The clearing of this site resulted in the

removal of all aquatic vegetation on the 2000 series transect from 2000

to 2120 but left intact a narrow finger of cattails extending along the

3000 series from 3000 to 3120. Habitat between meters 130 and 190 on

both herp-patrol transects was not altered (see Middle Pool site descrip-

tion, paragraphs 39-41).

75. In the zone of habitat alteration (meters 0-120), significant

changes in the local abundance of organisms occurred on both the 2000

series and the 3000 series transects. On the disturbed portion of the

2000 series transect (2000-2120 of Figures 11 and 12), 87 specimens (7

species) were seen on 14 herp-patrols before clearing (x=6„21 individuals/

trip); only 4 specimens were observed in 10 trips after clearing (x=0,40).

On the adjoining portion of the 3000 series transect (3000-3120 of

Figures 13 and 14), which was sampled on the same trips, 146 individuals

were recorded before clearing (x=10.43) but only 13 afterwards (x=1.30).

In contrast, no major changes in the abundance were noted on the

undisturbed sections of either transect (2130-2200 predisturbance

x=1.20, postdisturbance x=1.20; 3130-3200 predisturbance x=2.10,

postdisturbance x=1.36).

76. The spatial distribution of calling frogs also varied as a

result of habitat modification (Figures 15 and 16). Unfortunately, rigorous

recording of the exact locations of calling males did not begin until

December 1977 (see Part II: "Methods and Materials"); thus, the predistur-

bance period is underrepresented. However, four frog species called

from markers 1000 to 1120 before disturbance (Figure 15), but only two

27

species were recorded from this section thereafter (Figure 16), Acris

gryllus and Bufo terrestris can inhabit and successfully call from shore

grass or bare beach environments. However, both Hyla einerea and Rana

grylio require thick emergent vegetation; these species apparently were

extirpated from the disturbed zone,

77. Trip analysis. The temporal distribution and abundance of

herpetofaunal species taken in funnel traps on the disturbed (1000-1120)

and undisturbed (1120-1200) sections of the Middle Pool site are given i

Figures 17 and 18, respectively. On the disturbed section (Figure 17)

total trap success was significantly greater prior to habitat destructlo 2 than afterwards (% =5.33, P<.05). On the undisturbed section (Figure 18

more animals were collected after habitat modification, but the differen

was not significant (x2=2.92, .05<P<.10),

78. The distributions of salamanders and reptiles observed on the

two Middle Pool transects during herp-patrol trips are provided in

Figures 19-22. As previously noted, the abundance of animals decreased

markedly on the disturbed sections of both transects after habitat

alteration (Figures 19 and 21), but the adjoining, undisturbed sections

showed no changes (Figures 20 and 22). The high number of Sternotherus

odoratus recorded on 7 December 1977 (Figures 19 and 21) was the result 2

a remarkable concentration of 53 stinkpots in a 10-m. area between

markers 60 and 70 of the 2000 and 3000 series transects. Such localized

concentrations were not observed again on the Middle Pool site during

the baseline study period.

79. The temporal distribution of calling anurans recorded on the

Middle Pool site is presented in Figures 23 and 24. On the disturbed

section (Figure 23), a decrease in the abundance and diversity of frog

species apparently occurred after habitat modification. Because the

predisturbance period (prior to December 1977) was poorly documented

for calling frogs, seasonal fluctuations in calling activity on the

undisturbed section (Figure 24) were difficult to detect. Most species

appeared to call during the warmer summer months.

East Pool

80. A total of 15 amphibian and reptile species were observed on

28

~^^7^

the East Pool site during the baseline study period. The relative

densities of three species (Amphluma means, Siren lacertina, Hyla cinerea

larvae), as measured by funnel trap success, were significantly higher

at East Pool than at all other sites (Table 4). In addition, East Pool

was the only site where the dwarf salamander, Eurycea guadridigltata,

was found. All of these species were associated with, the mats of

waterhyacinth (Eichhdrnia crassipes) that dominated much of the site.

81. Point analysis. Compared with other permanent shoreline sites,

the distribution of funnel trap captures on East Pool was more uniform

(Figure 25). However, trap stations 1090 to 1200, which were dominated by

waterhyacinth. (Table A3), produced the greatest number of captures.

Amphluma means was the most frequently collected species on this site

(Table 4) and was recorded from all trapping stations. Siren lacertjna

was taken at all stations except 1050 to 1100. Nerodia cyclopion appeared

more common at stations with greater plant diversity. Only 2 of 15

N. cyclopion collected in East Pool funnel traps during the baseline

study period were recorded from stations dominated by waterhyacinth.

82. Although sample size was small (N-62), most reptiles observed

on herp-patrols (75.8%) were recorded from the second half of the transect,

between markers 2110 and 2200 (Figure 26). Calling frogs also were most

abundant on the latter half of the transect (Figure 27) . Hyla cinerea

was especially common at this site and frequently called from water-

hyacinths and cattails between markers 1160 and 1180.

83. Trip analysis. Figure 28 shows the distribution through time

of funnel-trapped amphibians and reptiles on the East Pool site, East

Pool showed less variance than other sites during the baseline study

period with no marked decline in trap success. Activity was lowest

during the winter months of 1977-78, but increased in spring and stayed

high in the summer and the fall of 1978. Anuran larvae (Hyla cinerea,

Rana grylio, R. utricularia) were collected from May through September

of 1978.

84. In contrast to funnel trapping, the number of nonfrog species

observed or collected during herp-patrols on the East Pool site declined

through time (Figure 29). This was due primarily to the relatively

29

large numbers of Sternotherus odoratus collected on early trips, which

were not seen as frequently later in the study period.

85. The temporal distribution of calling frogs on East Pool was

similar to that of other sites (Figure 30), Greatest activity for most

species occurred from spring through early fall with a peak in late

summer. Rana utricularia was the only species to call frequently in the

winter.

West Pool

86. The West Pool permanent shoreline site had the lowest number

of amphibian and reptilian species (N=12) recorded for any site (Table 4

This was caused by an apparently depauperate snake fauna: only one spec

(Nerodia cyclopion) was recorded on the West Pool site but seven were

known from the Lake Conway system (Tables 3 and 4). Four turtle species

(Chrysemys floridana, C\ nelsoni, Sternotherus odoratus, Trionyx ferox),

which were common on most of Lake Conway, were relatively rare on the

West Pool site (Table 4). However, the greatest total number of

observations of three frog species (Hyla cinerea, Gastrophryne

carolinensis, Rana utricularia) were recorded from this site,

87. Point analysis. The spatial distributions of amphibians and

reptiles collected in funnel traps on the West Pool site are given in F:

ure 31. Trap stations 0 through 70 were located on beach habitats in s<

stages of succession (Table A4). These stations produced no captures e^

though 24.1% of the total number of traps set in West Pool during the

baseline study period were located in this region. On nonbeach trappin;

sites (80-370), the 13 stations dominated by waterhyacinth (Table A4)

produced the greatest proportion of captures, accounting for 59,7% of

the total captures but only 26.5% of the traps set.

88. As noted for South Pool, the distribution of salamanders and

reptiles observed on West Pool herp-patrols appeared to be dependent

primarily on offshore habitat preferences of the component species,

Sternotherus odoratus was the most commonly encountered gpecies, and ov

21% of the observations of this species on West Pool were recorded at

marker 30 (Figure 32). This spot was offshore from beach habitat but

was the only area on the West Pool site where dense stands of Potomoget

30

"TtrwnByyt- M^%(dg#KeR^#^#i^^'jgi;«*y^ •• H^ff li^Wil

occurred in shallow water,

89. The distribution of all species of calling anurans on the West

Pool site appeared clumped (Figure 33), The most abundant species, Hyla

cinere a. requires erect vegetation for calling sites. It called primarily

from four areas containing dense stands of Fontederia lanceolata or

Typha latifolia (markers 120-130, 160, 220-240, 290-310). The second

most common frog, Gastrophryne carolinensis, vocalized most frequently

from grass clumps along four sections of the West Pool site (Figure 33).

90. Trip analysis. Figure 34 presents the temporal distributions of

funnel-trapped amphibians and reptiles on the West Pool site. When the

frequency of captures was adjusted for the gradual increase in trapping

effort, seasonal trends in activity became more apparent. Total trap

success was lowest during the cold winter months (x=0; 0 individuals/119

trap days), gradually increased in spring (x=0,057; 9/159) and summer

(x=0.206; 46/223), then decreased in fall (x=0.168; 19/113). These

trends are due primarily to Amphiuma means, the most commonly trapped species

on the site.

91. The temporal abundances of reptiles and salamanders encountered

during herp-patrols on the West Pool permanent shoreline site are given in

Figure 35. Peaks of abundance appeared in the fall of 1977 and the spring

of 1978, but the total sample size was small (N=65 observations). On 10

of 29 herp-patrol trips made to the West Pool site during the baseline

study period, no salamanders or reptiles were observed.

92. The seasonal activity of calling frogs on the West Pool

site (Figure 36) was similar to that on other sites on Lake Conway, Hyla

cinerea was the most common species on West Pool and called primarily in

summer with a secondary peak in spring. Although most calling of

Rana utricularia occurred in fall and winter, some individuals of this

species called on warm, wet summer nights from West Pool.

Gatlin Canal

93. For a disturbed man-made habitat, the Gatlin Canal site contained

a surprisingly high number of species (N=14). This may be because of the

diverse array of microhabitats within the canal (Table A5) and/or because

of the accessibility of the two other major, alternate habitats (West

31

Pool and Lake Gatlin), Gatlin Canal was the only site where all species

of aquatic turtles were known to occur, and the relative densities of thr

species (Chrysemys floridana, £, nelsoni, Sternotherus odbratus) were

relatively high (Table 4). However, for the effort expended at the

Gatlin Canal site the diversity and abundance of snake species was low

(Table 4), probably because of the proximity of development and the

tendency for land owners to kill most snakes,

94. Point analysis. The spatial distributions of amphibians and

reptiles at funnel trap stations along the Gatlin Canal site are represen

in Figure 37. Only 27 captures were recorded in 420 trap days at this

site. As a result no between-habitat differences in abundance in Gatlin

Canal were apparent for the baseline study period,

95. Figure 38 shows the distribution of salamanders and reptiles

observed during herp-patrols on the west (100 series) and east (1000

series) sides of Gatlin Canal during the baseline study. Slightly more

individuals (54.2% of 387 total observations) were sighted on the east

side than the west side. Sternotherus odoratus was the most common

reptile at this site. The largest concentration of stinkpots occurred

near the entrance of Gatlin Canal into West Pool, where a large patch

of Nuphar luteum was established (markers 10-40), The species also was

common along the shore opposite the Nuphar bed, which was bordered by

Paspalum sp. and beach habitat. Other areas in Gatlin Canal also produce

large numbers of stinkpots (e.g. markers 1300-1340) but the association

of the turtle with specific habitats was not obvious,

96, Compared with other sites relatively few frogs were heard callir

in Gatlin Canal, but their spatial distribution appeared patchy (Figure

39). For example, the southern toad, Bufo terrestris, called only from

beach habitats or where the grass was mowed to the water's edge. Hyla

cinerea was heard calling mostly from stands of Pontederia lanceolata

or Typha latifolia.

97, Trip analysis. Figure 40 shows, the temporal abundances of

amphibians and reptiles captured in funnel traps in Gatlin Canal, No

individuals were taken in traps from November 1977 through February 1978,

Like other sites, most captures occurred during the warm summer months.

32

^^^^

98. The distribution of reptiles and salamanders observed on each,

sampling trip to Gatlln Canal is provided in Figure 41, Sternotherus

odoratus was very common early in the study period (July^December 1977),

but decreased in abundance thereafter with a secondary peak from June

through September 1978, Chrysemys floridana and _C. nelson! exhibited

a similar pattern. Changes in abundance for these-species may represent

seasonal movements between the canal habitat and adjoining lakes or

differences in seasonal activity within Gatlin Canal.

99. . Distinct seasonal differences in the calling activity of frogs

were observed in Gatlin Canal (Figure 42), Rana utricularia called

mostly in the winter; other species called primarily in the summer.

Deepwater Trapping Stations

100. Only one salamander (a Siren lacertina) was collected in 244

trap days at deepwater sampling sites (Figure 1) during the baseline

study period, This specimen was taken in 1,2 m. of water on the East

Pool site during the July 1978 sampling period, Thus, the mean trap

success of amphibians and reptiles at deepwater sites was 0,41 indivi-

duals/100 trap days. This value was 40.92 times lower than the mean

for all amphibians and reptiles (5=16.77 individuals/100 trap days) and

5,72 times lower than the mean for £, lacertina (5^2,34 individuals/

100 trap days) trapped at permanent shoreline sites during the

baseline study period.

33

PART V: DISCUSSION

101. Baseline studies of the herpetofauna of Lake Conway indicate

that the lake system contains a complex and diverse assemblage of at

least 27 species. A number of these species (e.g., Hyla cinerea,

Amphiuma means, Alligator mississippiensis, Sternotherus odoratus,

Chrysemys floridana) are common and conspicuous components of the Conway

ecosystem whose functional role in food webs and community dynamics

generally remains unappreciated. All of the species contribute to the

diversity of the system. As such they are important in maintaining

community stability, and changes in their populations provide an excellen

means of monitoring the effects of environmental perturbation. In future

poststocking periods, the authors' task will be (1) to determine whether

any changes in the herpetofauna of Lake Conway are the result, directly

or indirectly, of the white amur aquatic plant control program, and

(2) to consider if these changes (if any) are consistent with the object!

of the LSOMT.

102. Unfortunately, no detailed integrative studies of a community

of amphibians and reptiles inhabiting a large aquatic environment such as

Lake Conway have been published. Indeed, the herpetofaunal project on

Lake Conway will provide the most complete ecological data base available

for a number of species, especially Amphiuma means. Siren lacertina,

Chrysemys floridana, _C. nelson!, Kinosternon subrubrum, and Sternotherus

odoratus. Thus, at present it is not possible to compare the herpetofaur

of Lake Conway with populations inhabiting other aquatic ecosystems.

103. In general, the amphibian and reptile populations of Lake

Conway can be characterized as dynamic, varying in both time and space.

Presumably, future work will show that many of the temporal density

fluctuations observed during the baseline study period represent seasonal

changes in activity. In other cases, long-term changes in herpetofaunal

populations may have occurred (e.g., shoreline development on South and

Middle Pool permanent sites). Trapping and other sampling results indie*

that most species of amphibians and reptiles are restricted to the

littoral zone. Only a few species regularly inhabit open-water habitats,

34

1:4 j^iliwyijj^jaipjj^

and even these species are dependent upon the shoreline for some portion

of their life cycle. Across all permanent shoreline sites, the diversity

and abundance of amphibians and reptiles generally was greatest at those

stations that contained an abundance of aquatic vegetation; sparsely

vegetated stations or stations that were converted to beach habitats by

man had a'depauperate herpetofauna. If white amur have a-major impact

on the shallow-water emergent and submergent plants, detrimental effects

on the herpetofauna are expected.

35

REFERENCES

Addor, E. E., and Theriot, R. F. 1977. "Test Plan for the Large-Scale Operations Management Test of the Use of the White Amur to Control Aqua Plants," Instruction Report A-77-1, U. S. Army Engineer Waterways Exper ment Station, CE, Vicksburg, Miss.

Barr, A. J. et al. 1979. SAS User's Guide, 1979 Edition, SAS Institut Raleigh, N. C.

Brown, W. S., and Parker, W. S. 1976. "A Ventral Scale Clipping Systei for Permanently Marking Snakes (Reptilia, Serpentes)," Journal of Herpetology, Vol 10, pp. 247-249.

Cagle, R. F. 1939. "A System of Marking Turtles for Future Identifica tion," Copeia, Vol 1939, pp. 170-172.

Freund, J. E. 1973. Modern Elementary Statistics, Prentice-Hall, Englewood Cliffs, N. J.

Godley, J. 5. 1979. "Foraging Ecology of the Striped Swamp Snake, Reg; alleni, in Southern Florida," Masters Thesis, University of South Flori, Tampa.

Gosner, K. L. 1960. "A Simplified Table for Staging Anuran Embryos am Larvae with Notes on Identification," Herpetologica, Vol 16, pp. 183-191

Guillory, V. 1979. "Large-Scale Operations Management Test of Use of White Amur for Control of Problem Aquatic Plants; Report 1, Baseline Studies; Volume II: The Fish, Mammals, and Waterfowl of Lake Conway, Florida," Technical Report A-78-2, u. S. Army Engineer Waterways Experi- ment Station, CE, Vicksburg, Miss.

Nail, L. E., and Schardt, J. 1978. "Large Scale-Operations Management Test of Use of the White Amur for Control of Problem Aquatic Plants; Report 1, Baseline Studies; Volume I: The Aquatic Macrophytes of Lake Conway, Florida," Technical Report A-78-2, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Pough, F. H. 1970. "A Quick Method for Permanently Marking Snakes and Turtles," Herpetologica, Vol 26, pp. 428-430.

36

ll-l '.CWWpT" T .p f ws •

Table 1

Checklist of amphibians and reptiles known from the Lake Cbriway system,

Scientific Name Common Name Species Code*

AMPHIBIA CAUDATA

SIRENIDAE Siren lacertina Greater siren L

AMPHIT3MIDAE Amphiuma means Two-toed amphiuma A

PLETHODONTIDAE Eurycea quadfidigii :ata Dwarf salamander

ANURA

BUFONIDAE Bufo tefrestris Southern toad B,%

MICROHYLIDAE Gastrophryne carblinensis Eastern narrow-mouthed toad G

RANIDAE Rana grylio Rana utricularia

Pig frog Southern leopard frog

R,+ U,&

HYLIDAE Acris gryllus Hyla cinerea Hyla femoralis Hyla squirella

Florida cricket frog Green treefrog Pinewoods treefrog Squirrel treefrog

Y,* H,$ M P

REPTILIA CROCODILIA

CROCODILIDAE Alligator mississippiensis American alligator E

(Continued)

* If applicable, the code for the adult life stage is followed by a larval life stage code. The codes explained here are used in Figures 3-42.

Table 1 (Concluded)

Scientific Name Common Name Species Code

TESTUDINATA

CHELYDRIDAE Chelydra serpentina

KINOSTERNIDAE Kinos ternon bauri Kinosternon subrubrum St smother us odoratus

Florida snapping turtle

Striped mud turtle Eastern mud turtle Stinkpot

I K s

EMrDIDAE Chrysemys floridana Chrysemys nelson! Deirochelys reticularia

TRIONYCHIDAE Trionyx ferox

Peninsular cooter F Florida red-bellied turtle C Chicken turtle D

Florida softshell

SQUAMATA

COLUBRIDAE Coluber constrictor Farancia abacura Nerodia cyclopion Nerodia fasciata Regina alleni Thamnophis sauritus Thamnophis sirtails

Black racer V Mud snake X Green water snake N Florida water snake W Striped swamp snake Peninsula ribbon snake Z Eastern garter snake Q

i i ??^^r^z?%^r^'?'^^^M?''T T?.T-.w^'&^:m?s^ir4-rswfii.*3<E ?'%9a?!

CO m cfl CU ^ •H H cd <4-» o cd

>4 o CU 4-1 & O

a co co en H o H (U

"O fl o I co (U T3 o H 9 JJ , -H •o cu 0 o > to o cu <u Tt CO c

<U g^ O •H •u O cu

m o c U o 4-1 •H O iH M

•M CO CD 9 -o « <u l-i CO <U 1 4J

3 o d

4= CU 3 J3 H to u <u C -r-t rt

ca U 4J J3 J3 rH 4J 0 4-1 00 0 cd d +J d c

•u o •H TJ. to o u T3 o d CU •M O <fl "rt M *o rd >» cu •H <U o 4J K to *J rd rd i O, 4-1 4-1

(U 1 <p rH

1 o X) rd Cu u

*o 3 cfl 4J U 4-J s rH cu cd cd O u O a a.

d a 4J (0 *H J3

§ 4-1 m r-H co <D cu

CM >H <D <D 4J i-& /a •H" M •3 <U iH M CO rO 3 w

1-1 ,c J-i •H Ft, EH

<o 6 I d 4J r

CJ d O M CO U O n d

I-l <U o 4J <H rH & O J3

Cfl CO cu co •o cu <u i-l -H

*M 0 rd •H W M-l 0 +J O

at *o q) a 4J CU o Ck »o co *4H U

J3 o •H d 4J >, rd cfl k cu 32 *o 4-1 O k 6 9 2 4J

4J B 0) M M CO J3 o d 60 +J 4J

•H 0) d Cfl CD rH a •H CU bo 3 & •H rH M •H « B H & cfl in d <S 1) s 4J rH CU

<j U (0 CO CD a n) 0) V

k J3 u -Q

CU «

CU d J= !* a O JJ -O

•H cu 4-> bo d rd 3 a a) •W

J=l •H ^ i4 k cd •O Vi 9 . 4-< C i-> TJ Cfl CD CO

•H >, <u tJ cd

a rH

CD CU <U 4J

£ 8 S o 4-1

CT.

CM

CO o

CM O

<N

CO M 00

* CM

CM O O. O

o o

-• o o

o m CM ro

>-< sj- CM

CM O O

rH O m oo

in co i-H -3- <T\ in CM

00 CO CO rH

rH O CO

X 6<

NO N

O r- o <r

NOH o

Ol rH m CM

CO CM CM

6-S &<

\o oo o\ oo

oo o m

o

(U rC CO

OS CM

a\ co

<N r-» o CO CM

r~ t~* sr \o m ^H

vO CO CO rH

rH O CO

-* oo O CM

CO Oi vO CM Cl rH CO

CM ffi r- cr»

rH (M

9 Tf

I

cd

cd a 4-> •H •H 4-1 bC rH

"H cu T3 (J •H cd

cd rJ rH cu TJ CJ d

<u

9 -H w CO

CO 9 M rH

r? CO

4-J M H CU ^ 9 c co 13

•H cd rH t-i v—' rH O < •H

CJ

c o u

•3

CO <u .

T-C rH CJ ttf 0) 4J eu o to H

C •H iH CO Q) 3 t-t co o d

en u

4-1 60 c c u C CC) 1-(

I o

4) ee

U a. C tcf 3 U k H

I

8 3 3 3 <U (0

W 4-t

4J CU M-l O •H C

Q h

o

DO 3

I-H a)

B-e X X x B^ &e 6~S &< CM CM VO <r in oi [~- CM o «-H TH m m CM O •H

o <j\ in •H U"> 00 1-H VO CM r- o -3- O c o o\ o r- ri CM ^H CM en en

co -* en r-~

i-) o o

r-t oo <r vo

m vo co

O OV

en © m CM -H

X &3 r~ co VO Oi

o <^ m O OI eo

in <r CO CO .H l*s CA

m eo i-t o

IflHH

6-* &4 CO CM CM CO

co o co

CM 00 VO VO

co oo m o\ <r> CM CM

CM m CM vO

vo CM r-. CM 1-1

O —I O CM

o o o

o oo o o

o <• O •-!

-* o o o

r-. o o o i-H

•* co r-» co

O CM

CO m •H

U CO u 4J 3 <U 4J CO CO r-l at co 4-1 a) H t cu r-l M

£ u 3 M «t u TJ at

bC i-t o cu fl! 4J I4H 4J 3

< PH «]

co

to

co •H

(II en

^ cu H c fl 1-1 fr .H O O u w 4J nt CD u (0 o & «l

<u -a <0

cu JH

•H 3 o- CO

ml

>?;ftW:*f1<%?%f*®!t^^

CO &•« eg i-H •H H o a ctf a) 4-1 Q\ i-l a o in W H

I CQ i-l =1 <D O O CU CO c g cd

cu d

TJ &4 i-H CO oo (U 3 o U cci O C co cn

J3 cu M u

jd 4J cm &i c c 1—1 •H •H CM U c CO 4-1 CN >. CD a CA

X &-S N m o>

i O r» CTI cu M *~* M 4J O -* o

13 CD cfl m oo <u EC P. 3 C &e x

T4 H r- !-. -P CO •-I CN c c P. o c flt M) O r-l o 3 w i—1 -•^ ft. H

CM 1 o 60

(U t-< C i-H 4J •H ^Q o A3 flt cu CO H l-t i-l

w IH

4J cu 4-1 o •H c f-i CU Q h

u o 4-1 cd 60 g •H (0 i-H c 53 cu

o

o T-l l~> M co

3 "O

(tt CO c v—'

3

6-S

en o

CN vo

en <N m

CM

vC CO

O

m o

CM

co CM m

<n o

CM o

vo

o CO

cu cu

J3 co

en

VO -^ CTi CM

o oo O VO

in CO

O CO 00 o

m CTI »H

O r~ O <-

CM O •-• O

co -* CO CTi

CO CM co oo

CM CM

149 97.39%

2,95%

co oo oo

00 CO m en

m r-l VO CM

00 l-H

u*1 CM CM

rH O O o 1-1

f- CM CM

X B-S CO o <f 00

i-t 0\ t-f on m

a •H 4J (3 O U

CO

o CM

CM vo

^8 6-5 a\ cn oo cn

co co -j- CM vo co

6-S 6-J>

vo sf

M. O O O

VO O O sf CO O

cu

u odi-i

Pdl

cd

u a

3 CO CJ. 4J

•H i-H U 3 4-1 T3 3 at

k m

3 a) o cd •H rl £

4-1 c<) 3 i-H

cd cu •H f! r( CJ cd 4J

rH 3 3 rH O CJ

•H U 00 4-) oO 3 <u

^1 «l

< e H O

H q

1 I &

a •H •H CO

H CO CO CO CO O CO •w •H •H 4-1 co CO co cd co C ca 3 OC m cu 1 CU

1-1 i-H 1 a.

1-1 ex

< <ti

to <u

J= u

4-1 3

i-t •H iH CJ

W

CU

s

(0 (U

1-1 rH O ed 0) *J Ck o

W H

1 CO H 3 0) o U CD CO C

g^ <u C •H

D g t-l CO O C

J= CU w u JS 4J M c c

-H -H o c « -H ts CU

pfl w

iH 1 O a u u w

/^» cu a) Tj 33 a

<U 3 C .H •H a) 4J C & C e « o 3 u u h H

1 CM O M

k C <u r-t S3 J3 (U CO id H -H H W MH

U <U IM O •H n M 0) Q fn

b O 4-> nj ca 00 3

•H to TH C M CU < u

O

co

m

m

B< i—i r-.

o

B< CM o

<•* o

Bi

oo c

B-S -3-

B-S O r-.

m co 00 CM co

vo

4-1 cu cu

.C CO

o o

in CM

B< s~s ^o «—• CO CM

noN

6-« B< O r- o -*

B-S X O st in r-.

H!SO

B^

vo oo co vo

moci

o m HO N

X B-s &•« X B>J> O sj- r-. ui O &* o o CM r- O 00

' ao CM a o HUHO mm »

in a\ CTI >-i

&e B-s X x B~S B-« O -H 00 CM O rH O CM m sj- O CM

Hino CN o o r-H i—1 O CM

c en CM -H

t-i o cn

X B-« o m O CM

CM CM SO

B-S B-S Bi B-S B< B-S B< B-S O CM O sf r~. •—I r~ i-l

O O o O CM m i-i cn

o o CM m o \o r- o O vo VO o CM CM <• m a\ CM t-l CO

i—i B< B-S B-3 &s B< 6>S o CM a\ r-| m •—I o <r o r- o\ r^

CM m CM

o CM

vo

m

B-S m CM

CM

B< m

m

B-S O m

cu 3 C •H 4J c o

CM CO VO O CM

rH CM u

&•* B^ o 00 m <f

en CO

<r

1 M a

en W H

$ 1-1 4-1

CD a U a) t3 CL ^ n

rH 0) CU CO

6

td c

CO « >. TJ B i-i cu P CO o

& J3 O u

as 1-t

CO t-i >> cfl H -H

CU 3 f U

CJ i-l o •u u CU

•H k 9) a

C o

fi cu •H 4J l-i w 3 o CO c J3 •H W

3

CO

Ml

CO 3 S4 co cu 3

JZ 4J 4-1 cd o k c o b XI cu o 4J CO

W ^i!f>a ^a^f. ^q^j^^B^gg^^H^«H^gpi^gn fa^njf >^jj 7^yfe^T»Bl^^y^^M1^MW?,if;Bp«5y^ 6T- Ti^^^r^V^if^^

a •H

c o

CM

•9 H

to

•H r-l U « 0) 4J o. o

CO H

r-t 3 at o

to C

i-l M

k CO o c .c <u co u

•H -H u c

W CO

I o P. u U w

C Si § 2

O M t-i C1

*J iH <J rC <D CO rH -r\ W UH

4J <U l*H O •H C if <D P h

o d w 60 3

H c rH 0)

B< en o

m o CM

1—I

o

6~! 6-S

f-H -tf O

B< &e B*S B-9 en r~ <t co o o rH -*

CM o <f o m co i—t

*

co

B< m m

o

o o

o o i-H

m CM

o

B< X B-S x B< 6-S B< x O <f O oo O^ o\ O «3 o P^. o -o- m o o \o

rH O o CM o rH m ~*t CO m O co U1 m <f CM CO CM

vO m o m

4-1 <u

CO

B< X o o O r-t

B-« B-S O CM

m © © >-H r-- o O CM oo

&••! B-S CO CM CO <f

CM 00 O

O -vT

O r-< m

B-« B-S B^ B< B< B-; O CM OO 00 O \o o o o\ -vf o CO

m o in o •H oo CM o CM r-. -d- i—i I-.

Bi fr~S B< B< B< B< O —l m m O rH ^ O CM p—( o o CM •o

(D m o r*. rH CM t—i <f o 3 CM m

m

CO

B4 CO r-

CM

•-i

&•* CO vO

m i—i

B-S O o

c *-> 0 o o

rH sf rH

(0 <u

rC « o o

CO 4-> u 3 3 Q)

•U <H U-t tfl O M X O 00 >, -o 60 c o (U o \-/ •H

rl w H

H O O

k o

4-> c to CJ o *J

•H CS •H (0 k a) M & •H -w Ti 3 cd o U m o o •H rH D) c a cd T3 o co o « rO O >1 4H u VJ a) u u

m (U k z BSl

cfl •iH in

H-l o

4= o (0 e o

at

1 •-I o a o o ^/

(N

0) H

•3

<n <D ft M O a) 01 4J p. o

C/l H

3 O

0) G

•H i-t

k O

P ?

I o • P. k

a) cd W P4

41

c ^ 3 h h H

I , O M H -fT 4-1 -H y wa (U CO

U CD

•H a h <u

u o JJ cd m

•H m H C rH (U < U

(M

X &S &•« &< m O m o O i-t o o o \P o CN O v© O en o

m o

^8 B-i O r- o <f

O rH o

O i-f O tN

n © cs m

o i-> o •*

CM Oft o

o oo O -f

n o -* m

•H M CO

(0 m Tf 3 X! u P. «H O k

3 cfl

cd (0

g

(0 •H

flj 4J

i-t CO

HI

n o

en

00 m

CO

o m

-a- oo o m

O

m oo r-.

m in

CN o n

m

&4

vo o

H Q O

e

^^^K^T"^ Tr-r^^vv:<T^v^^^^ff^ r *TT^^^;7j98#^ !7l*^W^ff^lH

m <u H •s

a o u

•a

o

n 4-1 p.

U O

CU

(U

.a o m

P. CU

§ 03 C 0

i

a) o S §

•8

> TH u cd H cu

e Cd

g i-t 4-1 3

ri 4J CO

at

CO 4-1

C 9

ej (0

e . o c m s 3 <0 r-\ 4-1 ed

> w o g

s <0

>• M ,a O

0 en p- cu

•H CO o CU a a «H CO

4J m •H o > k TJ (U a)

•fi u 3 o C o

cu (U u

J3 4-> to

cu (U •H

"8 u cu

i-H P- O CO c ^s

•H cd co cu

CO KH oc cu O CO

•H 4-i k co (3

rH CU cd CJ 3 n

•o cu co S p.

rH •H o •o en o (3 rH

P4 •H O O

*w P. 0

•a a o ri cu -H eg cu

•§ s a 3 cu

C rfs S rH <U 3 ttf o 4J •U R CO o <d

4J T3 CU

<u § •H f! ^ rH 4J a)

CU CO <U <tt >

>a CO •H CU 4-1

cu co Id X cu T-l 4-1 •C cu

4-1 h be c a cu ri

•H M iH M « cu 3 P. x;

T3 v-' 4J

co CU s-a

M-l 0

•H rH N X *< <f &s X X o m s~* f-x m cn o\ CM CM esi VO rH

CU 4J rH cn CM -a- CM O vo eft oo H r-l O Ov M M r-l P, o rH v \o rH cn <r o\ • O 4J

cfl H ^ CM <r o r-t f-i 00 r-l o CN cm m in <U CU

J3 CO

&< ts o •H frS x X 8^ o

CU r-l f—\ /—, I'- M. oo VO

A! W CO CM r-> ve o vO H vO <r vo O in m r-l o cd cd ^^ r-l CM • o o iJ o CN m r-l co co rl

@< *< \o H a< X

4J rH ^N y^ o -a- /-* en cn 0) O f- CM CM o VO m \D r-t O -* o o <U O v»/ v»^ VD en CM CM CM CM ts PM CM CM

m

cn

u-i

oo

&•* en

4J r-l /-\ ^^ cn iK •* CM CM co o oo m 00 CM O CM m >n o sh o cfl 0 V-* v^ m o o VO cn v—' m vO O oo pa CM r-l VO r-l m r-l r-l

B^5

CM vO

CU x s«e O fr* rH X <r r-l o •Jf Tj rH -* CM 00 o Tj o CT\ CM sr cn O O r- oo r-l o cn o -rj O V^ v—' r-l CM r- <f r- o cn rH T3 a cu m rH r-l r-l rH CU

3 4J c

fi x 6>S m &•? o 4J rH CM CM /"-> r-t m u 3 O CTi CM M O O CM r-. r* 00 o cn cn o O O ^/ v—- CM ^J> o r-l rH

C/> Cu co rH m VO <r

4-1 cn rH 0) cd 4J 3 cd 4J rH -a _ t •H 3 cu cd 00 T3 cd cd

•H cd

cd 5 CO H

CO •H a cd •H c U •H CO rH w CO cd TJ 4J 3 4J •H

§ 3 t-l cu

rH rH 9

co cu 4J

C7 CJ P* rl m cd u rH n cu

rt rH K rH cu u <v >1 4J u

_ < •H o G CO n cu 35 1 |

CO -rl < u

oc o MH

4J

sg H •H cn < S rt a <

o

cu

s •H

e o

en

rH

cd H

CO N

N m x s-e x X X x M M U A <t m CTi r» CM i-H St CM CM Ov CU 4J co en vo • M. CM <r o r- M o\ O en r-» en vO vO vo u-| O P. O r- • i-H CM T—1 > lO » <t - u-i • en -

W H H en cs o o O H o rH CM O O

•H >4 X CU rH en co

,« +J st rH o\ st cd cd m • •J O m st

x S-? CO CM

W i-l o o m o r-^ en * co o m en m CM 3 k P-.

St -W r-l O CO O O oo • cd o st <t W PU st m

<u N B< r-l 00 co •O M en CO •o O CM o\ •

££ r-l »n O "*1 iH CM <-*

cM en

en

rH VO

O • en ej\

vw O

CM

CO

CM

vO

in en

CM CO

o o

st O O

rC X &i 4J rH rH r- 3 O in st r- m o o st •

W PD v£> en

CO co

»•*

CO *•? VO vO

o o o o CM en

CM U"|

»n

3< &-S &e @< r-l in o 0\ LO m en CO

o 00 vO - CO m • H O en CM co m

en r-l rH r-l

X N X r-l IT, B< co St o O r-

o CO r* • m co 00 - en St en vo r-l CM r»

vO co <Tl r-

8-S o X o s* rH &•!

c* vO CO r- o rH vO © O r-H r-H

o • en o\ •

o o o CO

CM

© o d CM

CU 3

•S B o u

a TJ 0)

« •H

CO B <y *** c CO

•H 4J r-l rH CU O 3 id u TJ £ Cd CO u \-/ cd

rH CU cd ^f

e a) t* u cd Vi <o CD ^ c |H o. •H <U o O d h •H +J a) o co rH cd >, • O W s

0} JJ r-l

CO

CO 4-> H

cd

u •H 3 d to

3

cd

o •H rH

tr eo

cd C

cd

(*51

3 •a co

cd

k cd

rH 3 u

•H U 4J 3

CO

•S •u 3

00

01

rl cd

rH 3 y

•H

4J 3

-Trw-Trzmt&inm^w&Stwr???-; ^—1 ?y •*,iT^^*tilfWpF^^a^T]

<u 3 S

•H 4-1 0 o u

H

H

m OJ T* i-H u cd a) 4J P. o w H

a) r-i M 4J

m O a) o 3 k

4J rl 01 O a) o

a)

-o o •H o S PL,

5H 3 O o o to H,

r-.M

a,

S-H

«*»W

_ CM t*l so

H CM

M

H

I'- ve

vO .

B4 VO O

VO

IN o oo

oo

in

H

M Q H erf a, o

4 2

w c <u

•H

I to

•H W «

Vl o

Si

o o o

o o o

m

w •H m PI <u

CO CO

•H CO CQ

W cu

CJ 4J 3

OO

<U

<l

VO

X X &•! r- m r-i

<r o r~ c\ o r- <r • o •

o eo m iH M

&•« 6>S X o m O o •vf O

ts • r- • VO • o m vo <N VO m r-i C4

s-s o s~s 8-* o m o

r-l • <t H m o m tN rH m

X s< &* o vO o o m o

M • sf • o • m in m cS O N iH rg

X B-S r- O r-- O

o Ov • •H • r- tN m I-H

ts m

&f N OV O O o

o m . o * m -* c*j o rH <r «s

CM O

O o o o

00 rH

t>« &•« N O <r <f l-> rH m o\ m •

m • oo ^ o o en CM

rH

X x »< o VO VO m m Oi

o\ • O •

f-4 vO rH

m m

U-l o

4-1

cu

M &i m 0\ 00 00 T-l

m •

x <-

o o Ov co

vO

&e t>S ^ o m VO m r* vO

i-( • r- <f (N tM N O r-4 i-l si- m -a

cu H

•H B~S 6-S ^ 4-1 O 0\ m G o O r- 0

vO • oo m U m <n m m C4 r- vO -* en

13

CA w H

3

w,

0)

ct) 1-1

cu

6

§ •H

o

u (4

*3 CJ n-t

•H t-l 4J 3 (U id M J3

o

<u

•3 o M

•H

g

g'

CO

Ml

CO 3 4-> rf )-i o o

T3 CJ •o 3 i-l y

o u

en CD

r-l

•a

CO N CD o

•H rH X X X 6^ &•« 6-8 &< M 6-! o O eg o\ 1-t CO M. St en co o en CD 4J u-i O •* st r- CN O st O co rH Ul St CN O v£> rH CN O \o o O. 0 CN • 00 CN en o to H O o O o rH CO o o O o 00 rH

a X frS X &•«

•H co en o St 0) r-l co /—\ <JN o CN M 4J o 00 > tN © o o <t o O o r- . cd « en v^ CN o rH \o st \o hJ cs CO H m O H

o sr

4J rH m o CJ o

to o (0 O

CJ

T3 rH •O O

82

J3 4J rH 3 O O O

CO fi-l

X CM o CM

o o rH o o co H

rH

l~.

o o O o 00 • oo in 00 rH

fr-S &* &< 6-S B-5 &4 O r~ o rH r- CM O vo o CN VO CM

H • st ro o l-t * vO o o rH o st . O \o m CS1 st vO m co CN rH CN rH rH CO CM

H

&-S &4 S* X frS X O I-. rs o CO st o « m o CO oo

st • st CO o o CO CO o in o CO « O vO CN CM CN CO H O oo rH

en 6-S o o o

CO

O o o

oo

o o

CN CN rH

Cfi en o rrl o st

o oo vO CN o CO - rH CO CN o o CN o Oi . en o m O LO CM o o CN st en 1"H t- rH in 1"H rH rH St CM

W

•s 4J 3

00 M CD

u a) U O

O

w|

& o •H U H

U 0 4J U

•H rl

CO cs o o

h CJ

•9 H O

CJ

a n) o n •H 3 P. o O cd rH ja O cd cd >h -W

CJ cd cd •H

•rt cd CJ O •H CO (3 13 cd (0 O 4H W rl tO <u P* g a

cd

•H on

to 3

4-> •H rl 3 cd CO

0) CO -rl

iH H fl cd (a +J o U c •H g (0 cd fl H

w

H O H

>J O O PL,

*3 II

•rl s ft, > o M o

0 rH m l-l a) co i-i rH ft *G

4-J g cd CO 01

4-1

i-f > -H u M CO >i •Q 0 cd 4-1

,Q t-l •H co CU *3 4-1 s rH G co a) cd CN •H •rl CO n ft % CO CO H •H 3 1 G 4J CN

CU y 4J ft 8 01 Xl M 41 ft M CO 1 •a o ft CO cu <u X CO y J= 3 u co M cu o

w u cd 4J tw CO 4J o o > •H cu 00 3 CO Cfl 4-1 •H rH <r> 0 H a T> 01 X y co • ao G 01 a) O u cu cu 4-1 <r) r_|

f ai JS cd 4J ft, o O 00 CO 4-> 3 rH W H rH CM

k 3 g CT O cu 01 c CO CO 01 & CU 1 V w m •H o •H ft, 3 4-1 J= U & f! n •rl rH u"t cd 4J 01 4J U * rH Cd CO

ft * 4J 3 • o w 01 co >l m cd cd <0 CM CD *3 J3 CM u u CS <]-

rH 3 cd m O •H iH T) co o 4J O iw a) > • A ft c O 4J co V ft, CU iH *o ft, o k 01 11 4J rH -^

CO rH 1-1 ft * m CO O * -* 13 01 cd 4J cd \*> 01 01 o «* rH s •H 3 <n u 4J & ft, rH VO cd *3

•rl CU 4-1

cu •rl CO

co > co o 4J 3 •H * o y a cd •3 H 01 CU o •H CO G !>> 4J 01 4J t-H CN

"* 5 •H 4-1 "Zr eg & CO O • <* t-t cu •H cu •o 4J cd o o m

1-1 & 4J •rl

tt-l O § •§ cu

cu W ft, <-i sr ^ S « <U w

CO Cfl k TJ c § co E-t cu 0) cu

<*H I cu c u rH o 0 T3 > Cd CO c T) rH n

O 3 •H cy cu 01 •a o . CM >1 •rl s 4J B u M

X ft, o <N u w n) II a CU CM •* •H 0) r-\ rH cu 14-*

CO ft (0 o> H M 4-1 3 4J rl CU •H CU ^ O h 4H "O •o •3 4J G s-f UH J3 en

0 cd •H 4-1 4J rH rH fl> 4J 0 8 CO T3 3 3 O • co > to .G ft cd o o CM CM ft 4J <d CU y co ft, Cl CM u Oj u k 4-1 •H a G •H 4J •H y-i rH •H ^v 01 CO •H

CU H CO rG rH 1 C h m cu 4J CU 3 bO co co a 01 •H 3 CO" cu -3 a 01 co td J3 •G e 3

91 § <D s nt m s co

u r3 a) •c -Q 3 •d 4-1 k a cu o 6 nj CO cd U 4-1

rH

CO 0

ft s. ^ § u c •H H M U •H o o rl CO cd 3 •H T3 M CO •H 3 4-1 > O M-l 3 4J >,

cd cd 4-1 -3 •H JZ •H iH 3 .o >-, (3

3 § u £ U ft*tj l

•H 0 k 01 •H 01 ft, pL, W ft U » 4J U cd 4-1 3 •rl 4J 0) H to o e CO 44 0* r3 4-1 •H CJ o T» fi •H <-t 13 c O rH rH

0) cu 8 rG

4-1 § rH 8 Cd Cd 4J u

g cd 4-1 § 1 3

O td CO

0 O

* * *

vO

O

01 01

CA

O ro

rH \0 O rH

r- ci co

CM

l~. O \3

r» o M

r- rH o cn

CM O rH oo

N r-1 rH rH r^

vO o o

r<; CM

i~. m

oo CM

O0 cvt

o -d- CM o ON

o <f moo

O oo st O CM

O CM

rH O CM CM

J3

CM

<f en H VO

rn O rH CM

o oo rH \0

r-* O \o en

< m en *3 o co CU

3 m o CM 3 rH

o

•H 4-1 3 o

rH o o

i •H

•a

ft, E-t

Efi Ex]

td 4-> cd 4-1 •rl (4 •H •3 •H M •3 cd

5i cd V o

II

ft, H

cd C

•H 4-t K 01

Si

3 0) M iH CO

ft, H

33 h

#&##&### AA#^#&k#-&#A#)A#%&^#

•a

1 o

•a

vC

cn (U

•H r4 o cd <U 4-i A O w H

c •H H H CD 4-1 G Cfl m o c_)

cn o m o

•O O

3 O O O

GO Pu

vO

m

\o

vO

*

in m

r-!

m m

o

« m

vr o

o i-H O

9 cn 4J i-l ^x . m o <- oo i-> cd o ^ r-. M fc

VO

00 m

m

cn in O i-t m

(0 4J

3

0£ CXH H

<• U1 o CM

o 00 O m

r* © m

o m o cs

o d

o o

CM

o o

o o d

o o o

in o

CM

oo o

cd

50 h

iH PM H

3

cd

cd

i

W to PH H

ml

* U-l * o -^- CM CM

4-1 cn 0J <- (1)

cn

o\ o\ m VO m cn

<f o rH o r> o f*

cn

in i-t i-l

iH

m

rH

< o

-a- o

-a- i-H

o> m

CM

sl- ut

o d

r* cn oo oo CM o" in

o

cn CN

NO 10 o

o o cn 00 cn

cn Sf CM

/-\ o o> < T) \o m o <U

3 oo o

cn iH

vo O o C

U G o

i-4 o\ < i-t o o

m o r-. tH H o

m c m •H •u H •-I O 3 u TJ cd cd o ^-^ (U cd c <u & CO

u 0)

x u e o. •-I AJ H •H o 3 O M -o SB* to 44 cd cd CO M cd M o rial

0)

2 cd

PH H

W* to

wl

ill

<u 3 C

•H 4-1 a o o

•8

^

m ai

•H rH u as (U 4J CL O

rH (0

•u ^ ca o cu o > P-.

4J iH ta o « o W Pi

H •O rH

d o

43 4J rH 3 O O O W PM

* * * *

o oo

m r-l

m CM

co

\o

O

a) a)

43 W

r-. o

r- o

o o d

o o d

o o d

o o d

CM

f- o

v© rH co CM

r-» o o

o o <s o o

o o

o o o

CM CM G\

\C o o

co

co

9 \o r-.

OlNO CM

o o

o o d

vO

co

o

d

oo CO

oo

o

d

T-l o

rlHO in

m O O

OHO CO

oo vo

O rH O m

oo o o

r- co o CM

OS f- o

<too

CM oo o

o o o CO

\o o m co

o

o d o

o

CM o <r

CM CTi

moo

oo

00 H O CM

O r-t

o

CO 0) 4J nt rH 3 £

4J T3 cd rH CU ca H 3 cd ^^ CD £ CD cd ^/ tfl •H •H

0 H ri u H 0 s^ CD CO H

CU iH i-t O •3 rH

3

•H Pn H & PM H •H H (U H

o 1-1 CM" H iH

9 W h

60 • • EC. k & W rC 4-1 X h

M 4-1

ca n) oo 3 3 G

M 2 * '" * c*

to CO 01

•H J3 In O cd 4-1

rH 3 3 rH O U • . <

•H PH H H VJ 00 • • ri 4-1 to ffi h H 3 CU 2§ ^/

r3 U «l H q

H Pd PH U

CM CM

o

oo

o o o

o rH d

o 13 CM CU

H d g CM •H

4-J 3 o u

o O o

co •H co C cu •rt

I co co

•H, CO co

u o

4-1 cd M a p* IH

PH H

<u a c •H 4J c o

c_>

•3

CM

CO 0) iH H o m (X o

•U (3 CO CO

co o CO o 3 Pk

to o « o H PH

0) rH *tt i-f TJ O

33 £

.a 4J rH fl O o o

* * * rH ~a co -* H CM CM r-l

CN <t CM r» rH ,4 o o rH O CO si- O

oo <t o o m rH O O M o \->

oo

rH

5 r-.

in

< o o o oo o \D O o

00 CM O

o

o

o

CO o o

rH r-l O

CM o o

PH

o o

r-l d

o

o

CO

m O O

CJ pq

""> CM CTi CM

CM o o

r-l o

O

5 •H O o i-4

o o CO o o O

v£>

\C

9 o o

CM CO O CM CM O

o d d riHO CO

oo d d

o o o d d

H m o

CO r-l d CM rH

0.1

4

0,1

1

CM I-. O O

oo o o

-a- O CM

rH O O

O O

o d o*

o o odd

m oo

co

o w

oo o d sf

\o co O CM

t-» o d

o o

rH O O

o o

odd

U"> U-| TJ o o O <f <u

3 o o CM O O •H 4J c 0

CO H vr m O rH rH lO

O O 00 O CM CO

8 •H

•H CO 10

•H 00 »

co

•s rH

CJ • .

00 • • M sej f^ CD

1 M P

H w w EH

ct) M

H

6

PH H

§ Tt

o

ftk K h

PH H

•H U (0

•3 o

•H V Hi u

CO.

o M

•H CD Q

PH H

iH k 3 cd

c S M a)

co

8

PH EH

k

•s u

•s co

Ml

Pv H

EC h

4

c o

•s

CN

T) •P H . OJ CO o st CM 3 o o m C > PU

<u H

T3 O

3 O O O

CO k

* * CN oo (N en

oo m

* *

m

o CM

vo

u

en

m o _ in sr

•H rH o\ o\ ej c@ 0) 4-1 o vo d <x o ST Vi H O

M

< < £ CN 00

•H H r~ en .-H CB

ti C 00 vO CM CB at o O U m

oo o\

u

o u st o

4J rH CO O •JiOO R) O st W k

CO rH oo r»

*jcoo o\

99 VO 00 en rH

O VO rH St en

co 3 4J cd M O

*d o

0)

4J

s n 4J «

CN

M st rH O

• • *~\ 00 O O r- CN

st H O

r~ O o CN o

o o • * /-\

O O O rH O

O CM O

CM O O CN O

m o o

i-f o o <n o

Ci rH rH rH

00 O O ^ CN

st O cn i>

H st rH O

O O O rH VO rH

o>oo rH

o

O m

O m st a\

00 st cn CN

o

o

woo

pa CN VO PI rH

cn o d

st o o

o o odd

en

o\ \o o CN st o o o o

CN o cn

<

o o o

m m -o o O VO o © 0)

9 o

rH

O rH

O rH

o oo

CN o o 5 4J c o o

rH en st o o O oo O CN cn o o

CO cu

•s

oo

01

cfl

o

o

w

CU H

o u

m

•H U H

EC P4 EH

&

a rC

ctl u 3 o CO

•s cd

•H o

.1 CO

o

& rH O

PU H

<C En o u CD

PM H

X k

cd

P4 EH

X b

«|

vwfi i ^3f^;^B%^f-wv3* • •JH *^„; wipu^nen^n^m

(M'

T3 <1>

TJ 3

•H O (S O

0) rH

n) H

co V

•H M O cd <u 4J A o

W H

4J [-

CO O fl) o & PM

w o <d o

W PH

rH •a i-i T3 o •H O

3 O o o

W PL,

VO 0\ i-H

CO CM co

o o co

U")

CM

CO in

CM CM <N

cd n

g 4-1 •H

3 ct) 10

# PM H cd,

•H CO

cm

8

TJ T3 01 0 13

CO •H •H w #-i > o 0) O M p. U 01 lw

>, CO &

4J •K * m T3 01 01 * * * 0 3 •H h j: \C in 00

4-1 O a) 4J ~*J r*. r-. vD Ml 01 •H

di p. 3 m oo rH •H OI CO CM CM CN rH CJ c X CO 01 •H rH 0 P rH rH cd co 0) CO CO 8 CO

CO 0) 01 p fl k 3 •H rH -<!- CTi m vO o>

J3 O rH a) u cd rH m CO CTi H MH cd •u CU 4-1

<3J > «rl o. o rH rH <Ti O CN o •C 00 CO w H rH (N o 4-J 01

u u M H cd w G 3 rH

% •H M O" o C3 pa A m M 01 co •H r-\ o \D o 00 <f 3 .P 1 V H cd rH CN r- o m

0 73 6 •H PL, 4J C > <D 6 II <d <d ^-1 O -* o rH

•H >, 4J * O CJ M-l Id

g 01 *

(U C CO J= O I m 4J cj oo oo o pq < m

i-* r-. o r-. IN o O UH HI a» Oi V 4J rH o £N O o H o A; r-i r-l PH CO O

cd II 0) o o vO r~ o CN IT"* i-I H OJ * & PH m n •H C \^ 3 C M 3 o o & "-J •a

J3 CO

-0 1 01 4-1 < <ri 9

M 0! r~ o rn O co o <N a u CO Oi OI 4J rH VO O rH en m

•H •H •H rH 4-1 CO O rH [0 CO CJ) in Cd O •* O CM CN -*

in M ^ M *T3 CN P3 P-, rH r- tfl ai rH 01 O

0) U c cd J3 01 rH •H t= 0 k A

,P k r-l id 0) 01 Pi ft cd (U 01 o > 01 < pa < H £ H a) cu rH rH n rH m CN \P

o J5 P CO •y TJ O 00 CM H vf o 3 ,c 4-> 0) (3 XI O C to e o 01 g^ o rH en CN rH

3 0 C w rH H 4-1 •H H 4) 01

> F! MH U <4H u cu TS 01 MH •H A 01 •a m Tt co ni •d cu UH T3 < pa pa a

fi 3 rH •H r^J en O oo O H

<a r-l M TJ >, 4J 1-H rH <N rH o C) •o 01 CJ cd rH 3 O

P- C u 01 U O O o\ O CN o rH a) •H 4-1 S co cu CN P» 4J X •H

•H cd 0) CJ CO y 4-1 M •H iH CD CO td J3 C «4H H i-( & 01 •H 01 U

o u 4J

CO

C o « 4J -r!

CO •H co a cd CO •n at CO a

cd & cd rl J3 S g 1 cu m 4J c

& (0 r- 4J O •H u r c tJ rH

<u 01 M a cd o .2 J3 C <r- CJ 0) u +J •H k -rl H (B

(S 13 4-1 «W 01 O cd «w o 0) 3 •H & CO TH

0 01 6 3 0) cd k Tt H u r^ C a) 0 cd

c 01 ,P •H 0) H ^

u •H H o k « 4-1

& cu rH 3

co QJ 01 4J X 3 s CJ •rf 4J ^3 HH 0) CO « PH -r! •H w C 4-1 4-1 •H rH cu O o M k a) 3 a -rl CO k 4J

§ O >i CD > I CJ -H 4J cd cd 3 o rH o rH 0) W CO rH

o c c % a nt a y td >i o 01 o 01 o CO w <ti o a1 e» pj

'"^^wn-^nrf^-i * "w^^TSPW^1 iJ ^ IWWR M^iWPlrr^ W>Wd#!&JWJ^wSrW

Figure 1. Permanent sampling sites for amphibians and reptiles on Lake Conway

• •

o 10 CM

O CVJ

10 to

sai03ds JO yaawnw 3Aiivnnwno

01 1 > u

1 •H 3 4J "O

g Cfl

o 3 Q) B -w 3 a

<0

of the c

al colle

o 3

o O -H

"O •H >

IO CJ T3

3 -H

CO <4H

_J co co < CO

CO .-1

o .o o CO CO

CO 01

o> CD 4-1 •H CO

«• Q 0)vl O z & T3 iH man

•H 0)

o •H a ^

o e 4-t >H T3 & M 3 o 01 01 4J w k -W CO o

IO 3

CO T3 <! 01 C C CO -H

• r-l Z C >, CU

cs to CO *4 &nl

UJ J3 CJi

o> .op raph

i e

Co

the

o< a) ^i CO 60

4-1 J C CM-J 3 2

O -H c

u O 3 cu

O 6 cu 3 T3 o C U

.o o CU o o

he cumulativ

dividuals re

o H C

i • 4-1

mf CN O

CU U U <U 3 ja M 0

•H 3 h a

:^^^^^^

E- •Z

EM SU UK

Cd

ootor^r^i/ir^rni/ioinrt^^r4Mr4rs(*>u^iftini/>i^irti/*irt»rt*/iiniriLnLnr»r*c^o>c3\opsr*p*orii/io\fNO

64 E

cj (X u

vn^coiAinoiArtHQSoaaooaootrioooaoooooooootiovioQQffiooiiWirmnu

cooosi/iMMinow'viiiooHoooHrtqooooooooooooHono^nfiooMnrtPinr'

CJCn

& cfl to

o w

Cu

f^ffir^knoJoHrtri^'^iriooi-iooo^HMOOOOOOO^ooooo^HoriOi-tiri^Hoo^Knfsmmvo

E-i

u

X cj

s a.

co co co co co to co CO co

z z z z z z z

XEIO XZCO X210 XZCO XZCO XZV1 XZCO XZCO xzco xzco cozz cozz cozz cazz COZZ cazz cazz cazz cozz cozz cox«cco cox<co coxZco COX<CO COX<CO cox<co cox<ca cox«cco COX<CO cox<ca cox<co cox<co U)X<tO «x<co tOX«CCO (0X<(0 COX"C(0 COX<C0 COX<« COX<ta com COri COM u< com COM COM co- COM co* Z1 55« z«

Zc Z' B« E« Z« X« »S< X« x« x* X«o X«! X« til

dz CZ cz (z cz cz cz cz CZ CZ

CO CO CO co CO CO CO CO ca ca Z ZCOX Z ZCOX z zcax Z ZCOX z sense Z ZCOK Z ZCOX Z Zcox — zcox

ZCOX KZX

X ZZX X ZZX

Z2K

Z X

X X US X X

ZZX ZEX ~3ZX

_. ZZX X zzx X BSX

dzZ<XZZZX CBBflixZEZX ^ZZ<XSZZX "rzlxzzzx i:z<xzzzx <ZZ<XZSZX 3ZZ<XZZZX CXZZZX

CXZZZX <ZZ«»XXXXX X CZZ"»XXXXX X CZZ»XXXXX 46 CZZ»KUkSXK X CZZ«»XXXXX X

szwxxxxx x !S»K^^ X

fez«wwsr:x!<; x CZZW-XXXXX X

X % X X X X X X X X X

X X

x x X x x X X X % X

+ 00 I I

+r- i I

01 + <O CO I 051 CO I tot 10 I tot CO I to I CO I X + m X I X I X I X I X I X I X I X I X I X+T X I X I x i % i x i x I xi x I X I

x x<X+m x x«Cx I X X<XI X X<XI

CJ CJ cj CJ o CJ CJ CJ CJ o

z<* Zxi

Z-Jl

3 a 4J

en nj

01 4->

•U CO

•H 14-1 CO

o *a tu S-l

C

O O

co

o

CO CO

•H O

& e

ii

to

Cfl rH

JJ cfl U O

CO 4-1 <u •rl <u cu CO CO M

m Cfl w C QJ 4-J cfl 5 c

•H •U CO O C & P4

•H Cfl o u CL 4-1

cfl n u <u

"•§ CU (3 fl O (3 "H 3 4-1 k cfl

u O

• r-l M

II cu U -U 3 c 60 -rt

•H O to fc

444<4*4'^^<4<44r'q<wa^^ooc3cciQ3COQ04oa>cna^cn£naso^otaiota^AcnA<ocooc)r«uMrt4<4,4<

CS«r<MCS<>INtS<S|MMMM«(N«tNM'HiHi-li-lrtrtFH1-li-*Hr-lrtiHrHiH^rHrH^-HHiH<HiH^H'H'H'HiH

M oooDooooaoooooooaoooooooooaaooooooaaaoooooooooo rH«rn^inwr^»ovoiHMro^rinvor^coChOF-(«rn^,in^or^ooo>iOf-*rjfri^'io*f^ajo^oi-ioJr^virt« 2

^•Z r^oo*no^rvir^rHinojr^^ororji/TWLOO^H^j,\Oi-HOCNMr^rnoiDOwoin^Dvoinr*voo*i,i-*^i'i/*w«*-Hioinp*rfcor^o

0,

z w u a, a

OPlNtSHHOOOr4HOOOOHOHOHHOOOOOOOOHOHOOHMOOOFtO(NH^nHO^*ernOHOCN

*0 «fnvoci^,i-f^,«co^*M^s*coiHiniH^'0<Nr^rn^"«o^H^ro\ooiu>cOLrjp^at^j'for*ooMaoocvco^oor^i-(vof*««-Hoo^ r*i—

p K i-1i^MMMi-liHr^rHrHMMiHM^MMMMMMMMMMMMi4MMMni{NNMMNM(S«NMmm*^'V^'^'

a Pd

to tO CO CO CO CO CO CO CO w to +m CO I lf> OI to CO CO +o CO I U1 CO CO to co co co co CO CO CO CO 01 I X co I U co +in a co i n u CO I o CO I o coco I u coco +o a: COM i n ft. coco coco co COO] CO coco w COCO CO COCO CO toco co coco co OltO co coca co COCO CO 0X0 CO coca co coco co co co co co co co co co cocococo cocococo CO COCO CO CO COCO CO CO COCO CO CO Eu CO CO tObCOMOl COfaCOtuOl

X CO CJ CO

co « CO < CO a CO

CO :» CO CJ CO

to CO

D to a 01 u OI K O) Bu CO

CO CO CO CO co co CO CO Z z ELI b Cu Cu b b b a. co 6. CO 6. CO CO #4 &.COCO&I b CO CO 01 Eu CO 01 CO bCOOlOl bCOOlOl Cu CO CO CO ir< 6, CO CO CO CO bbcoZbOi CUCKEUEUCUM: bbbbbba^

CO CO

COCO CO 05 CO coco co co toco oib to coco co oico Cub OlOlMCOCOh toco

01 01

&4 CO to CO 01 CO oi co

CO CO CO 0]

01 01 CO CO coco coco coco coco coto com C0O1 to CO CO

co co co to co 03 CO CO 01 CO

CO CO CO CO to

co to com co toco to to to to tool co toco to to to to COCOCO COEuCOOl CO to co to co co oi to tab. co a: oi to

C0O1 CO 03 CO CO 01 CO CObCObOl b tool CO 01 CO OlCOMCOCOOlKbbhCO b ZCOCO 01 CO OltObCOCOOlKEuhbCOCOb

bbbbbbbE->hCubCQO]C0bZblibE-iOlC0 Z01 COCOZZCOOlOlCObbM OlZtOOltObOlCOOlbCubCuCObb OCJbUCJbbCObbbbfcjZluCJ&SCJCOZbOlKbea ZMZZCOOlCOZbUbOlOlZtDOlBCJCOKOlbEubCuCflOCJ

z o ft

oooooooooooaooaooooooooooooooooaooooooocoooooaoooooooo »HMr^^u>\or*flomoiH«fn^io^r*co(ftOiHr<fn^Ln«p*oofl^OjH«ro^ririvoh»ooo*OiH«Nrn^'Ln*op*Qoff*Oi-(Mrt

o O 4)

PJ H J3

J3. tfl JJ H 3 o cu w cu

w tu

J3 U .

J-l C 0 o m

CO to c <u td M 14 •H 4J 4J &H CU O U M

•U T3 cd a (x CO 1 ft CD co u 01 u CU *o <U JZ 0

13 CJ C 4-1 ffl O CO

CU CO C -l-l

rH O o cO -H CU W J-i a

a CO M <u o co M

(4-1 O CM

0] 0 •H 1 to o

iH CO 4-1 C 0 CIS

4J H a 0 T-t h o

•u & tfl T3 & -H

1 s & u 11 cu W -u a

•H • O

<r k CU u • 3 CU 60 u

•H i-l PH CO

Sf^mmsmtssnmrmm

SO UK

W 04

rtr^r^co^o«oiHoiniHi<>vo^^vowrt^iorirt<Nr^cvmr^ofnf^sfl4^ooMtrif^f^MMf»-CDr»iD**wni/i^"Tr^<,oooo ioi^o«iiioo>^^p-mM«oMTririffioNoo>HCNrri»s'iovof^cooicioI-ir<r-<NiA(ooo<rio>oi/i«>r»cOMr»owierioooo

z

M

tO-Srlfv|(NrnMeSMM(^Or-<HiHiH<VIC>iHOOOrHi-li-IOOOrHC>0<HiH'»U>fnOiHrHO<H^,000'l'^,(SOOOC>00

SOS r<M'MMM^MW«NNNMNr4!MMMMmmMmmmmmmmm**?^**vv*«*'*Lninu)Lninif) irtin

a a OH

s X

m x u S u D O w [L,

oio»rHior^*o«voin^mrioa»comrtvOrH^^vi5<»oo»iHi/ir^r^^«»ortoo»fTo«>mvDvoui'i"inr?w<-<oot,iooo CNrHiHiHiHrH^i-li-)rH(H -*fH >H MfSt-l iH M CMCNf-i

X X X >1 X X X X >i X X X X X X +«

X

X X X X X X X X X X X X X X X XXX +<o X X X X IM X X X X xx +*r X X XX I (V X x xx x xx i o X X x xx x xx i M B X XX X XX I o x xx x xx i u x xx x xx +© as X XX X XX UN 6, XX XX - - x x xxx x xx +<x> X X X X XX ... x x xxx x xx +v> XX B X 3 X . _ . ... D X XXX X XX + "* ax O X 3 X ... ... B X XXX X XX +M D X D X D X OX X BX X

X X X X X X X X X X X X X X X X X X X X 0, X Q» X X X as x XX X XX X x x xxx x 32 X XXX X X X XXX " X X xxx 33 X XXX as x xxx X X xxx

x xxx . . . x xxxxxxx x xxxxxxx xxxxxxxxx xxxxxxxxx

XXXXXXXXXXX xxxxxxxxxxx

X X X X X

X X x x x x xxx xxx

o o

JJ 3 o

X X X X X X X X X X X X X X X X X X X X X X xx X xx

XX X XX xx X XX XX X XX XX X XX XX X xx xx X xx XX X XX XX X xx xx X XX xxx X XX xxx X XX xxx X XX xxx X XX xxx X XX xxx X xx xxx X XX xxx X XX xxx X XX xxx X XX xxx X xx xxx X xx xxx X XX xxx X XX xxx X xxx xxx X xxx xxx X X xxx XXX XXX

X X xxx X X xxx xxx X X xxx

xx xxx X X xxx XX xxx X X xxx xx X xxx X X xxx XX X xxx X X xxx

xxx X xxxxx XX xx xxx xxx X xxxxx XX xx xxx xxx XX xxxxxx cs xxx XSWX xxx xx xxxxxx xxx xxxx

XXXXXXXXXXX SXX X XXXXXXXXXXX BXX X xxxxxxxxxxx oxxxx xxxxxxxxxxx DXXXX xxxxxxxxxxx DXXXX xxxxxxxxxxx Dxxxx xxxxxxxxxxx 3xxxx x xxxxxxxxxxx DXXXX x xxxxxxxxxxx axxxx x XXXXXXXXXXX DXXXX X . r - . . . . _ XXXXXXXXXXX BXXXX X XXXXXX XX XXXXXX XX xxxxxxxx xxxxxxxxxxx DXXXX X XXXXXX XX XXXXXX XX xxxxxxxx wxxxxmxxxxDxaxxxx x xxxxxx xx xxxxxxxxxxxxxxxxxx x cxxxxmxxxxDXoxxxx x xxxxxx xx xxxxxxxxxxxxxxxxxx x UXXDXXXSXXDXDXXXX X XXXXXX (OXXXXXXXXXXXXXXXXXXXX A, uxxBxaxxxxDxDxxxx x xxxxxx axxxxxxxxxxxxxxxxxxxx O; oxxBpmxxBxxxDXXxxxxDXXBXxaxmxxmxxxxmxxxxDgxxxxxx » OXXDBCDMXDXXXBXXXXXXBXXDXXDXaJXXcaXXXXCOXXXXBCQXXXMXX X

u 01 QJ

J3 01 4J C

a b

CO rH to o o u

ft cu

c o. o •H U O

•H o

CO

u o

<U OH 01

CO 4-1 U •H CJ O 01 CD 4-1 >, 01

o M 4J fl! PH

I OH

M 01 BS

m

6 cu i .H

O ja r-t CO

H 4-1 o cu

cu

c •H o Pu

T3

t

CU k • 3 0) ao 4J

h co

o

ooooooooooooooooooaooDoooooooooooooooooooooooooooooooo

mm«mmiui^mMm#M^^'^-^^^"-'*' ^^^^^^^^^^

E-1 mo<j>ootri'H(9coM'<4'oa<9CDroi*>ioq'ioincooir-o •Z <0OOOOr0r^tt>00tM<TlOO<H^H0l/lO<MP^V0rHLn»l'O

r^or*oocN^,ifnneo«oo*-i*Hfnpo^co^Hr^«Ho\DO CJM iHCNot«r^'4<^«^i*<'<'invov0Uv0VDvo^o\or«r^co9c^o

cj lH A

H irnfucufoifimcooLnrHtcocoouTiomcomGomr-fCom z CJ

^Dnoo\ororri»-iofr*r*oo*Honc>»nrHinQoui^a,oom

o r^tfvrr^cNocvMtHoeN^T^o^HoMoni-HniorTOMrtfO d)

04 M iH o QJ

P. PM CO

•a ir»p^fn^,^\OQ3o\cirHmrH*-ir«ifj^*^rf^co^vowp*Mi/i i-i

EU rHi-tr4rFKnr>rnrnm^r**mi/>»nmmininm\o^^Di^ooco 3 a) »tf O 4J Ufa CO cfl

o tficNvorHocjcNi-toM^vpo^HocNom^cmnrnfflmm cu u M X ctt « J-I Cti

CO CO CO CO CO CO to co co CO z z z z z z z

+in 1 M

1 rH

+m

+ N 1 <-t

c o

CO

(U iH •H 4-1 0. <u

c of

trap

s s

et

on

s

CO <D z t-i T3 z X + i-l CO (U O z X a ^ o

E-i z s z

X X X co •fro

g 3 to G 0)

s z w 1 <H •H •H CJ z

z z z

CO J2 i-H CJ

§ CO z +<n 1 CO <U

m z z

z z

CTJ o m 4J >< o

2

z z z

z z z M +C0

CJ S-l

o it o W z z £-i 1 M-) <4-> D z z [-i 1 3 CO a w i z

z E ! 3 CO

•H CO

CO U <U « X z co +r- BS

(14 X z <0 1 Cb X z CO 1 >i« H X z CO 1 H J3 X z CO 1 CO X X

zz zz Z z

CO +VO CO 1 C

cO 60 H Pi X zz z CO 1 x zz z CO 1 •H

is zz z CO t D- a x ZX <: z COCO +lfl •H Cu CO

x ZX < z COCO I h x ZX 5 z (00} 1 X ZX z coco t u X EM < z coco l 4J X zx x< z coco +«• PL X ZX X<i z COCO 1 ctt

M CM

O X ZX X< COCO 1 X zx XJ z toco i X ZX X< z coco I X zx

Xtfi z zwcoxzco+n CU X ZK z ZMcnxzco i r-f 4-1 X zx x<: z HucoxZW 1 <U Cfl X ZX XJ z Zwcoxzw i ii ZX X< ZMCOXZCO i T3 xzxx «X KK«i u X <<<<XZ+n c XZXX <x XX< u X <j<<XZ1 3 II XZXX «ex «M< o X c XZXX <x XX« (J X 3<3xz i (X XZXX <ii xxa CJ X 5<XZ 1 X« (<X <X< z xx ftaraif+i-i T-I X« C<X z iix SJH»< | W x« S«2x z MX vO H X* CKCX z MX K< C<X z XX

3 0) co 0. <

mmmmmcDm^^*MMr*r*r^wr?*r^r^r^r*r*r*r^r*r^ •H -H b CO

M H r**c**h*r*r*p*-r»cooooMoaoeooocococococoa3coflODOoooo

EH

I-J«COOZ Qfanfat. SS< <sa>TT3TS<:caco i-wsvo^np-inmffi^ooiHajfHioirKSOconcoujrt^i'O

sfWrailSMSWffSH^sraBMtsaisessssBwasTCM

2 u

< x u

O w « b

OU mo*om»H^,i-ir^nirvr>oocoorsi^,^,kovoOTOfl,in»Hf+^,r<ao U« MMMmm*f^'\oto\oko\or*"r~r*p**r-r*r* coco co 01010*0*0*0

a, **

EH

2

a a.

oi^ak0COToocO^pcooof>imr>^rou>coo4,(Nrr>^4>o*^ootfr,k

r**M<f*o**'0*io(\i4'00{N*fNmc\ivr~omr4Nmr**moOiuiKo

tnu>co^rto(sio(ovo(Mc^oorjiH<^iOi-iomo9^iinrH<MrgrHO

«0 ^p^fMncsifunfnp^^omvococo^f^^o^^OiOovinrHf^yooi^o* Sk3 r\nnoim-ivincoi-<coo«ooor-i(\*mm*'^'mvr*cOr-tr-4Mm^"*

O a

w EH => 2

VOC009i-IO*r^OCCt^,OlO*«H(%40^DOr>'CDOinrHOl\OkDtAO*r^r^rn

co (0 tn co to CO CO CO co CO CO CO CO CO co co co co CO CO u to CO CO CO CO co CO CO CO co co co co CO CO CO co co CO CO CO CO «

CO CO CO CO CO (02 cocoa co cos cocoa COM2 COME COM2 COM2 COMB COM2 COM2 COM2 cocoac WMM CO COM

+o I-

vo

in

co M M CO CO CO M M M M

COM MM

COWM CO COM COCOM CO COM COCOM CO CO CO COM MMCOUM MMCOCOM COMMCOM CO CO CO to CO CO CO CO CO CO MMCOMCO to CO CO to to COMCOMCOMMCOb co co co to to to co tot. CO CO CO CO CO to CO CO Cu to CO ii CO CL. C0 CO CO 6- EiiibCObtOCOCObCOCO M^CbMCuUMCOCviCOU bbbMbMMkibCOM hkbDlhCDMUbUCO bbbMbCOCObbCOM bbbbbCOSbbUb bbbbbWKbbMb bbbbUCObbUCOb

M CO M 10 M M M CO CO CO CO MMM MMM WMM

MbbbMb

M M M M CO to to M M M M M M M M M M

CO M CO M CO M

M M CO M M M M M M

M M M

COM COM CO CO E<

COEHMEHUJbH CbEHMCOMCbCO Cu CO Sri CO ton-to bMMMbbbCQ bMbCObbbtO

UbUbUbbUUbbbMUbUSb (JE-ibbbbbbbM

+o u V 2

U

a +m id

cs b

+o

EH

Oir^^t^trx^OMnmiHOrHOJCNVo^o^f^aooeo^o^pH) cvtOiocoi/ir^4io\covocarw-chinoktnr-incot^ct>oorHr>-

p*r*p,fcr*r»r*r*p^r»'r*r*cocooocoeooocococoaocococooocooDoooo r>r-r>r»r»r*r-r,'r»c,»r»r»r*r"r~r-r,-r*'r»r>r»r«r~r-r»f*r~r»r~

Joe>a<(i.EH£-<»otjiE S3SUHL I-3<KS(0WC

•HCOinrHmnr*oi*<mo*«-HO*rt(**op*o<v»fl'C4o*oo*^oirtocioo <N.H<N Hr-IM'-IMf-ICMMNi-l(NMNmHri M(MCM {Vr-lr'VHM

Cfl 0 T3 4-1

II o

& 'H •H M M &

E-i •a

T3 a H 4J O

•H O CO HI

•H O 4-1 O O

PL, c JS ai 4J e 3 •H O 4J CO

en s"' 13

<D cu O 43 *j a 4-1 Cfl

•o CO a cu o (0 •H

U 0) c (U <u o D.

rH CO •H iH 4-1 O k a U o QJ U U-l M cfl

Q.H •a 1 e a CU nJ w M

<u J3 W j= cfl M H (1) cfl t3 <U C LW dl

2 o W

a <D <-t G cfl •H ^*\ to 4-1

u boa* o C M

IH •H iH M

01 a d) •H E ,o CO cfl 0 p^ w 4-1

r~! o CD r-l o c cfl cfl *J •n

o H p. 4-1

TH w II 4J

CO ri CU o 4J u 3 4-1 G nt •H p. s a • X

u rH a) O

03

cfl

r~ a i P.

<u u u to 3 J3 60

•H 44 PB 0

H OOOOOOOr^CMCNOJ(S<N04^Hl/1aitNO^HO<TH£>VDCM(M'*a>0 •ES oooooooi-imiomuiirneoiuiirn/ioxN^-ih-vor^irneiH'vO

EW • • 3U aoooooooooooooHHr^OHUxaraatninD^ino OP5 M(N(N(NMNW)OOmwCl

A,

z 111

ooooooOf-irtoooO'-dnnowifntnoMooOiHr^rHinnm

U OOOOOOOOOOOOOOOOVCMHflHOOnMBOmo OH i-H r-KNl-l>H u OH

KM ooooooo<~imnpnforo'>'r-<Ti^,oip~Mfor-cNOOoir>vor-o

<H»n>-ir-<iH>-tr>im'*mioio

a

CM

ooooooO"-HcMoooorHnfMininoOLr)i-i^,irno(Nirn-irHn

lo + m

o + CM

o

EC

x u g D O w «

w En o

A, M

SO

X X X X X X X X X X X X X X X X X X X X

XX XX XX XX XX X XX X XX X XX X XX X xx a ox a. DX AX »X 0<X »X UX IDXXMX oxxmxxxmxmxx xxooxmkx&maeamxx 3»aaox«3S!BUMaaBccax

x x x x x X X X X X X X X XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XXX XXX XXX XXX XXX XXX XXX xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxxx XXXXX +o xxxxx xxxxx xxxxx xxxxx xxxxx +o xxxxx rcxxxx saxxxx xxxxx Kxaaxx +© SJXtnXX

CTl

+ o CO

X u

+ o 2 r- w

o w ID fc.

in

+o

CM

o«rj'j|r-Ln<Ncninmi-iOi-i(NfM*o^"cnr-coooovo^"iH eMcnoooirtr*,*tnooiocor-o«ncPiif)r~tneor^oocOrHr^

rHi-t iH

r-r^r^l^-r^r-r-P^-l—f^c~>cDeocoeocoeococoooooeocococoeooocooo

uooo,p,&E4>>uuzzmmKo4KMxxsz»a'-'c:oo.G,

rHcomrHrofnr^or^incAj-fcrinr^or^oro^tNowo^aoinor^co <NiHM {SiHfMiHrHi-ICMrttM^KNtNfMrHtV CNNCJ JN.-ir'MOl

(U

CO

<D fi CO 4J o ai •H -H

0 <u -HMO. o w co O CO Pi* p< w

1 o

3 ffl H O J2

GO Hi

<U J3 fC IH Cd W O H

B <U HI o & <u

•H 00 CO +J 60 O 60 • U 0 ^. iw -H r-.

tH r- M p.Oi C BH

•H eg r-f to k T-( cu <( H J3 O tfl o

4J 4J M O O .. o -U o cu

14-1 13 1 n o

to tH O •H (0 co co o

a) C M CTJ 0 CO 5 iH

k Cu ••> p.

•H i-I H Ofl 4-J u CU

•U t3 m ^ a. o r o ex <u

n) t-i M B. cu r ji w p. o U 4-1 C cu o

EC CD

4J -3 • CO 4J

00 fl v

CU II 01 W 4-1 3 a. cd 60-H T3 ft k

i-f O

4J

W-aswsjf^p'.y ^ ^TWm; /:.

UK EJ

C3 U

•o

Ufa

O u fin

.-I in coeococoeococoeor-iiDoro CO^HI-I ntn voo

f(NOOOOOOOOClHOfflOOMJiMr>HO

r-.ro nooooooononnoMoM^M*i HnnooooooonmroninfooHHHm

^COCOOOOOOOOCOO»CO<»C\|COOV***3'CO

fMoiLnmiriLnminintnr-ocNTr-cyic^o^HfM'* i-l r-ir-li-li-l r-ifSKN<NCN

HCMMOOOOOOONMfNNmNOHHHN

S E +n

as u

<

u

CJ 3 O W

MW WOO wo ww ww uu COW ram ww ww ton ww ww OM Wffl WW MB

KEfcrt

KEK MEW

MEW WSK WSK «EK «B« MS&a UEM «EM

2 E

E 2 S S

^ a

JJJ<JJ

+ «<*< + <«<#<: + <<<«>< + <<<<*<

+ <<<<<)< + <;<<£ ia<

+ <<<<3<

5H U E M

a CO «

E-< ooooooooooooooooooooo 3 0"HfNro^i,tnvor-cocriOi-icNPTS,invot--co<fto M OOOOOOOOOOHHHHHrtHHrtHN O »HpHrHrHi-Hi~*»-liHiHiHiH<~trHi-lrHr-(rHi~(iHi-li-l

CO •H U U O P.

4-| < CU

rO

01 4-> <u i-t n

CO o 4-1

H 0) o X> o

Pu 01

cu CO r-t 13 CO T3 a i-l tfl s

4-1 (U

u-i 4J o CO

01

a u TJ o CU O

43 CJ co e (U 3 CO H C cu •H •rl 4-1 iH a P. (0 (U 0) 4-1 P. H O CO

t) U (3 o CS

4-> <w

CO <u M C CO <a cu

•H cu .-1 43 k 43 •H 01 cfl 43 s H A. e co cu «d & cu

A CO u K o -u

4-1 CU o

CO u CO •H OJ csl

CO 43 X 3 CO H (fl (B c s fi o ca •H co

4J r* JJ (0 o\ c u

•H o O •H P.

II P. cd 4-1 k c 4J •H

O M PL,

CU c c s 00

Pw

iH

(Ti i-l •H

0) 1-1 k 9 < M

•H "1 h CN

H ooooooooooooooooooooo *z ooooooooooooooooooooo SH

cjai rHcMunor-oooo W <-lrH 0»

§ ooooooooooooooooooooo ooooooooooooooooooooo

O ooocovoooooooDniNOonnoa OS i-im in cs w

•O oooooi-

Ufa

-imtovtomoifiLn iHHH(N<N«N

a « fa

oooooriooaooooiNncKwiHmo

EH

s a:

<

u a u fa

s s

a J

.j j

>j

W+ ttt fa ui+ as fa w+ « fa W+ M fa W+ M fa

m

u)

W+ « fa W+ K fa M+ K fa

JS+ZJ < •3E + EJ < US+SJ < «2+ZJ < IIZ+ZJ «r

rti + + lj«* >a + + iJ«« •JI + +IJ««

w a u « fa

E-< ooooooooooooooooooooo S OiHrjfo^"inior^ooCTio^HfNr>^rir>iDr**ooo\o HH OOOOOOOOOOHHHHHHHpVtrfM O fa

•s EU DO

« CM

oifimor-MoujinoonfNr-eofNMinoooo

ni-iMr-iinirnevoi—tooswinmoooo •—!•—!•—li—i

oui rHtnt^ioflo^o^f^iinoHm^trji-HcNioooo o oococo r^coro^1 \o r*oo voco co co co ctcoooo.

om^miAmtfimr^komc^m^'mxr^rnooo U

DOS .-Ht-h-l-Hi-l OCu

a «

s 33

§ a w OS

i-liH

CO CO CO w CO CO w co CO CO coca coco cow coco COCO toco coca coco coco coco coco COCO coco coco coco coco coco coco coco coco coco coco coco coco coco cow ww ww cow ww www www www wwco WMCO WWCOW CO M CO COW CO WWCO CO CO WWCO CO CO wcowco w

W WWCO CO CO w wwww w W WWCOW w W WCOMW W w wwww w

M M COhWM WWW CO M WU.WW W W CO M W WCHWW WWW W W WkWW www W W WCuWW www

WWWWWWCuWWCOWWWWW w WWWWWWB.MWWWWWWW W WWWWWWkWWWWWWWW w WWWWWWbWWWWWWWW w WWWWWWhMWCOWWWWW W WWWWWkhWWMWWkWW W WWWWCOCUCUWWWWWCKWW W WWWWWCuCtiWWWWWtuWW w WWWWWCtifaWWWWWb.WW w WWWWWPuhWWWWWtuWW W WWWWWUbMWWWWCuWWWW WWWWWUhMWWWWkWWWM WWWW WUGuHWWWWCw WWWW WWWWMUkl-IWWWWkWWWW WWWWWOCuH-lWWWWCuWCOWW WWWWCJUUCv,CbWCt4UCuUC0bCu WWWWUCJUbkWkUkUWkb. WWWWUUOkkWkUbUWkCw WWWWUUUCuCKWbCJhUWCuGu WWWWUUUCub.WbUCuCJWb<Eb

I

CD 1 C

4J <d •H M

CO 4-1

i-H H 0 O 0 S-i

CM 4-1

CO oi ft H 1 •o ft TJ u •H 01 a J3

cu U-l J3 o

+ UJ 4-1 1 r-t

C 0

c o •H

+ un 4-1 1 PH to

01 O

CO

1 M

•H 4J ft 01

s 1

CO

01

•a o

k o u +n H T3 W c CH 01 a O •H

+ M O 1 rH CO 4-1 01

w s ft 01 •H to

+ M T3 O 1 "H a ft

•H o

1 1-4

CO

s II

4-1

r-t

0) rH

+ CT1 <w c n X o •H fl a CO

0 H

+<n o •H 0) o CO 0) H i>. C/S OS iH 00

+r- b. cfl

CTi « rH 4-1

O j_i rH 01

+vo 0 •H O

W ft CO

ft < +m

O

+9 4J ni ft I ft

0)

O 14-4

01 +m u (D 35

CO +«

r-l

01

01

+ iH 0)

3

CO

o o too

•H CN k *—'

E-< ooooooooooooooooooooo S Oi-ic«irt^*i/>«st**oomorHcs4r*i^'iri*ar-03a\o M OOOOOOOOOOr+HHHHHHHHHIN O <NP4«(M(Sf4r4«MM(MMMM(N«MMMMM ft,

m. rtffWW"***11-

e-t OQr-cioooooooor>or>onnooQ •H ooonoooooooouo«onnooo

su OU OOWClOOOOOOOOUOWOMfilOOO CJCi i-tCMCgrvKNtNCNtNCVJOJ^^PCOOCnOOO

£0 rHr-lr-l iH cu o

0 I

En oor^-r*r^ooooooor-ror^mnor<oo m ijj S oovovovoooooooovomvonnovooo r-i x: a -o U oowjvovoooooooouciunnowoo TJ "w OS rH MM ^ O

01 O Xi -H

Z^] r-lr-lr-|r-lr-lrH C 01 Da; O M w » • to

01 0 01

O OOHHHOOOOOOOH(SHin(NOrtOO S O O a tl r-t U

t, o> JW m

CM

to +in co I

co i a co I K

EH ooooooooooooooooooooo

M OOOOOOOOOOHHrtHr-<HHHHH(N O CNCNCSfM<NrMCMrs)fNCN)0)CMCN)CMCMCN(N(NfM<N(N

)-i o a)

CO I C C 01 to I as *H a co i o <n co i w a. to i w T3 M w i Ji "d .R co I c

m II a 'en u co -r^r g

CO I fl 4J 11 Gj CO I -H C r-l < co i td -H xi P3 co i m o ,2

CO I iw >i .CO I o 01 U CO I • 01 S co I w oo w OJ co i ft r-

co o\

0 M U

D co +n O co i >, w co i u Pi CO I Z2 C "H (U Cu CO I tl tfl !J CO

CO ID & C CO I Cl -W < (9

C VJ •H u-i u o CN CO • Ct* ^ .

co coco + CM u o CO COCO I M 0) H CO COCO I O 4J JJ co coco i i-i tj 5 CO COCO I t! fl &

CO COCO I to coco i i m co coco I a o) CO COCO I k -H CO COCO I 01 u

OCOJ CO &, CO COOL, CO + r-H EC 0) UCOJ CODuCOCOIJu CO I M

OtOJ COtxjCOCOl^ CO I . --, UCOi-q COLwCOCOk CO I MO ocotj cocucocoai co i rn o OC0.J COCfCOCOk to I CM OtOJ COfc.COWCn CO 1 o* -—• OCOJ COfcaCOCOCn to t b UCOJ COCHCOCOCL. CO I VUJM VJLWWJWJW4 UJ I S. ^ CJCOJ COCuCOCOCJu CO I ^J% I pr, a)

•E r-mtoMi-p-^Oriowioinmoeofiwooo su . . .

cjfX i-UHrHproior^r^oococootakQictQoo u

r*-f»ouiiotf»r»trir-tr<ooifiotf>r~iHOWHoo

NotmmofvivwtoinooArHrtHoo

u

*0 tA094\oinuOHwDinuvo<noor«Affa

OK

a u

o •z w o o «

is>uTOiO'Hir>r-ra'i-<{i/iQchf-4Qr**inf4r-r4Qo

co to CO ca to to 10 to CO CO co CO CO to co CO CO co CO CO co CO CO co co CO CO co CO CO co CO CO co CO CO CO to

CO CO co co co co co co CO CO co co CO CO co co co co co CO CO CO co co to co co co co co co cococo to coco CO CO CO co co co to co co co co co co co co co co co co co co co co co co co co cocaco co co co co co co co co co co co co co to to co co

to co to co to co co to co co

coco to to co co to coco co coco co to COCO CO CO CO CO CO coco to to to to co toco co co to co to toco to co to co co toco to to to CO CO coco to co to to co

to to to co to co to coca co to co to co to co to co co co co co to co to co to coco co to coco co to co co coco co cococota co co coco co to co coco co cocototoco co cococota cocototoco to co coco to cocototoco to coggtacLco&.&,&,&, --

co co to co co co co ca to ca ca <a ta to to to to to ta co co ca co to

co co co to

to to to coco CO toco CO COCO CO COCO CO coca co coca toco to coco to coco

—_ „to cuCbCflcoca caaZ(0&,COb.6.6,&, gco bbcocaco

41 a 4J cfl •H h

CO 4-1

rH H o O o ri

PH 4J

01 a rH 1 •o p. 73 M •H cu £ J3 u MH

43 O 4J

1 V a B o

o 1-1 +o 4-1 co a <U CU

+a> rH CO 1 <*) •H 01

4-1 • (U +V3 O. e -a

<u 1 o u o u

+"t H i m •a CO

a CM CU

CO

O Ti u

4-1 <D w i3 a +o

in OJ •H CO TD o C a H

1 <N g 73 O •H CH

3 6 +v> H M I is cd II

co <U +f X 4-1 r-l

1 IS O *4-i 13 ja

i § + <M O

1 N O

o •H CO

« O H PL,

1 w •H cu i « CO <u +0 b >, • co

rH CO Hi r-

+ <D (3 o . a rH 4J

u +10 4J rH (U

1 H c •H CO •H M O Cu

1 rl A<

+ (M rH o

m CM

4-> ai +o fl) W a. i

o CM

+<D a CU u -O 0»

+ V> H CO a>

MH m u rH cu

+ M <u (a

h O 3 o MO

•H m Cu *—*

fH OOOOOOOOQQOOOOOOOOOOO M OOOOOOOOOOHHHHHHHHHHIN

^7?^^tffi^W?*my/»r*QF*? *Pwf!?""r **.*firoii*w^ - r^rT^^pp^^^-M

EH

a

3 CJ

H

O

o\ooooococor*criocnooor~Hwo\r*oo©

x cj

cj z u o a a « b

(NOOOOOQOlfWNOnOin^WNHQOO O •-HN r-t o

ft 1 a n a)

rHrHiHiH*-H^«Wrtr>PnmfO •-I 13

XI

T3 <*H •H O

HOOOOOfflOlLnrtOHOMinftHTOOO £ o 01

to +o> J3

4-1 4J to o to c a) to o 01 to to en • 0) to 0) p <u to to

+« •H

1 13 O 0

to 4-J iH U CO to

a. a) in cm

to k o a) to •W to to to

•n •U (J +r- n o ai

to A •rl ft to O CO

to ft CO u T3 k CO a) i-t O CO CO

•a a

8 4-1

CO to

+«> § II -H

to to 5 4J <u

iH (3 H to cs -H ,Q to co O CO to ft H co CH

to toco +m o CU to to to I >< • CD to (O

toco toco toco

1 U

1 § 01

•H oo w

CO toco 1 3 CO tTi to to to

toco to to to to

1 O 1 Ed 1 « r-l 4J

to co to 1 b cd i-l G to to to to + •» fl •H ai to to

co to co to

to to cd

ft c U3 to to co to to to to 4J <! co to to to to G (_ to to

toco to to

to CO •H m 4-i

to com CO O (N so to to to A H

to to to to to + m M 0 to to to to

to to toco

to to H

Ul to coco co O 4-1 4J to 01 toco to l-l M-i CO CO to CO to

co to to to

to to nj a

to to co to to to to to to to & « to to to co i u to to to to (06, to +« ft u 0)

•H tOtOM to too. to totoco UltOb CO to to CO totob co (U H totoco totob co ns 0)

CO to co co to tab to to to to totob co CO coco tatob to to to to tatotu to o co to to tatob to © o to CO 6. to 6, C- bbbtOtO + <-i

to (Ok. too. E-. bbbtato co COblOb p_ bbbcato m to CObtOb |H bbbtOCO <0 to lOblOb |H bbbCOUl u

3 to CObtOb EH bbbtOCO a> to tOGutOb EH bhbtOU] to (ObtOb E-> bbbtOtO 00 4-1 to tObCOCu [H bbbtOCO

E-l bbbtOCO •H •H

to to 6. to 6. PH co

£H ooooooooooooooooooooo M OOOOOOOOOOHHHHHiHHHHHM

E- oavfO(nfnrOfni-iFH^HiHC3o*rtirnoin»/>ooo •3

SB ooeococooocoQcrio'ierioMNmmisikniDQOo

ovor^p^r^r^r^^-immcn^p^coflococDosooo UK Ptflfl^WN^f^OWrfWlpllIifflooO

a, rHrHrf

CH oavooooAooonoiAoooomao 2 Cd o

OOf^OOOOHAOOMO^lOoaOVOO

OUHOOOOrWOOOO^OOOOHOO «% (N (N u CM

4-1 1

•a ocommmmmchM-Hr-iui&ncooocoqcicocnc^cn •H U OK

r-#ntMM)MrfK*lfnn^lVHOtOtOkO\OV*OW) 05 0) OCu

r-l si

o ocoinoooowsoo4omooooHga o o

M—1 O u « PM fc,

X >i X X X X X X X

+00 1 r-\

+r-

(U I-t

c o

•H 4-1 o CD CO

CO • a)

X X

X X

+VO J3 6 TJ X X •U 1 O X X o o X X C

o XX X +m CO XX X

XX X •4-1 <U XX X CO O *H XX X GO

O a

4-1 <U XX X X +v XX X X XX X X l-l a &. XX X X m •H CO XX X X o ox X X +e>

EH ox X X 60 & U

s ox X X G -a o ox X X •r-l •H U-l s ox QSX

X X

X X +« r-l B

«x X X i—1 H

5 MX X X cd II «x X X o CD

4-1 r-l (0 MX X X

KO OS X + -H X K3 « X 1 M 4-1 C f u KB IS X o •H CO E WO K X O H [d BS3 a X 3 £3 X X +o co PH

O IP i X l«-1 X •H a> u 13 X X ] u CO <u K SO X X ( B

>1 • C/t tu 13 X X I u SO X 3 +<n 3 r-l 00 33 i 3 i a a) r~. X3 X 3 1 63

iH 4J S3 13

X X

o 3

1 « 1 b

S3 X O +co u X3 X 3 W r-l d) S3 S3 083

X X X

3 3 3 •H

"H CO

a: a: 3 + r~ o a cd SCd ECS X

3 3

ft *"* H a« X 3 IS X 3 H U"l SK s 3 + y> O CS r-l XK I 3 !_i o SC5

X s

3 O -w <U u

XC3 i 3 cfl U 4J a, +io A O Cfl

XI 5=

X X en

K

1 P.

"4-1 CX a)

ss I O. U x> xx s a +f <u II

I X

a. m /—» EX EC OS CO SB I et It II X OS X +m •H

U 153 II

i X

OS ft X X J in

xs X cs X r-t Qi XI X K X CO K33 13 a. 3 + [N CO XI X3 OS. 3 o IS S3 « 3 ESS IO au 3 3 o II S3 a 3 COO ss 13 a a. X + rH •H r-l IS II

S3 S3

os & X 1 X 1

IX S3 K a X 1 S3 K a X 1

£< ooooooooooooooooooooo H OOOOOOOOOOHHrtHrtHHHHHM

?* v58HflWfp?RT^?

9^^^^^^^^^

% S

u

o o u «

n OOOOOOrHtMMeNfOrOTincOtS'aT^OOOO oooominmoooinmifloOHHHvooo

oooooo<Ni^"i"<j'VD\ooooir>T)'a)'3,voc>o UK HrtrjNncioo

DJ rHM &

En OOOOOOHHOOHOHHWnNMHNQ § ooooinoomoomooinoooomna 41

OOOOOOPiHOOMONHUlffKiinDNMO ID

1 sit

h

erp

-

o •a oooOiHi-Hinooooconror-oocoMScofowo^ 0 «M

P-i o E:H •Hi-ir-irMrO'q,invor-d<n DO; i-lfH

H O Uk *I3 -H

O ooooHOfnoomotmooosNinkoo T3 +J •H CJ W r-lrH r-l (X

03 rH S <U fc,

X (LI (U

J= • T) o w e o

i-H 1 -o

fi o X O H Cfl >l 0> tM O ID>Hrl X - *-•—r MOO >4 M o at >H H W ft X U-i p! CO

JM O •H X •! •o oo o IJ X iH C ft o X Tt 13 4-1 « rH -H « H B r-i 5 ' -O CD

c\ 0 II CD £ i-l X 1H 4J J3

0 C! CO

2 ' •o •H H m CQ O

X TI fii <U X (0 0) a: fH >\ w as H • o u rH • B3 f» E as oo

W ti r- . as a rd Ot 4J x a r-l U X H •o ca JJ ai X v> « CH » X Cu i-l -H CJ a: o u cd X & CL M X H •o < -M EC IT) rH x O V, r-l X VJ CM O X 4J U X H •o fTJ H -U X «3" O. CD cfl X 1 W &

D. <W X W CO X H •O a)

n X CO

<u X . -rl

tH X H •o VO % !* X CM -H Q) SH CO X >H X a)

>i0i X u o SMffi >H X H •O 3 o >*a>ic! X i-H MO ca DS><sxa: •H H

SUSH ffl SHOPJCJJXSJHX fn ~—' >i xx m XKXCJKUSMW

f< ooooooooooooooooooooo

M OOOCJOOOOOOHHrtHHi-lrtHHrtM o

:w C0a0\0inutiniDinLr)inir>^'(NrHrHrH)-li-|pHi-lr-1OOO

DU ioinaf>vou>wvok0ko<*>r-i^icNr>ioi(Nr4(Mr>icMOoo

Cd

Z COOCOfflOOOOOOCriOWDOlOOOOOOOOOO IWOV9OOOOOOI0UOUOOOOOOOUOO

pj i-l CM Ol H

»0 <NtNin«>VOVOVOVOlD<*(~»00i-«<MfMMN<Mf««r>«Nn(»M*l

o MOnHaOOOOOHriririODOOOOOHOO w a Cu

•J i*S +m •J M J M J 5d •J K •J &d J M •J K J a •J X •J M i-3 Sri •J M •4 m ij K

H u X

3 •J Sri ij X

B3 u ad U •J M

co •J + CS

§ CQ •J w •J

CQ co co

•J •J 5

>« co •J U co J >H

§ co •J u co •J § a co •J

O co •J D w CO J a « CO u u t» to •J ffi

co •J Cu CO J CO u CO •J CO J co •J z JW <Z + M <JS +M z uco <Z+M <3 1 z JW <z+« tS 1 z iJCQ <z+x v9 1 z JCO <Z+&6 iJ5 1 z jn <Z+W •j) 1 z JW <Z + M ai i z •JCQ <z+» <* t z Jn <Z+t<5 <J) i z •JCQ <Z + M <£ t z •JCO <Z + M *B l z •JCO <Z + M J 1 z •JCQ <S + 6d L3 | z •Jto rfZ + ftd LS 1 z •JCQ <Z + M tO 1

•JCO <Z + Ssi •* 1 z •JCO <Z + M t» 1 z •JCO <Z + M u» | z •JCO <Z + M uB | z •JCO <Z + « t* 1

£

^rnw^woHoooowHOoooooo rHrHrHrHi-HMiHiHOJCNCMCMC^rMfHi-fWtNfSfNfVJCNOICl

u&&>uuzzmm%&a#^^zz^juk&a

i-ioooeoir)CTiiHOfni*»ooot3rTj'r<4ovociir-in<-i'^,o M <Mi-<^H(MrHnrHfN|(v|fMlH(M CNCNCM CN.-t r-tm

w cu <u

X! X) •u B

3 T3 4-1 C 0) O X

H k C a) 3 o u 4J

•H O CO 4-1 4J •H o •a CO 1) II CU co c -a

CO o o T3 D. <j

CU fl 4J X> M <D to k -u CO cu 3 •H

4-1 .* <U o to oo M cu

-H C OJ P. T3 -H s CO

a. CU CL, CO k X! co a. o w n IB U-l

4-1 VH

c 4-1 iH O M-l

o rH (U m Cfl iH a) cu 4-1 X

rH 4J o Ctj •r-l It] 4J H 4J -a a CN cu CD II (N cu k -* CO

a -a «H M-l C k O nl H

CN *o CO O o C • CO •H CC *"N U

•H O >, CU Xl N iH a- i-t ^ s X! ^ o >! a i T3 e o 3 tfl o ai 4-1

o 4J CO tw ^ •H o co HI

CO c CO i-i a) -H

•H CU u H M ^ •H cu >, k 4J CO ^ Cfl a a) nl B a) Xl d

o CU CO X! XI

a cu 4-1 4-1 •H -H k M k 00 4J CU O (3

CO <4-l •H a U CS o <u 3 u o 4-1 T3 4-1 O CO

H Tt d rH ^- o a) CO •H C <u 4-1 0 4-> c CJ s -w O CU h «

4-1 CO

M CJ • 0 CO

r*» o M PL4 co

P. (U <u ft) M'r-t u 3 T3 4-1 60 TJ

•H TH m k S o

r?px%F*' • —--?*: *^7???^M^f %3T-^%^-' -i^^p^r7^^%^^^'^^P^^*l

•S EM SO UK

ta A,

Z Ed

w 0,

oo,*^r,^,<"<»'^i"a',*eO(-(i-H^HCTioooo(s^,»OiHina)o

oooiooooooo(na)ivomooo<Ji<»»onoaKK) oo<Nooooooo<Nco^>oLnmocNCDcofNr-a:co

•O OOHr SKI

HNlflOOINtWintOHCMOOH'*

a «

OOHOOOOOOOHninoNNOHni^HVDIW

<

o E w D a « Cu

•-3

•J

J J •J J J >J

•4 •J •J J •J

•J

KJ

K.-J

EJ Slj HJ BJ

3 " z s Z' 55 2= S3

I I

I

< 1 -

< I < I 5 +•«*

< ! 3 I < I

*apd< I •«ptf< I u»a;«£ i

««;< i *atf< I

i3pS< I

« z <ac£+ i * E <&(£ + I * Z ^^+ I * s *ae: + i * S «PJ+ I « S mpd + I * s <j>a+ i + B *>#+ I * S3 «*#+ I

, + S£K +J+ I + S&. + J+ I + S&.+J+ I + Z&.+J+ I + ZDU+J+ I + 2Cu+J+ I

J + S&4+J+ I

b

•. I

«'»(>wiwiii,oHooooiflinHOOOoaoo

r-'r^p-r^r^r^oococooococooooocococooocococococooo

oa&>ouzzmm«aK«^^z3^^o&m&

fHeooeoinc»i-(OMr-ocoom^i'c^ot*enr-mfH^,o

13 (U <U

JS u XI -u 01 u

•5 3 in g 4-1 0 3 CO

C •H c T3 O r-l C

•H td 3 4-1 -U CJ O <U <U 4-1 J= <0 co J-> 0!

It XI T3 c o m oi o o

J3 ft M cd •M CO 3 H 1) 41 4J 4J w •H co U

•H •* 0J 01 13 60 u ft a a cu CO 3 -rl S

a M CD ft CO O

•C td ft 44 -U h cd

4J u nH a u 0 4-1 <U

o iH rH CO # J3 0) <L> 4J cd iH 4J o H •H ct) 4J 4J T3 cu ft CM a) <D II CM w U -vf

ft T3 *H 4-| C k O « H tJ

CM o 03 CTN •H a • iH H

<U •H O >, ft J3 O r-H •H CM C >. ^ -H o T) ft 1 3 B o 4J cd CM <u CO

H 4J M-l H •H 0) O CO a

CO •H (0 >-i d) r-4

•H aj h a) en ,y •H CO X h JJ cd r-l Cd c J2 cd a (U a 01

0) £ ca J3 u

ft <u J-i •H fl 60 M t-i k d JJ flj O •H

to 4-1 N ft 3 td o CU T3 u o 4-1 J-i o cd C

H T3 o rH ~—' •H cu cd 4J d cu U C 4J a (U 3 -H o «

P4 GO 4J

iH cu • o CO

eo o 1-H PL, CO

ft 0} Q) cd U H k 3 x) 4-1 O0T3

•H -H 4-1 P4 a O

SH . .

a,

z u a; w a.

ooomo>iir»ominr>ieNoooo'<''-ior>ioo>-HOi;-(ooooiH Mm

Eld r-tr-tr-ir-imvo v:\Avor~r-i--r-r-. co coco co co so co co coco co DBS uct,

o w 04

OMn«lOC\OU1NNOr»OfHOnOOi-«HOOOOH

u

< 03

U s u O H 04

CO to co co

co co co CO to to CD CO co en CO CO CO CO CO CO CO CO CO CO co CO co CO co co co to co co co co co co co co to to to co co co

coco coco coco coco coco toco coco coco

i m

+ eo

CM

+ V

+ CN

+o

+ 00 I

u + <D Z

D a

+v w

k

+ CM

+o

CO co co to co co co co co co co co co co

co u E-< D

COCO COC0MC0 coco COCOMCO COCO COCObCO coco cacocuca CuCO co CO On co kCO CO CO Co CO EuCOCQCOCJCuCOCOtO CO CO (itCOCOCOOEuCOCOCO CO CO bcocococjucjcocu fci coco to u co bCOCOCOCJOCJCOCL, k toco to U ffl

+00

+w>

+-*

EH

MomM^riommmr-vfoi^crnnomm^'w^'crufi mcomcomr-voMuimvo'cr^'vr-i'd'uim^'mmm^'m

r* I** r^r^r-Mr^r-rococo coco co co co co co co co oo ooco ooco co oo

O<k&E4E4>UUU2E030)KKKK>H><ZZk]^C)C3kk DHHUU0UUU<<UW<fl:fcD.<<D03DD3WW <COCOOOEQQQlTJ>^tiitiiSS<:<SSTT-3^rt:<COtO

F-iooehror^vor^incnrHont^ooooncooJOVDCftr^koocioo •-H CNFHCNIH r-KM^-tPlf-iCNKNCMi-ieN MCM<N fMiHPir-ICM

(U TH CO *o cu cu •o S T3 •H •H o

..s 4-1 o cu 60 to

43 c a> •U vH •H

H CJ tH ex cu O 8 a

a) to C to o H

•H !-H o 4-1 CO «4-l 0 4-1 0) o H CO 4-1

CU nj It M

CU 43 43 CO « to cu E-i 3 4-1 4-1 3 cu CO C cu

•H •H CO •a m 0) ..

43 i-f 4-1 o r-.

M r- C 4-1 ON o CO & H

en 1 w cu A CU

tH w x> •H cu o 4-1 43 4J p. a CO LH o u O

ei TJ cu H d 4-1 to ffl o

T3 4-1 en u II k cu o

T3 Cu •H C •H H

w & CO T3

<-i cu CO X) CO H

O o 4-1 CN CJ O r-l cu

CM H CO 1

•H o 4-1 CO o o >>o c H CM cfl cu (3 CO e cO u •H

CU 4-1 ftii

•H w U cu 4-> B 4J

(0 TH T3 O CO H cu CO 4-1 •H tt) H fl i

CU CO

o 0, rH M o O cu o W K o 4-1

CM CO ft G\ <u & H 4-1 H

i-t cu CU CO 43 H =» M cfl oo o

•H O <4-l PH ^4 O

jrtamwfWfWtWWl^^PSWW^ 5.•^^^^

•Z EM DU UK

W

oot^n<Tt^i,^,o*a,voiHrrK*i(rii-)rHi-iis-Mrtr»i^j"tr«a,iHr-o oom^,(Ni-(iHeoi-ieor»'ii,'fl,(Nr^r^r,*uTT^,'*rHrHiHr*ino

i-HiHi-(rHfMfn,^'i,inir)irno^\ovor,^r^t-r-r*r*ooooo

o w

OOP*^OW>VOOiHO\r-HVO.HOWJfOOO^OVOOOiHOOr,*>OrO

oooooic^csoiO'S'inoimofMrHooMtMooinoooocsiH

73 CU t

SH u-t u 3 O

•O oorrvir)«svoooromvocooo<»iPiforo'a,iriir)inr^r-r^OrHi/i SU iHiHiHrHi-liHtMfgfMOKN<NO»<NC>)M(n<*in

Ufa

O w fa

!

as u « CO

CJ 2 n o w «l fa

co W En O

OOmrHrHrHOrMmCNiHtNOi-l'^'OOr-tHOOfMOOrniH^'

CO +irt CO P CO I CO I to I CO I en i CO I CO I CO I to co CO to CO CO CO CO CO CO CO CO co co CO CO CO CO CO CO

CO CO CO CO CO CO co co co co co co co co co CO CO CO CO CO CO CO CO CO w co co co co co CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO co co co co co co co CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO fafaCOCO COfaUCOO fafa COCO CO fafaCOCO COfaUCOU fafa COCO CO fafaCOCO COfaUCOCJ fafa COCO CO fafaCOCO COfaUCOU fafa COCO CO fafaCOCO COfaCJCOU fafa COCO CO fafacoco cofaucoo fafa coco co fafaCOCO COfaCJCOO fafa COCO CO fafaCOCO COfaCJCOO fafa COCO CO fafaCOCO COCuUCOO fafa COCO CO fafaCOCO COfaCJCOO fafa COCO CO

co+«s- CO I CO I CO I CO I CO I CO I CO I co i CO t co+m cot co t CO I CO I co i co i CO I CO I CO I fa + CVl fa I fa I fa I fa I fa I fa I fa I fa I fa I

COCOfa + 'H cocofa i cocofa i cocofa i cocofa i COCQfa I COCOfa I COCOfa I COCOfa I cocofa i I

EH

rococioo in r-voritn roves' "sf «? >-i "Ji/lrr* nnrrtrn

r*r^r*r*,"^*r^r^r*f**oooDcooooo co oo oo oooooococo oocoooooco

C3&tfaEHEH>CJUOSSp3fQO;«Ci5a>i>HaEJi-HUCJ)feCLi DHBCJUOWWW«aW<^ftft«;DDODD3WH <C0C0OOSQQQ^i-SfafaSS«aSTT-iT><<C0C0

i-Hoo en f>r-co r~ino> p-iorot^o oo o m COCNOVDCTI r- loornco •H <NiHCN>H rHtNi-ICOrHCNCNCNr-ICN <N(NCN CMfHrOi-HCM

>H o

D O w « fa

co cu •H 4-1 T3 CO a -a

• P ii

<D ^J P. 4J TH.

U a H O

W • HI ^ H O •H O 4-> CM D.CN <o i !H M

(N T3 H C CN CO

CO m u 0) ^i

M en tfl CD CO T-t

u

o w

co o •H O co o

id C 0) u

•H P. co

o

nj T3 P.T3 I -H as t-i <u a)

•U

• 4H O O CN

C a) o

3 4J M cj

•H (U fa CO

o a cu G K

•H <D •P x) -w o

O <U 4-1 CO cfl d)

10 -H u

cd <u p.

C w o

#H M O 0 M-l >-l 4-1 H cfl A 0)

1 <H a. a M nt a) H

^3 cu

td cu co

m o

CD /-^ S r~

•H r-. 4-1 o>

00 a u -H CU TH XI P- O a 4-i cd o co o

iH en

4-1

o o 4-1 4-1

II

CO -H CU M 4J P. 3 C T3

•W CU S XI

U

H u o u 4-1 cd D. I &

<u

U FHI-H

g ^mrtC^rtr^VOHHHOOOOtOWOOtOOIOWOOMQ

U vHttoowfltnonnpwioooooooinoooooHo OS >H H(M

O r*e0moiiH0rH*H»rtinm00OOO^rHOOmOrH»HC3OMO

as < a

o

D a u OS EL,

en to to tO en

to to to to

to to to to to to to to to to to to to to to to

toto ca to to to toto to to to to coto into toto coco toto toto toto coco toto toto

oi com to toto « toco to toto to toco to toco to to to co to to to CO to to to co CO to to CO toto to to to coto cotoco coto co to co coto tototo coto COtoCO toto totoco coto co to co coco coco toco toco toco

to co co co to co

toco co co to co cozco coato tozco

to Ed EH

S

OS

coto CO to to co cococo CO CO 0} to CO to to co to CO coco

to to co to co co cococo cococo to co co to co to co to co co coca co to co co co to coco

to co co co to co co to co co co co co to to to CObCQ

tozto cohca BbtO COEuCOEuCutOCOCO ZEfaCO CObCOCubCOCOCO

CO CO CO CO co CO

CO to CO CO CO to CO CO co to co co cocatoCO CO CO CO CO

to CO CO co CO CO co CO co CO to CO CO co to to Eu Eu

UP*p<E*e<>cjcjozzmiaaia3cisas><;><z:z.jiJuoP<0f DUucjuococdu<<uu>a;<cua.<<sssQ3Suiii <£ to cooozaoa>^nhct.ES'<>£:3s>-}r?r) !-}<:<: co co

CU J3 4J M i

cd co U4 w H o o

4-1 CU a cu o II co

-H 4J CO O tu . cu 4J /-^ CO 3 r-.

•o •H CT\ cu 8 M ja u • * h 3 r-i fl) 4J o ^

+o CO 4J 4-1

T3 ca u +co CU

J3 1 o.cn

4J H H +o 41 C JS O o -w

+•* cw CO O k CU O

+ IN iH ai -H •H 4-1 iH 4J (0 PH

+o P. 13 co Q> 13 CU l-i II <U 13

T3 o 1 IN 13 D. k CJ

C iH O + W <fl

H CU co cu

w l-i •H H CJ + "» CU • 4J cu

*T3 /-\ o a. 1 X d o c CO + M U CM i IN a a M <u k 1 s cd m B o +o o <-i 1 -H t4-l

i a 1 Cu

CO O 4-1 m O w rH

+ 00 o 1 iH tw m cu CU

O 4-1 r4 + VD CO CO J3

CO U 13 •H CU

CO ,M to >1 u H as +CN tfl C (0

co o +o a HI k •H •H 4J H U CO

+ CO 4J 0) ft co i

H a. +«> O O M

u o cu 4J O JS

+f (0 m a »-' cfi

itvl a oj tw M •M O HI i-l pa co cu

S

O 4-t t-l o CN PL, 00

c 0) CU -H M M r-t 3 13 A Ul'O s •H •H CO k S w

ov©«N]<Nm*3,ommmLnmu-ii-H^ir-i^r-iorHi-Hcoeoco'«tf'ino OC^CNCMC^r-ni-frHrHrHrHrHtH^lr-liHiHOCOOO^TT^J'OrHO

;

O<N"fS(Nl0OV000000D00C000r-li-lrHiHi-ltN"!i"e!,iHiHi-ir*00O «H UK •-ir>)(N«N'S,'3,^"S"'C^i<»q>^rvcio\ovovo«5W3vococo<»oo(yio o H I-H II & c

•H cirs

& o w>in ooHWiooooootooooo inmo r-o OVOI-H in 4J 4-1 r» oocNor^oomoooooooCPioooooocoovoooinrHco U 0 tji

« CH

OMCVOM'i'iriHOOOOOMOOOOHHOVOOOiflHH « ft

B U T3 OJ P; rH i-H rH r-t rH

u aj .« ^3 c

now 3 K U

•o or^(Ncs)^,(Nirn£>i£)vovovovo(,r>mr^nrT*Lnin^j"3,'3'r-fO'a' WHO SK fH^M(N(N(XN(Nwr4r4rirnmmmmmm«f^:'<r^'uiin " co to DOS

undi

er

p-p

to

13

o or^moNoDnHooooor-ooooHHooioofHOH 0) ,c CO fl M cc U IH O Cu

CO CO

+ci 1

s 6

n at

e o

d pri

CO 1 CO I QJ >o QJ CO I rH T3

CO CO + 00 •H n p n CO CO 1 4-1 O <U CO CO 1 a a o -a

E-i CO CO 1 <U >H 4) O

EG co co

CO CO CO

CO CO

CO CO CO

1 +r-

k k M u

T) 4-1 CD

U co CO CO CO 1 cd • c "H CO CO CO CO 1 /-\ o

M co CO CO CO 1 CO O Q) <U < co CO CO to CO +V0 HOBO. a co CO CO CO CO 1 « M rl 10

CO CO co CO CO 1 tin +J

>i co CO CO to CO 1 =M C 1 v k

CJ to CO CO CO CO 1 u tfl i—1 o S CM 4) <4-l cow CO CO CO co +m E

u cow to CO CO CO 1 CJ iH m cd iH D toco CO CO CO CO 1 D ed TJ a toco CO CO CO CO 1 c en oi <u tj coco CO CO CO CO 1 CC H tfl r-t ei CO to CO CO CO CO +** Cu M-l (U ^3 k coco CO to CO CO I Cu o ^ (3 <a

coco CO to CO CO ( J-i O H co cd

•H g rH CO co o cu

COCO COCO

CO CO

CO CO

CO CO

CO 1 CO 1

coco coco CO t. COCO +M r-> - U W coco coco CO Cu COCO 1 r-l W 4J coco coco CO Cu COCO 1 m cu td coco coco CO Cu COCO 1 c-H a COCO coco CO Cu COCO 1 cd M i coco CO CO CO CO Cu COCO + (M <U EL coco CO CO CO CO Cu COCO 1

trip

D

00

s a

her

COCO CO to CO CO Cu toco 1 coco COCO CO CO Cu COCO 1 coco CO CO CO to Cu toco 1 COEu CO CO Cu CO CO COCO Cu COCOCu + rH r-l CO COCn CO COL, CO to coco Cu COCOCu 1 O v 4H tOk CO CO Cu CO to coco Cu COCOtu I h O COCu CO CO Cu CO CO coco Cu CO CO CM 1 4J 01 COb, CO CO tu CO to coco CM COCOCu 1 cd 4-) a)

co - 1 TO fl a 4J

cr* k r-l O <u o oo 2 foorr>csi^r^omnmr^'3,^!,or-o,iiriomrT>a'vo'*OLn Ed O 0 M roeoroooiri[^voroiiirovo^^^r-t^Lnro^rocoro*i*ro PL, fl

— 1-t r-t . <u a,

r-r-f-r-r-r-r-r-r- coco coco coco coco cocoa) coco coco coco oo IN r-l 8 r^r~p~r^p*t^r^r^r~r^r^r^r^i^r^r^r--r-r>t~-r--t^-r»r-'r»r^r-- CM TJ td

T> CO

CJCUCU^EHJXJCJOE E Ota W d Bj CS >* >*2 S iJ J Urn CU O, 0) ft

DKICdUUOMtilW<:<WW<<Ci<CM<:<03SD3D«U &. <cocoooz:acionr)kk,E:s<<zzrinM)i)«coco M a> 4J n •H .c o es Hcoonr* vor^mcTH-HOPor-ocoo ci CO(NOVOCM'--\OOC'>CO ["4 4-1 4-1

i-H (Ni—ICNi-H i-HCNi-HCIi-KNCNCMf-HCM CMCNCN CNrHrOrHCN

•S EU DCJ CJM «

04

EH E

o w

onoooocoooooeo«iooo^'"*Ti'mminifn/iuir»r,-Q500

0^r>OOO00OtS00n0rM)M00OO04OMU>0 On^OOOOOOHOOVOIHHOOOOOHOHHO

ocoooooooaHOonoinHinoaoooogamHO

CJCu

a

Eu

I

X o z

o H as

OC10%OOOOOCn-IOOf>OtfliHf>OO©©or*-On1r-IO

X X X X X X X X X X >1 X X >H X X X X X X as « a M

s x B x X x x x x x X x X X X X X X X

+o

w u E*

X X XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX

B

X X X X X X X

X a o p o

O D

3 «

X X X X X X X X X X X X X X X X X X X X X X X X

X Hid co cow

+eo

+ tN

E4

uo.O!EHE-i>ocjuszracace!«ci:cE;xxas^)>-9uuAcu SCUMCJUOWWH<awCil<«£pJpJ<rf:30aaDnWW <WMOOBDQQT3li-li'SE<i<:EE^1W««n •-(COCTvmr^ujr-uiffii-ionr-oooomooeNoiooir-toofTOD r-l (NMMr-l rHCMi-HMrHCMfMeSi-in fMtMO) <MiHrOiH<N

o OJ n o B <u

P4 *r+ <H +J CJ

at ai HMO. T3 C £0 T3 -H •H r-l U S fr o

S 4-! at a fl fflrl 4-1

rH 01 IH «H O *J jCl

o a C +J H o i-i H at 4J d) CJ CO w 01 CD to JJ

•3 • •o tJ^ 0) «rl r- ^ e r- n a* 3 •*H *J H CO O M

•HUD T3 4J J2

CO O <u a. 4J

J3 1 CJ •u euo

M C at m O ,fi r-l

03 «W O MO H O CO H V h «

4-1 4J O T) « -H o

00*d M CJ X u C ft

•H II w r-l T3 s r-l d <U o ct) -H T3 « O M M « H O b <+J U

o cu • k

W /-\ •H O +J

CO CM O >iH n r-l r-l flf 1 d) COS Cfl O -H

o u PHI-I -^ •H M CO <U

•U tj *J <u cd

HM-O O k h cd cd *J S cd S a. - o l co a <D H k i-l o 1) n n

5C oi JJ CO CO

p. • O 1

no ft CN O P

r-l 0) 0) ~-/\c ^ 3 ai cd bO *J

•H «H M-l k co o

fi0r^%%^v^7r^r^TT^' i-^^HVffT^! ̂ ^^^^^^^--^^

&4 oooooooooooooTt"*r^r-r~-r-i-io^H<xnovooo • E OOOOOOOOOOOOOHHt£VDISUXOnvOIC(NaiOO

EU DO OOOOOOOOOOOOOMf>|(NPI(NlNTfN»0MW~OO

g o w

OOOOOOOOOOOOO^lonoOO'ifO>HNMO<SlO oooooooooooooHomooOHvnoinwno

OOOOOOOOOOOOOCNOOOOOfSir-lOr-IVOi-ICNO

% 33 u

s ca

EW <Nf*COCO00cO DOJ i-Hr-ii-li-trHrH

O ooooaoooooooo«oHooof*fNrin<(a W r-KN rO « r-l

X X I o X + CN

>1

X IO X +P-I X X >1 X |0 X +0 X X

« 33 +0 33 I en X 33 33 53 +0 33 I CO 33 33

X 33 O 33 +0 >i 3 33 ir- y Cd 33 "- D X I u a KID W 33 +e> O « 33 I IO W CM 33 I M

33 I fc. 33 S3 +0 33 I ID 33 33 33 03 +0 33 If K 33 33 X 33 X +0 33 X in 33 X 33 X 3C X 33 X +o 33 X I (N

X33 X X33 X «33 X 3333 X

X KSG X S CrfSSSG XP4D « 33U3B XKCt; W X MC>33«DUe!

w EH D

P,

g

roooroo3inr-^oninoivo'a'^'^'<-t«9,mm'*nroM'j'n

p^p~i~-r-i*»r*r"r-r-ooeocoooeoooooeooocooooococoo3oo<»co

uicij04EHEH>outJE2cacQ«(K«ff;xxssjJu«eue. <Swn50BOQO'^3li.li.SE<32STl1^«fflW

r-l tN(-(CMi-H r-IMi-HCV-lfNCMCNi-KN fNCSOl OI(-iniHt>l

O O 1> O TJ

PH 0J O u

r-l W M T3 CU TJ GO 1-t

El C ° r-l ft

•P CO ^4 co o

4-1 «4-l O iH

CO r-l

o T-f

o a)

II ftj

EO m CU CU

a) g so:

a ai

73 4J

9* , 4-> 0) ••> r-

•H iH r-. TJ O o\ C H rH 3 4J

a) n cu A 01 ,C l ja +J ft o

H 4J e <u U O J3 o CD <« m bo O rH o k <D o

14-1 4-> +J ca

MtJ 1-1 c o •H II •H rH h rH ft ft cd -H CJ M Tt

H 01 w T) o U

O CO ,-v CJ

•H O CD CO O H f»i<N r-l i-H 4J

C8 1 o Pi r-l c co CN

r-l CU ft r-l B

•H •H l-J CO 4-1

4-> k CU

rH ^ cu O H 4-1 u co CO 4-j a T3 ca & - cd

1 CO ft cu Pi

<u u BJ HI H

ca o n

• O 4J sr o a NO ft

r-t | (U s_/ (1,

3 (U 01 SOU ^

En r-'ft--c»i.-i<NrV«ii-i<NirnDi-<t'>rgwoino>© su BO "J'COfioooneofHOOin.-iuii-toor-cni-.Koo

^•^•m»/irtrtro«fMrti/>iofn^or*flO^DfO00fi 2 u p.

•0< oovotn^i-HOomoirir^f-tmAomoso^ocNCi EU r-iM(»wi>ir)vowi-eomcirH««">i/iinr«.r-

c (U •H H o f£i

PL, nt H

, 0) OJ <U 4J M

o « b

cooooio\r*«r^r«uTwfir*o\f4kOrHim\o,-f'kOior*

as u

o

b

M<N<N(N<NlN<N<NlN<N<N(N<Nfs|<N(NlNlN<NH

oooooooooooooooooooo OOOOOOOOOHHrWHHHHfHHM

•H " W CO >, &

H (B 0) M C 4J

y ^ •H CO o o. m

h

cfl &

CO

& (D e c

01 u a)

•s o

•H 4J

.. Bj 60 U

•H O ft, ^

in

flj M 3

EH

03 r-t

l£>O«JVDO00V0(NOU-|T00(N(NC5<Jl1'irKyif-J

i-iOr-#i-io(*rimovr-ioicomowp-Ma*'m

a.

EM »HrHrHi-ieN(srvnrrr»minto«) OK

o H

•HO<Hi-to»iH(Mo^l,p»\oinrMV(«rw~"WMcg

x u

s to

x

« k>

co EH +r» co EH i CO EH i co CO K i

i CO to I: to to 1: i

i to H i

co toco to CO +v> ca coco to CO i co coco to CO w coco CO co i CO coco ca CO i to coco co CO i to coco co CO i co coco to co CO coco CO to i CO coco CO CO t CO co to co co z +m CO COCO CO co z 1 CO cotoco CO z 1 co co to co CO z 1 to CO CO CO to z 1 CO co co co CO z 1 CO to co to to z 1 « CO CO CO to z CO to co co to z CO toco co to z 1 co E-COCO CO to JW +** CO EH CO CO CO CO uco 1 > CO E< co co co CO >JW 1 CJ co EH co caw co •JW 1 z CO EH CO COCO CO UtO 1 co CO EH CO CO to CO IJIO 1 s co EH CO CO CO

E-CO CO CO to JtO 1 a

co to •Jca t W CO EH CO CO CO

EH CO CO CO co iJCO 1 as

CO CO •JCO 1 CL, CO co co to co CO tO G, CO k, +m co CO CO toco CO CO 6, CO k. 1 to COCO CO CO CO COOu CO 6, co CO to CO to tocoCbtocu CO co to co co COCOkiCOk. 1 co co to co co CO (Ok, CO k, 1 CO coco toco COCOkiCOk 1 CO co to co co cocacucocu 1 co to to to CO CO (Ok, CO 6, 1 CO to co co co cocaCbCQct. l

I

CO CO to CO CO CO to CO CO kit, 6. CO+N co to co co co co to co co k,k,k, co i (0 tO COCOCQCQCOCOCOkikiCbCO I CO CO CO to CO to CO CO CO k,k,k. CO I co to co co co to co co to kiWk. co t CO to CO (0 CO CO CO CO CO k,k,k, CO I CO M COCOCQCOCOCOCOkiCtikiCO I co co cococotococacQkiCLikiCo i CO CO CO CO CO CO CO CO tO k^k| to I CO CO CO CO to CO CO CO to k,k.k, to I

COZ UCOb COCOEtiCuCOCOOiCJfciCuCii+iH CQZ UtOIu COCOk,k,COCOk.Uk,k,k, I

Z COZ UCQb, COCOkikiCOtOpHUkikiCL. I Z COZ CJCOki COCQIx,k>CQCOb,tJkik.&, I Z COZ OCQCu COCOEukiCOtOCbUkikiCu I Z COZ CJCOk, COtOk,k,COtOk.(Jk,k,k, I Z COZ UtOk, COCObkitOtOkiUkiCuki I Z CQZ CJCOkt COtOk)kiCOCOk.CJk)Euki I Z COZ OCOk, COCOkiCLitOCQCuUkiCuk, I Z COZ UCOk, COCOCukitOtOCuOkikiki I

Z z

•I

EH DOOOOOOOOOOOOOOOOOOO Z «-t<Mm^'Lnior"-cciat©i-KNr'i^irnoi--coo»© M ©000©000©iHi-t,Hi-l,-li-<i-l,-li-lrtOI O (MMCM<Nf>KM<,MfMe»ltNCN<NCM<N<MfMCt<N(MM 0,

0 •H O fu

CO HI

CU •a 4J o •H o to

co H 0) O •H 0 CJ

PH CU a

4J CO ca n! M

Pd o M-l

<U ,fi iH u

a> 6 rH O ^3

« CO H 1)

M CU •rl cu 4-1 co & cu h

4J •a CJ C CU to to

c m C4 h k a) +J X) C rH ca O

§ 4-1 rH cd CC D, CO

a M-l u o CU

^ co •H M-l

CO O >h H c « o a •H CD 4-1

CJ 4J 0J (3 co

•H O a. 8

r-t o o H u 4J *H a) o & I 4J & c k •H cu O % D.

Tj •H

• 6 vO CN

a> n 3 60

PH

EH tD^oAwinoffir<inHou^ooHr*>cNr40 EU • >..••>.......

Hi

Ei Z u

w

tea r»ci P* OMOC\CO ao i£ o *£ mo IH *O mo oo

0

w (3

O a. T3

% a «J

K

m x o z

O u

JP moovwMmMoiuxnv*omoio\mmor-o» 4-> Cfl su r>^*inuiidr^qoc^cior4^«^aoo^r<i^coo C tu

r-iM'-i'-i'-KNNmmmv •H T3 o o

o mrTifif«JiOiHOOrH^j'n^or^o>r*^,or*r--<N b) CliH iH <•* rHrH«rtiH(\inOOrt«(N to Hi (U 0) Cb

HH

HH

HH

HH

HH

HH

HH

HH

HH

HH

HH

HH

HR

YY

YY

YY

YY

YY

Y

45

5

0

5

5

60

65

70

7

5

80

Y

call

ing

fro

gs

on

the

Eas

t P

ool

sit

1

tran

sect

.

See

Tab

le

1 fo

r sp

eci

a i v a i z a i a o a +o D 4-! U a wo O 4J a i u « ax i M a« i cu u> o.

X aa +m •H | X xaa i m CO ex X xaa i >, w X xaa i rH 01 X xaa i 10 fl

CO M-t x =>az +o X 311 i m X asa i x xaaax I O x xaaax t 4-> x xaaao +m c c x xaaaD in •H O X xaaaa i O -H X oaaamai X KSSSBI1 C tJ X a aaaaaa+o u 9 a xsaaaaaiw H 11 » a xaaaaaai o m O aaaxsaaaaai

aaaxaaaaaai u tf 4-1 • <o e s aaa«aaaaaa+ir

a aaa«aaaaaa i M XX xaaaaaxaaaai d. t mx xaaaassxaaai 1 o as* X X aaaaaaxaaaai O. H xx X X IMIISHSII+C

33 xx X X Hjaaaaxxxarsa i H EX xax

xaa axxxxxxxaaai-

ax xxaaaxxxaaxi sxx xazs xxaaxaxxaxxi EEX xxax axaaxxaaaxa+m azx xxaxxaaaaaxaazaai aas xxxxxaaasxxaaxza t MEcaxaxaxaaxzxaxaxaaai <N saxaaaxxaaaaaaxsxsaai

60 H oooooooooooooooooooo z rHCMfn^inwr^cooiOiHMr^^nn^Dr^cotfHO •H o

•1

EM

u a,

6H

w o os a 0.

s g

;VHJJ+ + J«

**> US + + LB «

+ IH t I I I I

< OS

IS

r^r^tM** rococo cacocococooooooooocoaoGOCocococD

(LI J-l «

II W

a o •H T3 k 0 ^ a

<a • <u

HI -H 4-1 CJ •H <U cn a

to H O M O O

Pk 4-1

4-> H CO <a <u W rH

/a <u «

4-1

O M

<D • rH <U Tt 4J jj cfl D.TJ 01 r-l Cd

TJ C c o erj

w 0) C W crj

•H

•H

i iu o

<T-|

o u <u

co ^ •H e co 3

<n r-l e Cd n) 4J

O CL 4J

•H M II 4J

CO a (X crj cS u U 4-1 4J

H .» (II tc a S c •H 3 P. h a

n) k

• 4J 00 CM 4-1

O

3 M

E-1

% EC CJ

9 CQ

fH CJ Z W D

s « fa,

M Ornr>wr>i'^r^i"^"»mr-inooeor»n1-iaioweir»no tu •Z

EM 3U

OrHtoiovDiHrHiHr-ir^kOftnoior^pii-ir-coaoQWcoo 4J O CO +J

Oi-toff)r»M^t-r~<»vooo^'^r»o\iv)oooo(MPH{>o •o CJ* •nc««i*s'inini/W">i/>vowi-r»r»r~ooeoeoco<j>c»ic*o u

w •H II 0 a< •H

p. u •H p.

E-i oi-ionn^>'c*«ooowi,ff»mor»ffnowr»or-otf^r» w z Oi-Hinooimc>ooiD<nLriroo(-Hinr-cri<-HOi-iirtfHi-( H T3

cj Oi-i9tAr-<riooO'-ir^(-ivoaniHVr-ir>oi*v-ir>m « (H r-l > Vi w <u o ft* •H <U

•a or-raLnoi£>U3«5ior-(Nmr-r~(Tioniru3k£>a)<TiHn co u EH DO: Ub

i-twicOTrmrWf ^•^•^•inmuMomtnLfttois

Pool

; not

O OI-«U>rsmV0OOOrHini-1^'O<NrHIT)iH(NO(Si-l<NCV| cu w »H u B * (0 -H Cu

CO CO CO CO CO CO CO CO CO CO CO co

1 )-l

+ .H

+o 1 M le

s on the

Ea

on a date (t

pecies co

des

•ri H B

co CO co co

+J O

+ CT* P. M M CU 4-> O H cd m

co PH CO •O 1 r-l CO +w S P" CO (d !-l <u CO CU H CO co ^3 ja CO M CD

CO CO +r* <U (0 H co co >« T3 CO CO CJ CJ MH <y co co co to s (d o o)

S co CO CO CO Eu +«> D 5 8

(Tl —J . CO CO CO fa. a CO COM fa, fal CO CO CO fa, M

sis

of s.1

impl

ing

t:

ier

1977

) CO CO CO Cu fa, CO CO CO CO Eu co + IO CO CO CO CO Cu co COCO COCO fa* to CO CO CO CO fa, to COCO CO CO fa, to co co co co fa, to Z +«r CO COCO CO fa, to Z CO CO CO CO fa, to 2 P-i CO Jl CO CO CO CO fa, to Z r-l CO O CO CO COCO fa, to Z 0) 4-1 co co coco fa, to fa, to + m CH O COCO CO CO fa, co fa, to cd co o CO CO CO CO fa. co fa, CO +J CO CO COCO hi CO fa, to P. O M co co co co &« CO fa, to •H +J H co co co to fa. u fa, fa, to E-i CO tOZ+CN W co co co co fa. o fa, fa, to Ei to toz 1 4J || CO CO CO tO fat o fa, Cb CO tr* CO tozi CO CO CO (Ob, o fa, Eu CO E4

CO H CO COZ 1 i-i en

o CU co co co co fa, o Cu Eu C0 COZI co co co co fa, to CJ co fa, tvf -ttOuJfa, ztocofai+ri U +J

cd c

I B

to CO co to fa, to CJ to fa, t-i -)CQu3&, ZBttlnl to CO co to fa, to CJ (0 fa. fa,! -ICOUfa, z co to fa, i co to CO CO fa, COUtOfa, faiHCOUfa, z to co fa, i to to CO to fa, to cj to fa, fa, En CO iJ fa. Z CO to fa, 1

10 p.

b] 0 H H or~iO"*innmooocj«>foo<TiOKno>rHrH^'irtOno SJ O

•H mmvMMMMmMmmMmmwmMNMmN u 4J

M • cd s t^t^i^^r^r^aooooocooocococooococooooococDcococo Cv o.

r-r»i-r-r-r-r-t^r-t^r>r~r*r-r-r»r-i*-r-i-i—r»r>r- CM 1

JE4»OCJ2 DUOOUU< bO220Q'-

Pi cu u u tu en )f?fa,fa,ES«l5:Er)r]M]»9«tOtO 3 fl

H 00 « fomwr-vNo^r-ricor-ivifMneir-c r-Tjmcioi •H m E-< ftfi i-l iH<-HP)i-IP«NCMi-ir>) tvl.-HCNi-ICMiHr'lr-WN Fn O

., ^^.^^yT^l wp-^ ^•^J'^n^ (hr ^.^^^^^^'*

2U • • . . . •

W MM a,

En Z w u EL)

ciooooooooooocMTiocncrKTicor-UJ^oooo

NOOOOOOOHNQO<l'UlHnmif)0\Mr-<W>-0 iHi-li-t

•C* tnir)tnLnmoOrHr-ivDvou>tx>ooooco^i-HOOLr)^i<r4r-irH ZU rHMiHi-tiHrHf^CNfvlMnrOVDO^WrHn^OOr-^DVOOO OK r-liH<-f CNCMC!**1 If) IT)

o

Cu

EC u

CQ

u a o o w « fa

inoooomciouiooo'i'oeooar'M^aoxJio M «H (Men (NMoifvoeotrtn

fH >1

>4>H +0 >H>H I ffl

XX ffitH

EC EC I 00 SEC EC EC EC EC ESS +0

>HECEC SMECEC +0 SHECEG t W >" ECECEC I U

EC EC EC I W >4 EC EC EC +0 3 >n EC EC EC I m a >i EC EC EC I W >H EC EC EC I 05 JHXSEC I k >HECECEC>i +0 >4ECECEC>1 I ^f EJECPCECPH CdECECEO" 05 EG EC EC >*

> EC EC EC EC >i +Q > XBGSGECECOS I ro

^f^H ?H rC 5C E 33 23 r^#H PH 33 3C tfi ffi s3 I5>4 K EC EC EC EC EC EC EC EC EC EC EC EC EC EC +0 EC EC EC EC EC EC EC EC EC I CN

EC EC EC EC PH^M EC EC EC EC EC X EC EC SO-" EC EC EC EC EC EC EC EC EC EC 05 EC EC EC EC EC EC EC E3 EC EC 3 EC EC EC EC EC EC EG EC +0 EC ED EC 53 E3 EC EC EC EC EC EC EC EG EC OS EC ECE3 EC EC EC EC EC EC EC EC EC PD DD EC EC EC EC EC EC EC EC EC EC EC EC E2D E3D EC EC EC EC EC EC EC EC EC EC EC

CO w EH E3

CD H « EH

or-^0'*i/>n<noooovofnocn<no><ft<HfH'»i,iocnvo

r^r^r^r^r^r^oooooocococooscooooooooDoooooacoooco f-r-.r-i-»r-<--r'-r-r- r-r-c-r-i--r- r-f-r-r-r-r-r-r-r-

JEH»ooBScQ(cictie<tr;ai>i>HS2:JiJoocufw SUOOCdU<<CdCi3i^<CUEIj<i<DE3SOE3E3Ci]CL|

^fonior-^j|(No«!rr*fHoorH^i'LnfO<y>r-or-^i'rHmo> MM rH MMrOMCMCNCNMCM dMCNMCMMnMCM

I

cu jc m

M 4H o o •u a 4-1 k to o

M ll a

•H a) H M

O a

• cu CU M +J •H 4J co o

C to M co O .4) T3 O g O

4J +j w en m cu cfl CU -rl W 4J O

a! cu UT3 ft fl - 4J n)

co

fl o o n-t CO M M cm o o u a) W 4J r-l

a m

•H h CU M CU CU H j: w

CO CJ ft)

44 «4H /-^ O O f-

r- m CJ en

•H 0 i-4 co -H >•, 4J IJ M <U

CtJ 60 J3 C Cl O nj TH 4-i

M CJ A. & O •H g M at 4J CO

M rH 0 cd U 4-1 4J O CO 4-1 a. 1 It & u co cu cu

EC 4-J E)

ol CU iH M O

P4 cd p.

.3

•2 ooooooooocria>M,^,^,^"3'onoorriMn<Mt^(Nr»u>io>-iiHiHi/iininminirio

3U OOOOOOOOOCNi-imf0*oV0CTiO000Mv-f-»r-V0r0000S<N(NOr0Vi>C*lV0ClCMU*HX>O US iHiHr-ti-ii-iFH(N(N(N(*iton"a'inirnnvovDr-r»r»«>oococftawyio

u

ooooooooo(yivoeiocsoa«nvoci«)oovovooo<rtwio«<TiO»iooHOtffiaio\o> oooooooooonfi'J,oaiom^TTr^ooo\^vi|owi'Oift^««aijiw*

U oooc3ooc3oor>iooi-HotMocMi-ir*'-ir-ocsoor-'a,>-irMoi*-fM(Nr-(Nfs<N(StMr-i W

c a; •H iH

PM CO

• dl ID Hi 4-1 M

•O ooooooooo(M<x>atamrHro^rCT»otninifmioffio(StMr-CTifH^ocoocM'j'^oi-* SU i-Hi—|i-liHrH<N(Nr>HNnr0r0^'^,'J'^,^,lrtmmVDli3VDVDVD OK Ub

o w OS

OOOOOOOOOfMWHOMOfMHinHWOOtflinnHMOlflNMinNNtMNNH

5 u

B3

u s

a

Cu

•J J J

•J •J

< < < < < < < <

< < < 3 3 < < < < < < < < < < < < < < < < < < < < < < < 3 < < < 3 3

J J J J bJ J KJ J 1-3 J

3 < < < < 3 < < < < <

< < <

< < <

. < 3

+ V5

J J J J J J

< < <

3 < 3 < < <

+ tn

+"f

SB u OS < a >1 u w CD u K EM

+ (N

w a. < EH

o

tNtSCStNlN (NCMOHNMfMCMCMtMCMCvKNCNtNfHiHiHrHrHrHrHrH

oooooooooooooooooooooooooooooooooooaoo rHrH^ji-lr-liHrHiHrHiHtNtNtNrMrMCNtNrslCNfMfOmfOMnnnn

o o 4J

•H O a

4-) to <u a) IH S & £ [0

to C O 4J

(0 cn a» 4-i

r-t 0) Tt (0 4-1 CU CO <a a. u a to

u - T3 4-1 q

o

<u •a o o

J3

0) <u •H u (U &

nj O 4J UH o

O 4-1

W II 'H co co % & H CO

a 4J

4-1 4-1 C <U

•H co O

CL cu

14 4-> CO

cu

4-1

<u In a)

o ai -H u u 3 cd &o o

•H O E»< r-t

01 c c

• Z

DU art u

z w u a:

•a

CJCn

o K Lt,

OOLOTCO oo o) LO rr> IH r-HOtNLn ovir- in (Nd'a'cir* oo CN^^T* CO co<-ii-ir-frH rn m voo oorHinoovorHr>ir^t^ovorHvorgr^coo>a>Lnc>)t^roo^inLOLr»oororororofooO'*o

Mr\iM(Nrsi(Nmmv^^^^inLnmLmwwr^r~r~oocoo3ooco(Ti(A(fic»mmmc)

OOlrt<J0"*O**00C0o0WNf^,^l1'C000O(MCnrN>*fv|OO^'OCIOOOO'JlN* oonrwoifi inooo ^oioinmm inooo^o^omvoinvoooioo IMOOOO LDVO in OOVOinHOHHMnolv'^'HHHHMmo^'lvTHfH*OOHOCvOOOOH5ri-l

oo^^inin^or^cnrHrH»om©rHr\iroint^r^OLnvoo^©rnmM>**j,oooooi-i*i,in rHiHrHpSiHFHcsir^f^c^(^roMrnMMM^**^3'^pLnininLnininw>vovo\o<^vo«5vo

OOfOHOHHtNMOinnHHHHNtNommHnHPIOOHOWOOOOHmH

% u

u s u D a « CM

i

EH 2 H o

CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO

coco coco coco coco coco coco coco coco coco coco coco COW coco coco coco WJCJ C0k3O COJCJ COJCJ COJCJ

coco coco coco coco coco

CO CO COS CO CO COS CO CO cos CO CO COS CO CO COS

CO CO CO CO CO CO CO CO CO CO coco coco coco coco coco coco coco coco coco coco

CO CO CO CO CO CO CO CO CO CO

COS CO CO

coco coco coco coco coco

COS CO CO cos COS COS CO

CO CO CO CO

CO CO CO

SCO COCO CO CO CO CO SCO CO CO CO CO CO CO SCO CO CO CO CO CO CO SCO CO CO CO CO CO CO SCO CO CO CO CO CO CO

CO COS CO CO co: CO C0bC0<SCO C0hCO«£SC0 COCuCOrtJscO CO EL, CO «£ SCO C0EuCO«CSC0

CO CO CO CO CO CO CO

CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO

M

CL.

EL,

Cu Cu ELI

+ o I

I +o\ I I I + co

I I I + r- ( I I I + vo I I I I +m

I I I + tr

I I

S +m Z I Z I Z I S +tN 5 < £ i S I

JCJCO + <-t JCJCO I JOCO I tiuw i •JCJCO I I

oooooooooooooooooooooooooooooooooooooo rHtsrnri'Ln^f^ooOTOrHr^ro^invor^oOCTioi-HfNirn^'Lnwjr-ooo^Oi-irNifn^'invor-

<

• (0 a) <D 4-1 *Q •H O m u

o o

CO QJ

u <u

U p. en en

01 B o co w CU H

•H 0) U Hi CL CO <u u

•a 4J S O

m u 0)

XI c

o iH 4J

U CO a i s *w a.

CL) o h E> 01 a w .c UJ •H K CO «4H EL, >•> O

3 (3 a o ed -H

4-) CJ at Cfl

c •H O d .

H? O O U H u a) <4-t D. O I 0. 4-1 U B (U iH K O

• «H

« " B B ^ o Eq CL,

E-i ooooooooooinnw(M^Ti-iMuir*aod(Nvor-o>oo9ulioo^i,irt«>voo3r»di-ioo •S <Tio%(3\c^oMnoocMcio'i"fn«csmmoioo'«»onincioo>rHO<aini-toots»'a,rMiHo su

O cj OOOOOOHHHNUI oOTrotMtouMfo^of^ffiooinmiOineowoovotr»unor»ooo>o

H H

4J

•H o

•a

EH OOOOOOaoOOa^H rHr^rHr0C»|iHfHrtr1r*NrHC0C»Oli'>''J'rH,-IOOlOCNCN©O

H U OOOOOOOOOrtPOTin lOrHCMU1C*J.-K\|f-li-ldi-l*f iHOC-JrOlOr-COOOOOO©

w cu

•O inininminmvovor^rooo r-^oin^r^irxiwDi-HencoocM r—meooMOfv-nno^'oorooo

DO* i-ir-irHiHiHi-i<N<NCMeNroro*nmn«j"S|^mir)muiinLriio Ufa

a H

Cu

rHrHfOn i-KMi-H i-H UV0CN i-IOJrO**1**

s 33

% X u

m

u z w D a u cu fa

I I

x x x

33 X 33 33 33 33 X

DS DS 5333 3333 3333 a *-L**Jw i-l—i

3333 33

3333 3333 3333 3333 3333 3333 3333 3333

5330 30 3C uu 3 EC 333C33 3Q30 303030

33 5330 535333

5333 XX 533353 KS SS 53 w-«30 3030 3330 EGiJuCC 5330 &X ZC3333 EG 23 3030 ti^MH w 3333 EC 53 EC SSS 3333 33 5353 SCX XS 33 CCS 333333 MM 33 »IHX3 333333 5353 33 53535 333333 3333 33 3333D 533333 3333 33 53335 3335353 3353 33 535353 E3 S3 53 33 i-M 30 u-i 20 3330 30 kui-i-tk^-i

3353 WM 33 t—^IJ-IS 33333333 53 "^53 30 *-ki 33 hid XXXX XXX 53 t^ttJ^ 30 53 EC 30 30 535333 33 533353 33333333

3333353 i-u 335333 33+** 53 53 ?XXw 53 O X^MM3 303030»M QXXHM »**5G 3 30 33 *JL« 30 3« 30 3030 D 33 33 33 333333 33 333333 333333333 33303033 ^j-a3030 30 30 30 30 3030533030 333U33 333333 33 333333 3333333333 CE 33 \J 33 ^J 33 33 33 33 3C 3C 33 33 33 33 X 33 3333 33 33U 33 33 33 33 33 33 353 33 33 33 33 XXXXX XXOXX33XXXX33X33XX 3332XXX

XX330X3333XXXX33333XXX 330XXX XXXOX3333UXXXX333333XXD330XXX X KB+ul XXX0333333UXXXXSS33333X3333U3:XX3333330a3U I reXXUffiXKCjrnSSXXXXEXiTIXCJUEEXXsaOOXU I 33XXU33XXU3333X3333ZXXX330UXU33XXOOSO I

D OXEffiCJUX33tJXCJX33X33XXXOOOXU33EXOOOe) I

I I + U"t I in

: i +o

I m I t +m I ^ I I I +o I ^f I I i +m

1 ft I

I n

I I +tn I <N ) i I +o I <N I I I + irt I i-H I 1 I +o I

I

I

E-i

o

oooooooooooooooooooooooooooooooooooooo »H r<i rr^in co r-eocrio>-( CM ci^-truer- comoi-irMn^' m^or-coo ©i-ic«M''»*»mv©r»

t-HfH<HMf-riHrHr-tiH>H<N(MtNr>gtMeNO)o»(N(snnr^mnnroro

m

CJ s o a w a;

H

-H "% O O

PK U

CO . a)

a) -H u o •H <" [fl A

CO H O h O O

J-> r-l en cu <U ts rH

J3 a) q ^ H 4J

a) 0 cu O cn

cn M O 4-> u u

U4 cu

00 c

•H H rH

CO O

M—I O

ca •H

CO C

J-i

O M 4J cS a I a,

X cu

cd C CM cd o

t! S (3 O •H -H 0 4J D. <J

cu iH CO o M •

a) I o-o 1 H P. M 4-1 CU O

m at M =1 00

•H

^.T^*^^^?^

&4 "g

EH

w

S o

rH>-lrtiH^H<-li-|i-(f-ti-IMtMNC>M»lr^WOVOr^eoO\0

(0001HOOOOOOOIfiOOOHinHr--OU5HlOU1

EU OK Ufa,

rH<Hi-H>-li-li-l<-(i-ti-(iHiHi-l>-KNO>n^l'«S'UHOr-t^

a w K Gu

r»ojr>ifOooooooO'-l«NOO«Mneo(»irJir>flOiTin

+ni

+<-t

+o

as u

g

s w o

ii en

•H Q u

CO a)

•H 0, as m

° o 0 u-i

u a) a; M

*•§ $ H

o

a! • QJ <u

r-l W •H Cj 4J -o p. 0) a) M _ c a a) -p

<u 0 »

ed en •H & & 0 •H k J3 4-1 A

<w o

+•*

< «

6

iHrHrtiHCMcMCNtNCKNtvcieNOicKMnfnroorTPimn

f*-r-"r-r-*i*»f,-cDcococoooca'CooococDcoflocococococcwo r-r-r-t^r^r^r^r-t-r-i^rT-r-r-r-r-r-t^r^p^r^r-r-

9MHOMKI4<MKI<<P,&<<50BaoaMCd

OOrO (Nr-ir*-KNf\ttNi-{rM tNtSfMrHlNr-Wta-KN

M-4 H O 0)

rQ co a

co C >,

r-l iH rt id g +J a) o

4-1 Pu

•H II

4-1 CO

ft A cd m M H 4J 4-1

a) a

=> & Fw ffl

<t 4-1 (" o qj m L, 4-1 5 JO oca

Eu •

cj « u

oownoou>oo>noinviHOHincomoinomoooo

so:

a u a fa

cj

u z u s 8

co

3

Donino(N(NiiloaHciHPWin«HOM>-iortOi-iooo«

to co co CO CO to +*» to CO CO CO 01 to to to CO CO +N CO CO CO CO CO to to CO CO CO CO CO to to CO CO to co I SH CO I u to +<o z CO to I o w i a co I a co +r- OS CO I Cvi CO to to to CO CO CO CO CO to to to CO

tazco co 2: to C03C0 cozco cozco

cocozco COCOZCO COCOZCO to cozco cocozco

to 3 eg to co toco tocozco CO zcocococoto tocozco co zcacocacoto tocazto CO Z CO CO CO CO CO cocozco co zcacocotoco cocozco Ui CJCOCOCOCOCO CO C0WJ3JCO « cjcacotococo to tocojzjto M cjcocococaco co coto.JZiJcn H CJCOCOCOCOCO tO COCOUZiJCO en ucocacototo to cocotJZiJca

co to to to co co CO CO CO to to to to CO CO CO CO CO to to CO CO CO CO CO

to to COCO coco coco coco coco coco coco COCO coca

CO CO CO CO to CO CO to to CO CO CO CO coco g; CO CO CO CO CO ZCOCOCQCOCO Zcacocacoto ZCOCOCOCOCO zca toco toco CJCOCOCOCOCO CJCOCOCOCOCO CJCOCOCOCOCO cJcococococo cjcocacococo

CO CO CO CO CO co CO CO CO to to CO CO CO CO

Z+M Zl 55 z z

Pk \_,

& 13

i/)Ocor*>rooooMoc\»-tQr4fnr«-p-iQCOvoa>inchQr»- r-afSi<\ir-irxiNiMr-4f'Mnr*if1vmmuiivm**'*mmm

t^r^r^r^r^r^r^r^r^r^t^oacooocoflocofiococococococooococococo

go,a,&,o,M»cjcjKjz;ziame blWUUCJOOUCaU<<UHri

di <C0C0C0C0OZZOaOT?6,B,5

s ^"r-#coMcnomtor"VNr-id^corHcofM^mmAr*or*v-*mA OOONNNOH i-IINi-KN>H<SMMi-IN (MpH(MrHMiH(nrt(M

rif^^rfy!nfWi^mf^^"'^r-Tl^^-'^^p^^!

S6J • i OU OOrHiHi-(iHiHl-l'H<HrHM<SKSf\«>t^'lO>0(T|ninuif-nMe0OO

Cd

i •1

U OOHOOOOOOOOOOOOOHHOIOOHOniHTlUHO PS r-l PIMr-l W Ot

•O ooooQOOoooo^r^nfntnn^coHHNnnGDinooMo SCJ HiH^HrHMiHrHHi-lrHlHrHr^r-KMmnncm'^TMOi-IUimin

<JCu

a W os a.

r-l H 01 ri COCOon

I o

<

D a Ed «

inoeo<*w,oooo<-iooipHOCMr^t~-iHoeovoowoweor-

t^p^r^P^P^r^f^r^r-f^r^eocococococococococococococococcicooo

un.o.a.a.f»uuoz a ca««e:«eti>4 >« B B J Jot. ocd6iBi[uyoouw(a2<cdM^ '--

^'iHCO(McriorO(or-'*cM1Heft«*co1Heo^-i^'Comchi-«.c>p-fl'rtncn OOOINtMtMOH i-«N<-ICMl-KMfMC«i-KM M»H(Ni-((NiHI»1<HrM

I a u ai

rH U-l o o

a) v U tfl o -a in

II Pu

a*o •H <U

O o

• <u QJ U u CD O

e « r-l ai o (U-O o p o

& 4-1 O cd a)

a) *o p. .c co

a o o y-t

10 rlrl M O o u at H 4J H

a. co &o I H

•H u <u iH 4) (U

CJ cd m w-i ,-. o o r-

« a) c-v •H e T-i W -H E* 4J h iH <U

ceo co -H -o

M CJ

•H e w cd 4-> en

0 td u u -w o cd j-J

1 II

t-l CO a) ai

\o e

CD H u o CO J-> •H id k ex

£i o<3MMm**w*«nof-r.r-cioiaoo II M

O •2

KM oMmtioooov«in«iD«oeDo»nno DPieomnM^r-winvivownoconwo

wo; ,-MMmmmwuwnokor-coccimoio (5 Cd iH

o (X, CU

H OOHOHHOOHOHOHOHHOOOO rH z Ed CJ

oMooHvoo^oHr-vo^ioorT^i- • t8 omvoMr-oof-o^mr-or-vommfi

OS rH rl rH r-l cu H Ed 4-1 0. •H CU

CO CU •a ortu-iuK&oooiNtNirnoaxoo'O^nrivoi- CO

EU •-MHr-li-lrtFHi-IHM<SMr*M«N« rH =>£ <0 Uh s •

C0 4-1

a OH-l"ffO(,1tSOOrJon>-lCSOlNTO-fc-*H u c u •H 05 Cu c o

CO CO + * •H O. 05 CO rH CO CO 4J CU CO to tfl rH CO CO

CO CO

U CU -, is CO CO

CO CO cu ca 01 CO X CO CO to 4-1 CO CO

to to td

CO to CO to O 4-1 co to CO CO CO CO CO CO

CO CO CO

CU 4J •H <u

CO co •H m CO CO z +m 4-1

£4

CO CO CO

CO CO CO

g z C CO

CU Cu

3 CO CO z rl * CO CO z rl en

EC CO CO -O JJ CU

s co CO CO

CO CO to 1 z tfl MH o

CO CO g z o o m CO CO z CO

CO CO CO

CO CO CO

z z z

c u <d cu

CO

CU

z CO to 1 z •H ,£> •H u to to z SH ^ e o s CO to U *H 3 CU 8 CO

CO to to £ 3 e .fl a Cu

« CO COD CO to Z +M s CU co b. CO BM to to z a S rH

CO IflD to to z Ed cd cd CO COD to to z as 4J

4H O O 4H

CO CO

COD COD

CO to

to E to z 55 b.

CO tOD to to z co COD CO 10 z CO 01 iJ to to Z co H

•H CO CD

CO COD to to z CO COD to to z CO COD to to z CO COD to to z >-, CU to COD to to z rH CO CO co i-3 to to z cd w CO COD CO to z e 4J

c@ CO COD CO CO z CO COD to to z CO COD

COD to CO

CO z eg z 55

4-> 4-1 z< COM <MZ JJOl + H (3 (U

•H Cfl z< COM <MZ DDCO 1 K< COM •tHZ DDCO 1 z< UK 2HZ DDCO 1 O z< COM 3HS DDCO 1 Cu CU z< COM 3HZ DDto I (-1 z< COM <H2 DDtO 1 a, cu

cd > Ztf COM 2H2 DDtO 1 COM <MZ DDCO 1

si COM COM COM

1 5wZ il DDCO 1 DDtO 1 DDtQI

lei

tr

rap

s

COM <HZ DDtO 1 z< COM 4HZ DDtO 1 z< COM 5112 DDtO 1 S5< COM

COM COM

| 5MZ II DDCO 1 DDM 1 DDtOI

Funn

er

e t

il COM <MZ DDtO 1 COM <MZ DDtO 1

A •G s ^ > M CO (3

O CU -H

NMPfNMKINNPKMrlfWtMCWflNnNM

M Z oooooooooooooooooooo H 4-1 M r-KVwifHor-coAo—Ksmvmtcf-com 3 cd

00 CJ iH O fH rH

o OOOOOHi-Hi-HrHHHH 0,

FRECUEHCY BAR CHART

POINT

ill 20 30 40 50

^ 80 90

100 110 120 130 140 ISO 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470

1000 101O 1O20 1030 1040 1050 1060 1070 1080 1090 _100 1110 ,.120 •130 140

_150 1160 "170 180

,190 ;.2O0 210 220 -230 1240 .250 :.2S0 "270 ,280 : 290 300

1310 1320 1330 1340 1350 1360 1370 1380 1390 1400 1410 1420 143" 144 145L 1460 1470

I IKKSS IFFFFSSSSSSSSSSSSSSSSSSSSSS5SSSSSSSSSSSSSSSSSSSSS ICCCCFFMNSSSSSSSSSSSSSSS5SSSSSSSSSSSS ICCCCFFSSSSSSSSSSSSSSSSSSSSSSSSSS JCCFFOOSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS issssssssss ISSSS

ISSSS ISS 1 ssww ISS ILLSS ssssssss ss ssss BW

FFSSSS ssss ssssss

ss

ssss

ss FFLLSSSSSSSS nm

1 issssssssssssssss I cess DDFFPFSS ssssss tttl ssssss CCFFSSSSSS CCCCSSSS

KK CCCCCCCCFFFFFFSSSSSSSSSSSSSSSSSSSS FFFFSS

cc ssss IFFFFSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSTTW!.' IFFSSSSSSSSSS ICCCCCCFFFFSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS ISSWK INHSSSSSSSSSS ICCFFSSTT INNSSSS ISS5SWU ISS ISSSSSS 1 FFMITO: IHHHHSSSS ICCSSSS issss 1ssssssssssssssssssss issss I SSIW I IKKSSSSSSSSSSSS iccssssss IOO 1ssssssss IFFM; I

FFFFFFFFSSSSSSI/W ssssssss FFFP ssssssssssww FFFFSSSSSSSSSSSSSSSSSSSSSSSS FF ICCFFFFNNSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS ccssssi'iw CCFFNNMBSSSSSSSSSSSSSSSSSSSSSSSSSS

ccssss FF ss

Issss (SSSSSSSS

8 10 12 14 16 18 20 22 24

FREQUENCY

EO CUM. PERCENT CUIt. FEEO PERCENT

2 zi 0.52 0.52 24 6.25 6.77 18 44 4.69 11.46 16 60 4.17 15.63 20 00 5.21 20.83 5 I? 1.30

0.52 0.00

22.14 2 22.66 0 G7 22.66 2 89 0.52 23.13 1 90 0.26 23.44 2 92 0.52 23.96 1 93 0.26 24.22 2 95 0.52 24.74

99 1.04 25.78 1 100

102 0.26 0.52

26.04 2 25.56 1 103 0.26 26.82 0 103 0.00 26.82

27.60 3 106 0.78 2 10B 0.52 28.13

I 111 0.78 28.91 111 0.00 il-3 1 112 0.26

0 112 0.00 29.17 2 114 0.52 29.69 1 115 0.26 29.95 1 116 0.26 30.21 6 122

123 1.56 31.77

1 0.26 32.03 g 123 0.00 . 32.03 131 2.08 34.11

0 131 0.00 34.11 2 133

137 0.52 34.64

4 1.04 35.68 3 140 0.78 36.46

36.72 1 141 0.26 3 144 0.78 37.50 5 149 1.30 30.80 4 153 1.04 39.84 0 153 -0.00 39.84 0 153 0.00 39.34 0 153 0.00 39.84 1 154

171 0.26 40.10

17 4.43 44.53 3 174 0.70 45.31 0 174 o.go

0.26 45.31

1 175 177

45.57 2 0.52 46.09

22 199 5.73 51.32 6 205 1.56 53.39

24 229 6.25 59.64 2 231 0.52 50.16 6 237 1.56 61.72 4 241 1.04 62.76

244 0.78 63.54 247 0.78 64,32

1 248 0.26 64.58 3 251 0.78 65.36 3 254 0.78 66.15 4 258 1.04 67.19 3 261 0.78 07.97 2 263 0.52 tf:tt 10 273 2.60 2 275

0."52 71.61 72.14 2 277

0 277 0.00 1.82

72.14 7 284 73.96 4 208 1.04

0.26 75.00

1 289 75.26 4 293 1.04

6.52 O.OO

76.30 2 295 76.82 0 295 76.82 0 295 0.00 76.82 0 295 0.00 76.82 a 303 2.03 78.91 4 307 1.04 79.95 2 309 0.52 80.47 5 315 1.56 82.03

14 329 3.65 85.68 1 330

351 0.26 85.94

21 5.47 91.41 4 355 1.04 92.45

17 372 4.43 96.88 0 372 0.00 96.88 3 375 0.78 1 376 0.26 97.92 1 377 0.26 98.lB 0 377 0.00 98.16

98.44 I 378 0.26 0 378 0.00 98.44 0 378 0.00 98.44 2 380 0.52 90.96 4 384 1.04 100.go

loo.00 0 334 0.00 0 384 0.00 100.00 0 384 0.00 100.00

Figure 38. Herp-patrol point analysis of salamanders and reptiles on the Gatlin Canal site. Point « midpoint of 10-m. section of herp-patrol transect. See Table 1 for

species codes

FREQUENCY BAR CHART

FREQ

HHlWilHHHHHYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY HHHHHHHHHHHBHHHHHHHHRRRRRBIuaaiYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY HHHHHHHBBHHHHHHHKHHHHHHHHHHHHHHHEKKliHHHHYYYYYYYYYYYYYYYYYYYY RHHHHHHHHHUUDDDUUUUUUUUUUUUUDaUUUUUUUUUaODUUUUUUUUUUUUUUUUUDUUUOaUUOUUtJUUUUUUDUUDOUUUUIKIIlU YYYYYYYYYYYY5TYYYYYYY

HHHHHKHHHHBHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHBHHHHYYYYYYYYYY

OUUUDOQPUUUUUUUUUUUU

HHHHHHHHHHKHHHHBHHHHHHBBBBBHIIHHHHHHBHHH1IHHHHHHHHHHHHHHHHHBBR

HBHBHHHHHHHHHHHHHHHBBBBflflBHBHBHHHHHICHHHHHIIHHHBHHHBHHHHHHHHHH GGCGGGGGGG UUUDDDODDDUUUUUUUUUUDaUUUUUUUUUUUUUUUUUUUUUUUUUUaa tiuuuuauuuo

YYYYYYYYYY winnnniuun DUUUUUUOOOUUUDOOUtlUDDUUUUUUUUDYYYYYYYYYY

BBBBBBBBBS

OUOUUUUUUUUUUUtlUUUUU HHHHHHUIIHM

GGGGGGGGGOHHHHHHHBHH UUUQDOOOUU

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB&BBB&BBBBBBBBBB

HHHHHHHHHH

HHIiHHUHHHHBHHHHHUHHHHHHHHHHHHH HHHHHHHHHH RRRRRRRRRR BBBBBBBBBBHHHHHHHHHHHHHHHHHHHH

HHHHHHHHHH

UDDDUUUUUU

uuuouuuuiru

GCGGGGGGGGGGGGGGGGGG

uuuuuuuuuuuuuooouuuo

BBBBBBBBBS

BBBBBBBBBSB5BBBBBBBBUUOUUOUUUO

$ 0.00 S.15

4 « u n m 4 4 t:ii

cut PERCI

.00

.06

Figure 39. Herp-patrol point analysis of calling frogs on the Gatlin Canal site. Point = midpoint of 10-m. section of herp-

patrol transect. See Table 1 for species codes

H: 26, 28.

SO 55 56

62

70 70 70 70 76 76 76 7( 76 T, 71

TSW5BI s^s^wwr^ r.Trr^tsBm^^'

au CJB5

H

OOOOOOOi-(iHi-h-(i-HNCN"l"'»0l-0CK7>O

oooooo*np*r**Hi-i^,oj<Nr*oorsi^,i•**No

« u a.

=8

eosoooooaeooHi>HHHHHH

oooooormononr«o«rt*HrvHh

oooooOrH<>gcNnm»('Wif>orrir-o«ior-

a u

CXSOOOOHHOHOHNOtrWKITWIN

+f

s c_>

CJ 2 u

s b

J

J

j j

CO W w </> w 01 CO 0] en co CQ co co CO OI V) 0) CO co co

Seo ita seo ceo cm

2cO <w £01

£01 ceo ceo ita £10 Ceo ceo Zco ceo ceo

co co eo co co co to co co co co co CO CQ co co CO to co « CO CQ co oi CO CO CO CO co co to co 01 CO co co oi co CO CO zcococo co +m ZCOCQCO CO Z COM CO CO Z COCO CO CO ZCO COCO CQ 21 CO COM CQ ZCO COCO CQ sea co oi oi 21 COCO 01 CO zco coco co Z CO C0O1 CO 2101 COCO CO ZOltQCQ CO ZCO CO CO CO 21 CO CO CO CO ZCO CO CO CQ SI CO 01 CO (Q BCOtOCQ CO zcocoto co ZCOCOCO OI ZZB<SOICCH-<N ^Scoeo

E01C0 zza 2Z2 ZZZ<gC0CO ZKZtfSCOOl ZEZaScOOl BZZ<£coto ZBZ<3WC0 ZZZ<scoeo zzz<Scoco ZSZ<SCQCO ZZZJEolco I EBZtfSOlCO I ZZZrtSCOCO I ZZZ<3C0C0 I zzz<5cooi i ZZZ<pC0Ol I ZZZascoco i zzzmgcoeo i ZZZ«CSCOC0 I HjiiiijjJ -

WfcS«C«SiJiJ«i

Mki<«£UU* HaS«2<,JJ«!

HK<jiJdli

u z (J o o u OS b

; co a. <

05

fN«eMM«CSfNOKNfSICSr4M<>l«CMrj«fN|«e>l

r^r-r-CCKOCQCOQOCOQOOOCOaOOQCQCOOCtCOCOdOOO r»r-r"r-t-i~-r-r-r»r'-r»r'r"-r--f«r-r»r»r--r-r-

>uuszm##«M«>^2zu^uuAm 0HHd<W<<3AA<<0O53O3WW EQQnf3Cv,SSE«S<EET^rin«C0C0

OC0ChwlA*'mH!CN00N«*ChVCN*.0\r.Lnr-imCh

a- co •H <u I-I >a H o

u • co

a) cu 4J -H •H U

CO (U a

" co at

5 * ct) o

M OJ

JJ 0)

o CO <U V 4-> r-l CO •H T3 4-1 O. ct) cu s-i a

o c 4J «t CU

CO CO A co a) A

•H at .a U •H 4-1 ^3 A.CH 6 o as

H *H cu O ,n

6 CO 3

•H C 10 PM-I r-l a)

CO 4-1 fl O a) 4-1

P. fl •H S-i CO 4-1 A

at CL U nt w W 4J

bo r-l e

CU •H d P. (3 P. 3 at

Ifcl tH •u

. CH o n St

cu a) 4J n CQ 3 Ti 60

u E Cd o o u « b

•S ^t^l,*Ni-f<*CTir,)«lrtVDOI'*CC>C^^J,OMino^HW<N|Oh«lA^,0 Zdl •

2 "i

E U w OS w

•»inmvoi-n^oofn9i9ikr)9icovoin(Mvooi(Nsir«oor-4r<ca

DIM rHrHiH«(MMCMCM«r»tNtM<N<N<N<NmrTfn(Or0nnm CJb

a tn^or^oa\r-mLnt^wir»r««ow(Ni^HiDrsKNCNor->cMFHmo u MmmN^nfr-iM —i 'H. •H rt MMMM

b E-i En

to to en tn O] CO en 01 en 01 en 01 en oi en oi en oi en oi en oi en en en tn CO CO en en en en to en en en ens en ens en

+o (•* I i + 00

1 r-1 i i +«> I m : I +* I m I 1 + (N

1 n 1 1 +o i m

en en cow I oi en enoi I men en en + 00 en en enoi 1 (N oienoienoi 1 oi en oi en oi 1 oi en en en oi + U> oi enoi en oi 1 IN

en oi en oi enoi 1 enoioioioioi 1 en oi en oi en oi +* cnoiuicqeao) UN en oi en oi en oi en 1 cnoiuioienoi en 1 oi oi en oi en oi co 1 +<N enoienoiuoi en 1 CM oioi enoi enoi en 1 en oi en oi en oi en 1 enoienoioioi en +o w oi en oi en oi en 01 1 IN uoienoienai co OI 1 enoioioioioi eo OI 1 enoi en oi en oi en 01 + 00 en oi en oi en oi co O] 1 -! enoi enoi enoi coco OI 1 en oi en oi en oi entn 01 1 eooienoienoieoeo 01 +«J enoioioioioi enoi en OI 1 rH en oi en en en oi enoi en 01 coos en « en to tn co en OI 1 tooieaentnoioioi en OI oi + * tnoientntnoienoi en 01 01 < M too] en coco to to to eo OI 01 1 enoi en en en oi oi oi en OI oi 1 tocncncnenoienoi en en en 01 01 + M co en en entn oi oi oi CO en CO O) en I <H cocacncocnoioioi en to tn ensoi 1 toeneneneowenoi en en to ens eeo 1 W coco cotooi tnoi CO CO CO enEHtntn-t-o oicaeotocntncnw CO CO 01 to E-i en to tin oizenenenoioioi CO tn oi en tototoui 1 oizcatococQcnoi to to oi en encocncQ i oibcotococacoo) to COS

m coS

01 eo totntota+eo tfl a. oi toco coco oi O] O] en en oi toco i xkcoenenenzoi 01 01 enoienoicnen i Mboitncowzo] oi 01 enoitnoitntn I agboicooibzoi oiea tocos

olens oi enoitooicncn+to

hSboiuieobZoi 01 oi 01 enoienoioien I bsboitooibzuicnoitoenoioicn oi tn^iboitnen t ancuoiuioicuZoienoioicaoiolu] oi cntcboicntn i buedbtObseococicncnQbcn bUMboibZtocnoicooiotucn

oi enbboizz+v tn w OlbbOlZS : t

bcjbbidCJbijcQoieocabtuZ z oi CObbOlZS : i bUbbbH_)C«..3cnO]U)CObbZ z tn CObbOlZZ 1 buuububkcncacnbbbboi cucaenun bboibb 4>IN bCJUUbUbbCOOltObbbbO) bCOOHJCObbOlbb 1 buuuuucjbcnoiuouwuoipuuiJUiJuejs SCJCJ I

0] u EH

Z

buucjuucj bcnoicoauocjox 3CJWJCJJCJCJS scjej t

r>or-Oi-ic»ouin^,<Nr-r^aKon«>oio<Mirii»

CJ 2 Ed o a ta

b

vHrxcodMor^^voooww^voLn^irivor^coiriho

r>-^*-r*>r>-r"ir*-r*-r>-r*-cac0cocacocococQcococQoocococococQco

JUCJb^i>>UCJ3SC0CQ«««e:>4>»E;B,J,JeJt3ftb

n«:enozzaar)i-)bbzz«zsT-3r)i-,<;<coen J*re*r-<<NOr'KO**CM<MO^,corHr-0'«*corWtf*-or^in>Hmffi pHOi-«NeNC3i-|i-ieNi-l*niH«MfNeNi-l*N NMNMNMmMN

'^f*^"?M^(*'^^%*R^p^rr'^j'?? -.^t3f^Q^w"^'^7^'^-T?y3

& •H 13 k 01 H T3

k O U

HI 03 U U i-l to 4-1

0 rH c as c (U as e o •H

4-1 e

•H CO H d <u 4J 4J •o <d « 0 o T3 o (U «J to

»c <i) 4J C T4

o O e (U o H p.

0 CO CO h 0) 4-1 u

1-1 tt) o •H P.X-1 +J 1 P. CD & M

M 01 cu ^3 rH

T3 tQ e CO CO co

tH H

CO o cu U CD <u <u Eft

T3 0 C •H cO 4J

1 sof^ •-I c r~

CO •H o> CO

P. H

tM o 1 0)

to J3 to O

•H rH 4J CO CO CJ >, 4-> O

1-t o a) 4J m e H at It

O P. W 4J

•H 0) n 4-1 u -w 3 o

fi •H H TH M o e P. u 4J at H

l O

P. w k cd W p. M 1

P. u /

0)

<U o M 3 (U 00 4J

•H to h T3

f?i?5p^?pp^^l

1

3U CJGS

tJ O M CO a,

•a

Uh

a w 6,

oooo<Mt>jc>)oocooococOf<v<i<Hr»r-.ir,>iOfHO>Hni^.Nooe5

©oooooor—r-r-r-r-cicir—ONCir—r*-fV!rc)fn©voc%© r-I.Hf-li-K\l<NCNC>tnVO^O00atG\C3

OOOOrMOOV£>OOOOV0OCOVOOCOOVOatCMCN]rtlfiU>rN oooocoooinooooinoM^HMOinvooHwu'ca

oooooooiooooowoniN-jrtowaoiocsotNO <N (NrH

•HrH.Hr-1

OOOOrOOfflOOOOMOH'nillWOajinHrtM^nH (NrH CMiH

3 3 35 x X

X X X >i X X 3 3

I < CO

X u B u 3 a CO

x x x x X

X X

w

3

OS

3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 ca 3 CQ 3 3 £33 3 3 033 3 33C3X 3 33133 3 33CJO 3 33C0O 3 33mm 3 33fflCQ

X X X X X X X X X X X X X X X X X X X XX XX

X XX XX XX EX XX XX XX xx xx XX XX XX XX

3XX OX BEX US 3X3 OX 3X3 OX EJXD OX KX3 OX xxx ax XXX cox xxx cox XX w* GX XXX C3XX xxx mxx xxx a pox 2K33 CO CO53 xxxxcacoxr xxxxcoax:

CM

CM

+ (N CM

CN

+ 00

•-I X o •z

+•* u rH 3

a +<M a:

+o

+ VD

+-f

+ CS!

t-r-r-r^r-r-r-r-r^ooooeocoooooasooajooooooajwajooooco

JOu&<t'»uosscQca0ici«aixxEEOiJoocjeJ 333UOOOU£J«HW2<0H04<<333333H6J »-3<«WOZSQQfT-3Ct,UiEE:«E^niT-5i-3<<MW

•~tOiH(NCMOi-Hi-HCN^HniH<NCM«NrH<N CV.-ltN.-ICN.-IP'Ir-lCM

O u

<u o cd M

II "O

0) W 4J O •H C

CO

H g cd tH c *-> cd ~-/ o

. <u

CO

cd cs o o cu

O k C U O O 4J <4-l

cd » a, IH 60 i o an H M rH

X cd 60 H (2 cd

•H a) HW « rH O W cd u <D

& • OWN

r- » 60 Oi

•H C «H en ft

tH Q, <U « e J3 C cd O cd en 4-1

cj ano

•H (ft k -w m

•u o t-t JJ

H 0 tl u V CO cd a) o. JJ

1 3 a. c a) e

PC

o 4J cd

I a) k 3 60

APPENDIX A: SUMMARY OF PLANT SPECIES AND SUBSTRATUM TYPE FOR ALL

PERMANENT SHORELINE HERPETOFA.UNAL TRAPPING STATIONS ON LAKE CONHAY

DURING THE BASELINE STUDY PERIOD. Given are the three most abundant

plant species or habitat conditions coded (1, 2, or 3) in order of decreas-

ing percent cover within a 2-sq.-m. area of each trapping station averaged

over quarterly samples. If a significant proportion of the quadrat contained

no vegetation but was in natural surroundings, it was coded as "Bare

bottom"; likewise, "Beach" means man-made white sand beach; and "No

other vegetation present" means that other plant species were mono-

dominant or codominant in the quadrat. If plant cover changed as a

result of man-made habitat modification during the baseline study

period, the date of change and new conditions are given in parentheses.

Substratum types are coded as follows: 1 = sand; 2 = 1-5 cm. mud;

3 = 6--10 cm. mud; 4 = 11-15 cm. mud; 5 = 15-20 cm. mud; 6 = > 20 cm. mud.

43

H

o o

P4

&|g|

°

001

SI

CM

CN co

co

co CM

CM <n

co CM

CM

CM

\Ol

o

91

ml

SI

CM

CO

CO

CM

CM

CO

CO CM

CM co

CM

co

CM CO

S cu

c CO 01

0 k •H cd & 4J CO 4J •H 01 cd C3 •O Ck co r-t 5 g •H 0 c o •H o CO T3 o (1) 4J u co • -H 6 CJ cd cd cd O o CO CJ •H 4J 4-J n & 4J es cd iH CU cd o •H o> H o M 4J •H at e & <4H 01 e 1-1 cd O 4J <u cu cd •H j> 6 •2 •H co 3 ^ K •H 4-1 4J cd c rl M cd M 4J * h cd e OJ H 01 o 0 C H 3 •o 45 43

•5 01 cd CJ o 01 cd +J 43 43 n j= •H 1-1 JJ 45 o 0) CJ o •H 9* c 5 (3 %, A n) •rl W

3 3 cd (X,

0 PL, &

o cd

01 t>0 C cd 6 4-1 cd

4-1 •H 41

J cd 33

4J cd 14-1 u o 4-1 CO 01

43 4J 3 cd en a

^#^f#^^%S^$^<^^'"^

o

CU

3

o CM

s CM

o CM

O

CM

CM

CM

CM >w CM

CM

CM

^-v CM

CM

-v.

r-.

o

CM

CU

CO

o CM

o CM

CM

CM

CM

co

CM

ut

00

m

o CO CM

CM

CM CO

at

g 4J B o

<

«

s H

CM

CM en

CO CM

o

o 00

o

CM

CO CM

CO CM

•a a> 3 B i-f u c o u

CM CO

CO

c o

•H 4J •H •a B o o

•a

0),

en co cd

u

fd •H

fi O

CJ •H W

w Q)

•H

I a en

«d

8 u •H 3

CO

S3

o u 1-t B CU

B cu CO a> u

CO B. 4-> td B i-t o o •H cu •U o to cit

CO § •H 4J B rH CD (U rH O CO a <u CU 8 CO cd •H > o k •rl •U 4->

W cd u 4-> <u H H) o

T3 x; J= u CU a) +J J3 •H 4J J3 o 0) CJ g B a u CO cd o >, o at a)

PL Hi H 53 03 m

4-1 id u

co

cu oo B cd

4-1

•3 4-1 O

cu •U td p

o to

CM

o CM

CM CM O

CM

O o

o

en

(U

3 4-1 c o

H

co H

3

CM

CM \^ CM

en

CM

CM

CM

CM

CM

CM m

CM

c o co fi 0) 4-> ft Cfl •H •H V c T3 CO 13 § C CO T-t s co o o 0) CJ n ex B 4J a

CJ kt 3 <H 03 4-1 •H <o e ft 0) co o 4-1 <U <l) 4J TH co 3 .fl k •H C 1-1 .n u A nt o CJ k ffi ^ (U to U CJ z u ,C •H •H

CJ •H ft £3 C •rt 3 3 CO d) W b Z PU PL,

CM

CM

cu V.

en

ro

en

co

en

en

en

en

CM

CM 00

en

CM oo

en

CM

r-.

0)

S 4J c o u

CM I-I w en

/-\ /—«. CM r-t ^* ^ CM

4-1 c cu CO 01 u

CO ft 4J (0

rH o O 1-1 CU 4J CJ CO CO a •1-1 4J <o 1-1 (U iH o 00

H-l cu e CO •H > o

•H 4J u H (0 u 4J QJ iH 0) o

•O J3 43 0) rO 4-> 43 4-> 0 0) CJ C ft n CO O >i o CO CU ft, H g cq pq

CO

4-1 CO

•§ c/>

<u

CO 4J •H 43

CO EC

g

r

o

01 01 .a

T3 CD

3 i-l V a o

H

c

, °>

CM

(N

rn

<N

n

73 e o o 4J fl)

•u •H ,£>

EC

0) m to U o

o

•s W

CO m

T3 •H

& •H <J W

s •H 3

O •H a to

P-l

to

g

o

CO

m

CM

4-1 c <u (0 0) k

* & 4J cd c M o o •H <D •U CJ cd cd (3 •H •u Cd tH 03 M O to

W-t CD 0 cd «H > o

•H 4J 4J k cd u •w (U H <u 0 •o .c rO

cd 4-) o <D ^ c p. M cd o >1 o cd <u

k, H SB M pq

GO c cd

J3 U

4J (S 4J •H XI cd M

4J cd IW w o

4-1 to 0)

J3 4J 3 US

WD p

c o iH 44 « 4-J C/j

CM o < o

P* <U H <u ^3 rH td T) H -O

CS >-i CM CO TH

O o

o

o

o co o

o o

CM r-l

o O

O LTl o

o O

o I—II

o

CM

N m ^H

CM ^ CM co

CM r-1 CM CO 1-1

«"4 CM CO n

CM H CS CO «-l

r-l (N m l-l

I-I CM m r-t

i-l CM CO -H

CM

to

CM

m

CO

CO

CM

CM

CM

00 r-.

co r-.

oo r-.

oo i-»

co

co

co

co

co r-l r»

co

oo r-l I"-

CO 3

c o

CM

CO

00

C <u to co t-i <u c td A. 60 o CO 4-1 C

•H CO Ifl G 5 4-> a CO M o 6 T-l •H (U d O •H T3 to T3 o CO 4-1 a (0 •H e CJ cd cd 4J o co O o w c •H 4J <d o n fX e 4J c CO H a> 4J

o H 3 v4 0) M o 60 T-l 4J •H 0) 6 A M-l (U 0 X! cd cd CJ 4J <D <u « > 0 6 CO 4-1 •H (0 3 fi n •H 4-1 4J 3 p3 •H e T-l k (d u 4J 4J -Q d g co TH co o cd «H td o C M 3 -a J5 jQ n o

PC rC <u cd o u <u cd •U ,c 4J X h ,c •H •H 4J .fl O cu u W cu CJ T-l a C c c d k cd JS 4->

•H 3 3 ee a) o !>• o « <Si 3 td W fn % PL, PH PH H % « PQ V) P

•3 <U

•3 3 rH a c o u

Si

,0

3 o •H W CO 4-1 CO

$ u H

o O (S

o

O 00

o

o

CN

CN

m

I-H m

CN

(N

n

tn

o

o en

tN en

<N en

m

en

/—\ /-\ 00 cs en -H m M \_; x^

+J C <D (0 at

13 cfl O CO w

•H <u td 3 4-1 a CO H O •H •H CD (3 0 •H •O co •a O <U 4J C CO •H e CJ cd «d O nt 0 0 m 3 •H 4-1

CJ u p. g 4J 3 cd H <u 0 k 3 •H <u H O 00 -u •H 1) a A m cu e

CTJ cs U +J cu 01 CO i-t > 5 4-> •H CO 3 f! M •H 4J 4-1 •H e w k (0 u 4-> •5 cd S e a) r-l cu O <a 0 S3 k 3 3 T3 J3 ^t cd ^ cu cd O 0 <U (fl 4J

f! u JS •H •rH 4-1 .3 O 0) CJ O •H cx s c 3 a k CO

•H 9 3 CO to O >1 O CO CU W k E5 AH CM PH H Z « m

6

.a y crt 3 W

4-1 at m w 0 4-> to cu

^3 4-1 3 CO

cm «

9 O o A*

4) H J-l .JO CO cd cd H w

o o

o o

o o

o o

o vO o

CM

CM PI

CM CO

CM o

<-i en

•-H m

m

vo

\o

m

m

a o

o •vf o

o CO o

CM O

CM

CM r-l cn

CM

CM .-I

CM en

CM

CM

CM

f)

CO

a •H 4J c o CJ

4J c a) CO a) k

c cd P. o (0 4J

•H CD cd C 4J & CO iH o •H •H a> C o •H T3 cn •o Q a> 4J C co •H B o ttt id o « O o co e Tf 4J u k & J-I CJ cd 1-1 <u

O k •H <u iH o 00 •U •H CO 1 a «H <u 8 cd td CJ +J m ttt •H t» o u •H CO 3 ,C u •H 4J 4-> ft c i-t k cd h 4J ,o n nt CJ rH CJ O n) o C u T) J3 wa W X 0J Cd CJ CJ a> cd 4J J3

J3 k JS T4 •H 4-1 .e O <u CJ CJ •H p- C c e A t-i CO

•H 3 3 cd cd o ^

o co cu W h 5= CM OH fu 2 FA m

cu 60 c .3 4-1 cd

s cd HH k o u CO CU

^3 4J 3 cd

CO a

:^.^%%T: ^^^j^fW^^ T

o o CN

vO

O es vO

HI •a 3 O c o u

3

§

o

o

cx|o

CvJ

es

<s

N

es

M

O

<N to

CM

n

IN

m

.*

e o •H

•H

•a <S

a

co <u & m CO

o cd

•w c O

J= Xi o •H

CO 0) tJ •H

& •H O CO

cd C <u k

•H

2 0 s o 4-) •H

<u 0 4J s s Xi

r-l

n § cd o

X! •H P. (5 3 cd

S3 PM

CO e

u

o •H c cd

(-i a) -o <o 4J c o

•S.

4J e <u CO V h D,

e o •H 4J cd 4-) 0) 00 g g > o M 4-1 <D o XI XI 4-) X! o 111 CJ

M cd o cd CD S M M

0) 60

s

cd 4J

& to m k O 4J m 4>

XI 4J 3 cd

W P

-* 0 < O

PH Oi r-t 4J Xi to «t <u

E-i &

o CM

o •-<

CM

s ^

en

CM

m

CM

PO

o

o oo

o

o

CN

tN

m

CO

CM

CM

CM

o

o en

en

CM

CM

CM

CM

CM

.a X

<u 3 C 4J

o o

4J (3 <D CO CU M

rt PL, CO 4J 0) cfl (S P. co rH o

•H 0) a O •H m T3 0 a) 4J to •H -6 o CO a] n) O o CO c i-T JJ H eu £j 4J a <fl r-t 0) O k 0 «H a) iH 0 M

<H W •s A <4-l <D 8 CO CJ

CO 4J 3 £ (U

U co •H

4J > o

4-1 G M M cd U 4-1 k a) e 0) H CU o o C (-1 3 T3 3 .JO .2 p CO CJ O CJ cd 4J •C •s $-i fl •H -H 4-1 .c o <u y a •H S* c a (S a k cfl •H 3

b CO a) o £ £ «9 0)

' 01 CO CJ cfl

g 4-1 cd

4-1 •H ^) « m

4J Cfl (44 H O

4-1 CO 0) •9 4J 3 ct) M A

en

o

CJ 0)

co

4-J CU CO

4J o a

CU cd

01 •pf

13 C CO

CJ o

4-» «o o

CU

C

TJ at 4-1 co CJ o

co

? o

a o •rl 4J CO 4J CO

a. co M H

f* (4 >>.,,..

I

o co

O

1<N

CN CN

CM ^H CO

T3 a) g w

o

<

4=

i3 o CN

O <N

CN m

n

o

<u 43

CN M

N m

m

CM

o

CM

m

n

CN

cs

(N

o

eg

CM

CJ

T3

"3 c

o

(3 o co

•H a) •P ft 03 •W •H CD •a [0 "O A (0 •H o cd O o u ft 6 u u 3 4J •H <u Cd « CJ 4-1 4J •H CO 3

-5 E cd H

£ o 4= at cd -c H 43 o •H ft •H 3 3 W h %

•H s 43

03 a v, ex) cu k

8 e 3

CJ O •H •H c a CO a tu fc

•H K a> at

c o

O 4-1

CCJ

+J c OJ CO CD U ft c o

•H 4J cd 4J <u 00 0) E > o

4J U •u <u o

43 4= •u 43 o CD o u cd

o cfl <D a m «

<U w c cd

e 4J cd +J •H 43 ctj m w

cd •4-4 h o

4-1 CO cu

43 4-) 3 cd

CO Q

en

o VO

o u-l

CO CN

m

CM ci

CM

m

IA

en

o m

<LI <u

•d <u •o

H U c o

^>

<

•s

O

en en

o en m

CN

CM en

CM m

|m

O o m

m

CM

«3

CM <n

o CM

CM en

T3 c o

«l

1

4J 3 <u co a) k

cd a CO 4-1 a> « 3 a CO H 0

•H a) 3 O •H CO •o i <u 4J CO •H o at a) <d o o co 3 •H 4-> P a e 4J c cd r-l a> u u 3 1 V iH O 00

•H (1) o, IM <U g «d a w V 5T <0 •H > 5 •H to 3 ,C k •H 4J •u C H k <d u 4J k « 8 B a) i-i <u o o c k 3 3 •a .3 ^a ja CD nt u o <D cd 4J X ,2 u .e •H •H 4J •C o (U u O •H a d c c a k <d

•H 3 3 CO ctf o >* o w ai W fx, 55 PU CM Pw H S3 M «

cd M

4-1 CO

•§ en

<u

c

u cd

co

o

a

m

o CM

O O CM

O

o en CM

o oo o

en

o r-. o

§ o ivo o

CM

en CM

ri cd 4J

(Wo cd

CS

!9 a u <u

M c XI •H cd M H 4-1

cd O

o

3

o en

o CM

o[ •—I

CM

CM

CM

CM r-{

c o to •H oi •U A co i-l •H 4) c t? m 13 o 0 CO •H g rQ cd O o CO O M (X e 4-> pi

CJ M 3 •H 01 4J •H CD E & cd cd CJ 4J <U 01 •U •H « 3 x: (-1 •H 0 i-l XI U <d a m 2 . C U 5 w •5 (U cd o c

X! k X! •H •H o fl O, C C •H 3 3 cd 3 W fn e: PM 04

cd

o 01 o

01 4-> C O

en

en

en

en

n

en

m

CM

<u •3 c

•H •U e o o

(3 01 cn a) k P.

fi o •H 4J

cd cd •H •u M 0) O 60

<W 01 e •H > o 4J 4J td M tl H at o

x: XI cd 4J xs •c o 4) CJ

w cd o cd CJ Al g « rt

a) 00 a cd

6 4-1 Cfl U •H XI cd X

4J cd U-l k 0

4-1 CO cu XI 4J 3 cd

CO Q

o CM m

o CM

O CM n m

H a c o o

a)

o

o

4-1 CO

-p. cfl

o

o

o CM

T3 fS O

4-1 a 4-) •H

cfl «

w 1) p. -rf 01 (a a)

rt o •H CO e w «J o C

.C 0) XI M o •H

•H 3 w k

ed

a o 6 o CO

4-1 C •H <D e ex QJ <U

.C Jj

CJ

C (0

•H

QJ

QJ 4J 0 o

ci CM

CO cs

m CM

ft cs

CM

c CO <u

o 4-1 •H 4J (Cj

5

o

0)

in

u-i

Mi

<t> 6 > o 4J

u 4-1 01 O

•C ,a 4-1 o (11

M o cfi

S5 m

JS cj ed <D M

,n (rt W

4J nt <H U o 4J CO <D

x> 4J 3 nt

C/l n

g%..

;jr^jS'!B^,(p^r¥,i^-,i«yf>. -•

In accordance with letter from DAEN-RDC, DAEN-ASI dated 22 July 1977, Subject: Facsimile Catalog Cards for Laboratory Technical Publications, a facsimile catalog card in Library of Congress MARC format is reproduced below.

Godley, J. Steve Large-scale operations management test of use of the

white amur for control of problem aquatic plants : Report 1 : Baseline studies : Volume V : The herpetofauna of Lake Conway, Florida / by J. Steve Godley, Roy W. McDiarmid, G. Thomas Bancroft (Department of Biology, University of South Florida). — Vicksburg, Miss. : U.S. Army Engineer Waterways Experiment Station ; available from NTIS, [1981].

Ill p. in various pagings : ill. ; 27 cm. — (Technical report / U.S. Army Engineer Waterways Experiment Station ; A-78-2, Report 1, Volume V)

Cover title. "June 1961." "Prepared for U.S. Army Engineer District, Jacksonville

and Office, Chief of Engineers, U.S. Army under Contract No. DACW39-76-C-O0U7."

"Monitored by Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station."

Bibliography: p. 36.

Godley, J. Steve Large-scale operations management test of use of ... 1981.

(Card 2)

1. Amphibians. 2. Aquatic plants. 3. Fishes. k. Lake Conway (Fla.) 5. Lakes. 6. Reptiles. I. McDiarmid, Roy W. II. Bancroft, G. Thomas. III. University of South Florida. Department of Biology. IV. United States. Army. Corps of Engineers. Office of the Chief of Engineers. V. U.S. Army Engineer Waterways Experiment Station. Environmental Laboratory. VI. Title VII. Series: Technical report (U.S. Army Engineer Waterways Experiment Station) ; A-78-2, Report 1, Volume V. TA7.W3** no.A-78-2 Report 1 Volume V