MAJOR CLADES IN SOLANUMBASED ON ndhF SEQUENCE DATA

24
MAJOR CLADES IN SOLANUM BASED ON ndh F SEQUENCE DATA Lynn Bohs ABSTRACT . Analysis of sequence data from the chloroplast gene ndhF identifies at least 12 major well-supported clades within the genus Solanum. These are briefly described, given informal clade names, and compared with the groups recognized by previous Solanum workers. Non-molecular synapomorphies are proposed for many of the clades. Continued use of informal taxonomic designations is advocated for new infrageneric groups within Solanum. Key words: ndhF, phylogeny, Solanaceae, Solanum. 3

Transcript of MAJOR CLADES IN SOLANUMBASED ON ndhF SEQUENCE DATA

Page 1: MAJOR CLADES IN SOLANUMBASED ON ndhF SEQUENCE DATA

MAJOR CLADES IN SOLANUM BASED ON ndhF SEQUENCE DATA

Lynn Bohs

ABSTRACT. Analysis of sequence data from the chloroplast gene ndhF identifies at least 12 major well-supported clades within the genus Solanum. These are brieflydescribed, given informal clade names, and compared with the groups recognized by previous Solanum workers. Non-molecular synapomorphies are proposed for many of the clades. Continued use of informal taxonomic designations is advocated for new infrageneric groups within Solanum.

Key words: ndhF, phylogeny, Solanaceae, Solanum.

3

Page 2: MAJOR CLADES IN SOLANUMBASED ON ndhF SEQUENCE DATA

28

A FESTSCHRIFT FOR WILLIAM G. D’ARCY

Solanum L., with approximately 1400species, is the largest and most diversegenus in the Solanaceae. Solanum is distinguished from most of the other

genera in the tribe Solaneae by its poricidalanther dehiscence, a character present in nearlyall Solanum species and shared only with therelated genus Lycianthes. Although some previous authors considered Lycianthes to be partof Solanum, recent molecular studies have con-firmed the distinction between the two genera (Bohs & Olmstead, 1997; Olmstead & Palmer, 1997; Olmstead et al., 1999).Morphologically, Lycianthes is differentiated fromSolanum by differences in calyx structure (D’Arcy,1986).

Although poricidal anther dehiscence is a rela-tively striking synapomorphy that allowsSolanum to be recognized as a genus, its divisioninto infrageneric subunits is less clear. Early work-ers attempted to divide Solanum into two largegroups based on spininess, anther morphology,or hair type. Linnaeus, for instance, dividedSolanum into two groups, Spinosa and Inermia,based on the presence or absence of spines(Linnaeus, 1753). Dunal, in his early treatments(Dunal, 1813, 1816), maintained this distinction ashis categories Aculeata and Inermia, but in hisSolanum treatment for DeCandolle’s Prodromus

(Dunal, 1852) he established two major infra-generic divisions (“sections”) based on anthershape as well as presence or absence of spines. Hisgroup Pachystemonum encompassed species thatlack spines and have relatively short, broadanthers with large terminal pores which oftenenlarge into longitudinal slits, whereasLeptostemonum included prickly species with rel-atively narrow, distally tapered anthers with smallterminal pores that do not elongate with age.Bitter (1919) also recognized two major infra-generic groups, the subgenera Eusolanum andLeptostemonum, based on the same characters asDunal (1852). Seithe (1962), in contrast, dividedSolanum into two groups based not on spininessor anther morphology, but rather on hair type.She recognized two categories in Solanum at therank of “Chorus subgenerum,” distinguished bythe presence of unbranched or dendriticallybranched hairs (Chorus subgenerum Solanum)versus stellate hairs (Chorus subgenerumStellatipilum). Danert (1970) integrated charac-ters of branching patterns and shoot morphologywith previous systems, and, along with Gilli(1970), summarized the infrageneric groups rec-ognized by Bitter and Seithe.

These works provided the elements of D’Arcy’s(1972) classification scheme and conspectus,which is the most widely used system today.

1. Solanum subg. Archaesolanum Marzell

ca. 8 species, Australian region

2. Solanum subg. Bassovia (Aubl.) Bitter

ca. 15 species, New World

3. Solanum subg. Leptostemonum (Dunal) Bitter

ca. 250–450 species, worldwide

4. Solanum subg. Lyciosolanum Bitter

1 species, South Africa

5. Solanum subg. Minon Raf. [subg. Brevantherum(Seithe) D’Arcy, in D’Arcy (1972)]

ca. 70 species, New World

6. Solanum subg. Potatoe (G. Don) D’Arcy

ca. 300 species, worldwide

7. Solanum subg. Solanum

200 species, worldwide

TABLE 1.Solanum subgenera according to D’Arcy (1972, 1991).

Page 3: MAJOR CLADES IN SOLANUMBASED ON ndhF SEQUENCE DATA

MAJOR CLADES IN SOLANUM BASED ON ndhF SEQUENCE DATA

D’Arcy’s scheme recognizes seven subgenera inSolanum (Table 1; D’Arcy, 1972, 1991). Theserange in size from the monotypic subgenusLyciosolanum to the subgenera Solanum,Leptostemonum, and Potatoe, each of which con-tains hundreds of species. In his 1972 paper,D’Arcy lectotypified all subgeneric names andprovided a provisional conspectus of Solanum. Inthis conspectus, Solanum subgenera, sections,and series are listed along with their respectivetype species, but all the component species ofeach infrageneric group are not listed, nor arethe characters given that circumscribe each of thegroups. D’Arcy (1991) made minor modificationsto this system. Whalen (1984) provided a detailedconspectus of Solanum subg. Leptostemonum(the spiny solanums). Subsequently, both Nee(1999) and Child and Lester (2001) provided infra-generic schemes for Solanum. Nee (1999) listedthe species that belong to each of his taxonomiccategories, but his system includes only NewWorld taxa. Child and Lester (2001), like D’Arcy(1972), listed only the type species for each oftheir infrageneric groups. Hunziker (2001) modi-fied D’Arcy’s (1972) system and provided descrip-tions and commentary for each recognized sec-tion. All of these classifications relied completelyon morphological data and, except for Whalen(1984), none utilized techniques of cladistic analysis.

The advent of molecular data has revolutionizedthe field of plant systematics and has led to newinsights into phylogenetic relationships at all tax-onomic levels. In the Solanaceae, Olmstead andcolleagues have used restriction site andsequence data to examine phylogenetic relation-ships across the entire family (Olmstead & Palmer,1992; Olmstead et al., 1999). Molecular studiesabove the sectional level in Solanum include theworks of Spooner et al. (1993), Olmstead andPalmer (1997), and Bohs and Olmstead (1997,1999, 2001). These studies provide informationon major clades within Solanum, but none havesampled from all the subgenera recognized bymorphological systematists such as Bitter, Seithe,Danert, and D’Arcy.

This paper presents results of a molecular phylo-genetic study designed to identify major clades

within Solanum using sampling from a broadspectrum of Solanum subgroups. Results are pre-sented from an analysis of sequence data fromthe chloroplast gene ndhF. Sampling includesmembers of all seven of D’Arcy’s subgenera andover 40 of the 62 sections listed in D’Arcy (1991).All the sections listed in D’Arcy’s (1972) conspec-tus as well as many sections described after 1972are discussed in context of the major ndhF clades.Major lineages are described with informal cladenames and their component sectional groups arelisted. Possible non-molecular synapomorphiesare suggested for most of the identified clades.These characters have been taken from the gen-eral references listed above and from the person-al observations of the author. Although they mayprovide general guidelines for the recognition ofclades, this is not intended to be a substitute forthorough morphological analyses, as many of thesuggested characters are variable within cladesand may be found in more than one clade. A fewoverall recommendations are made for taxonom-ic rearrangements within the genus Solanum.Results of analyses using data from nuclear genessuch as ITS and waxy (Bohs, in prep.) and fromcombined chloroplast and nuclear sequence datasets will be presented in a future publication.

MATERIALS AND METHODSSampling comprised 120 species of Solanaceae,including five outgroup genera from the tribeSolaneae. Outgroup taxa were chosen on thebasis of previously published results of Olmsteadet al. (1999) and Bohs and Olmstead (2001).Solanum taxa sampled included representativesof all seven of D’Arcy’s subgenera and a numberof sections or species groups thought to representdistinctive clades based on morphology.Collection and voucher information is given inTable 2.

DNA was extracted from fresh or silica-driedleaves or, in rare cases, from herbarium speci-mens, using either the modified CTAB procedureof Doyle and Doyle (1987) or a microextractionprotocol that used QiaQuick columns and buffer(Qiagen, Inc.) in place of the isopropanol precipi-tation step in the CTAB procedure. Samples

29

Page 4: MAJOR CLADES IN SOLANUMBASED ON ndhF SEQUENCE DATA

Cap

sicu

m b

acca

tum

L. v

ar. p

end

ulu

m(W

illd

.) E

shb

aug

h2

Bo

livia

Esh

bau

gh

158

4(M

U)

U08

916

Cap

sicu

m c

hac

oen

se H

un

z.2

Bo

livia

Esh

bau

gh

158

6A(M

U)

AF5

0080

9

Jalt

om

ata

pro

cum

ben

s (C

av.)

J. L

. Gen

try3

Mex

ico

Dav

is 1

189A

U47

429

Jalt

om

ata

sin

uo

sa (

Mie

rs)

Mio

ne1

Bo

livia

Nee

et

al. 5

1830

(NY

)A

F500

835

Lyci

anth

es h

eter

ocl

ita

(Sen

dtn

.) B

itte

r1C

ost

a R

ica

Bo

hs

2376

(U

T)U

7275

6

Lyci

anth

es r

anto

nn

ei (

Car

rièr

e) B

itte

r2B

IRM

S.0

928

RG

O S

-96

(WTU

)A

F500

840

Phys

alis

alk

eken

giL

.2D

’Arc

y co

llect

ion

D’A

rcy

1770

7(M

O)

U08

927

Sola

nu

m a

bu

tilo

ides

(Gri

seb

.) B

itte

r &

Lill

o2

Min

on

Bre

van

ther

um

BIR

M S

.065

5R

GO

S-7

3 (W

TU)

U47

415

Sola

nu

m a

ccre

scen

s St

and

l. &

C. V

. Mo

rto

n1

Lep

tost

emo

nu

mEr

yth

rotr

ich

um

eC

ost

a R

ica

Bo

hs

2556

(U

T)A

F500

795

Sola

nu

m a

dh

aere

ns

Ro

em. &

Sch

ult

.1Le

pto

stem

on

um

Mic

raca

nth

aC

ost

a R

ica

Bo

hs

2473

(U

T)A

F224

061

Sola

nu

m a

dsc

end

ens

Sen

dtn

.1So

lan

um

Go

nat

otr

ich

um

Bo

livia

Bo

hs

& N

ee 2

738

(UT)

AF5

0079

6

Sola

nu

m a

eth

iop

icu

m L

.2Le

pto

stem

on

um

Olig

anth

esB

IRM

S.0

344

RG

O S

-74

(WTU

)A

F500

797

Sola

nu

m a

gg

reg

atu

m J

acq

.2Ly

cio

sola

nu

mLy

cio

sola

nu

mSo

uth

Afr

ica

RG

O 9

9-25

(W

TU)

AF5

0079

8

Sola

nu

m a

liger

um

Sch

ltd

l.1M

ino

nH

olo

ph

ylla

Bo

livia

Nee

et

al. 5

1822

(NY

)A

F500

799

Sola

nu

m a

llop

hyl

lum

(Mie

rs)

Stan

dl.1

No

nef

Allo

ph

yllu

mf

Pan

ama

Bo

hs

2339

(U

T)U

4741

6

Sola

nu

m a

myg

dal

ifo

lium

Ste

ud

.1Po

tato

eJa

smin

oso

lan

um

Arg

enti

na

Nee

& B

oh

s 50

840

(NY

)A

F500

800

Sola

nu

m a

ph

yod

end

ron

S. K

nap

p2

Sola

nu

mG

emin

ata

Co

lom

bia

RG

O S

-92

(WTU

)A

F500

801

Sola

nu

m a

pp

end

icu

latu

m D

un

al2

Pota

toe

Bas

arth

rum

Mex

ico

An

der

son

140

1(C

ON

N)

AF2

2406

2

Sola

nu

m a

rbo

reu

mD

un

al1

Sola

nu

mG

emin

ata

Co

sta

Ric

aB

oh

s 25

21 (

UT)

U47

417

Tax

ona

Subg

enus

bSe

ctio

nb

Col

lect

ion

Vou

cher

dG

enB

ank

loca

lity

cac

cess

ion

num

ber

30

A FESTSCHRIFT FOR WILLIAM G. D’ARCY

TA

BL

E2.

Sou

rces

of

taxa

seq

uen

ced

fo

r n

dh

F. a D

NA

ext

ract

s p

rovi

ded

by:

(1)

L.

Bo

hs,

Un

iver

sity

of

Uta

h,

Salt

Lak

e C

ity,

Uta

h;

(2)

R.

G.

Olm

stea

d,

Un

iver

sity

of

Was

hin

gto

n,

Seat

tle,

Was

hin

gto

n;

(3)

T. M

ion

e, C

entr

al C

on

nec

ticu

t St

ate

Un

iver

sity

, N

ew B

rita

in,

Co

nn

ecti

cut;

(4)

D.

Spo

on

er,

Un

iver

sity

of

Wis

con

sin

,M

adis

on

, Wis

con

sin

; (5)

A. B

run

eau

, McG

ill U

niv

ersi

ty, M

on

trea

l, C

anad

a. b

Acc

ord

ing

to

D’A

rcy

(197

2, 1

991)

un

less

no

ted

. c Acc

essi

on

nu

mb

ers

giv

en f

or

cult

ivat

ed c

olle

ctio

ns.

BIR

M =

cu

ltiv

ated

at

Un

iver

sity

of

Bir

min

gh

am, U

.K.;

NIJ

= c

ult

ivat

ed a

t U

niv

ersi

ty o

f N

ijmeg

en, T

he

Net

her

lan

ds;

PI =

U.S

.D.A

. Pla

nt

Intr

od

uct

ion

nu

mb

er; D

’Arc

y co

llect

ion

= c

ult

ivat

ed a

t M

O. d

Co

llect

or,

nu

mb

er, a

nd

her

bar

ium

acr

on

ym (

if k

no

wn

) o

f h

erb

ariu

m v

ou

cher

s. e C

hild

(19

98).

f Bo

hs

(199

0). g

Nee

(19

99).

hSy

mo

n (

1981

). i D

’Arc

y (1

992)

. j Kn

app

(20

00).

Page 5: MAJOR CLADES IN SOLANUMBASED ON ndhF SEQUENCE DATA

Sola

nu

m a

rgen

tin

um

Bit

ter

& L

illo

1M

ino

nH

olo

ph

ylla

Arg

enti

na

Bo

hs

2539

(U

T)U

7275

2

Sola

nu

m a

vicu

lare

G. F

ors

t.2

Arc

hae

sola

nu

mA

rch

aeso

lan

um

BIR

M S

.080

9n

on

eU

4741

8

Sola

nu

m b

etac

eum

Cav

.1G

enu

s C

yph

om

and

raPa

chyp

hyl

laB

oliv

iaB

oh

s 24

68 (

UT)

U47

428

Sola

nu

m b

revi

cau

le B

itte

r4Po

tato

ePe

tota

Bo

livia

PI 4

9811

5H

awke

s et

al.

6701

AF5

0080

3

Sola

nu

m b

ulb

oca

stan

um

Du

nal

4Po

tato

ePe

tota

Mex

ico

PI 3

4775

7Ta

rn 1

53A

F500

804

Sola

nu

m c

aesi

um

Gri

seb

.1So

lan

um

Sola

nu

mB

oliv

iaB

oh

s et

al.

2815

(UT)

AF5

0080

5

Sola

nu

m c

alile

gu

ae C

abre

ra1

Sola

nu

mg

Du

lcam

arag

Arg

enti

na

Nee

& B

oh

s 50

809

(NY

)A

F500

806

Sola

nu

m c

amp

anu

latu

m R

. Br.2

Lep

tost

emo

nu

mC

amp

anu

lata

BIR

M S

.038

7R

GO

S-7

8 (W

TU)

AF5

0080

7

Sola

nu

m c

amp

ech

ien

se L

.1Le

pto

stem

on

um

Un

clea

rC

ost

a R

ica

Bo

hs

2536

(U

T)A

F224

071

Sola

nu

m c

and

idu

m L

ind

l.2Le

pto

stem

on

um

Lasi

oca

rpa

BIR

M S

.097

5R

GO

S-1

00 (

WTU

)A

F224

072

Sola

nu

m c

apsi

coid

es A

ll.1

Lep

tost

emo

nu

mA

can

tho

ph

ora

Peru

Bo

hs

2451

(U

T)A

F500

808

Sola

nu

m c

aro

linen

se L

.2Le

pto

stem

on

um

Lath

yro

carp

um

BIR

M S

.181

6R

GO

S-7

7 (W

TU)

AF5

0081

1

Sola

nu

m c

hen

op

od

inu

m F

. Mu

ell.2

Lep

tost

emo

nu

mG

raci

liflo

raB

IRM

S.0

813

no

ne

AF5

0081

2

Sola

nu

m c

iner

eum

R. B

r.1Le

pto

stem

on

um

Mel

on

gen

ahN

IJ 9

0475

0120

Bo

hs

2852

(U

T)A

F500

813

Sola

nu

m c

itru

llifo

lium

A. B

rau

n2

Lep

tost

emo

nu

mA

nd

roce

ras

BIR

M S

.012

7R

GO

S-7

9 (W

TU)

AF5

0081

4

Sola

nu

m c

leis

tog

amu

m S

ymo

n2

Lep

tost

emo

nu

mO

ligan

thes

B

IRM

S.0

844

RG

O S

-80

(WTU

)A

F500

815

Sola

nu

m c

on

dit

um

C. V

. Mo

rto

n1

Lep

tost

emo

nu

mU

ncl

ear

Bo

livia

Bo

hs

& N

ee 2

733

(NY

)A

F500

816

Sola

nu

m c

ord

ove

nse

Ses

sé &

Mo

ç.1

Min

on

Exte

nsu

mC

ost

a R

ica

Bo

hs

2693

(U

T)U

7275

1

Sola

nu

m c

rin

itip

es D

un

al2

Lep

tost

emo

nu

mTo

rva

Co

lom

bia

RG

O S

-81

(WTU

)A

F500

817

Sola

nu

m c

rin

itu

m L

am.1

Lep

tost

emo

nu

mC

rin

itu

me

NIJ

924

7500

49B

oh

s 28

50 (

UT)

AF5

0081

8

Sola

nu

m c

risp

um

Ru

iz &

Pav

.2M

ino

nH

olo

ph

ylla

BIR

M S

.048

6n

on

eA

F500

819

Sola

nu

m d

efle

xum

Gre

enm

.1So

lan

um

Go

nat

otr

ich

um

Co

sta

Ric

aB

oh

s 27

15 (

UT)

AF5

0082

0

Sola

nu

m d

elit

esce

ns

C. V

. Mo

rto

n1

Min

on

Ho

lop

hyl

laA

rgen

tin

aN

ee &

Bo

hs

5081

0(N

Y)

AF5

0082

1

Sola

nu

m d

iplo

con

os

(Mar

t.)

Bo

hs1

Gen

us

Cyp

ho

man

dra

Pach

yph

ylla

Bra

zil

Bo

hs

2335

(U

T)A

Y04

9014

Sola

nu

m d

od

dsi

i Co

rrel

l4Po

tato

ePe

tota

Bo

livia

Spo

on

er e

t al

. 665

1A

F500

822

Sola

nu

m d

rym

op

hilu

m O

. E. S

chu

lz1

Lep

tost

emo

nu

mPe

rsic

aria

ePu

erto

Ric

oB

oh

s 24

61 (

UT)

AF5

0082

3

Sola

nu

m d

ulc

amar

a L.

2Po

tato

eD

ulc

amar

aU

.S.A

.n

on

eU

4741

9

Sola

nu

m e

chin

atu

m R

. Br.1

Lep

tost

emo

nu

mLe

pro

ph

ora

NIJ

954

7500

52B

oh

s 27

27 (

UT)

AF5

0082

4

Sola

nu

m e

laea

gn

ifo

lium

Cav

.2Le

pto

stem

on

um

Lep

rop

ho

raU

.S.A

.R

GO

S-8

2 (W

TU)

AF2

2406

7

Sola

nu

m e

tub

ero

sum

Lin

dl.4

Pota

toe

Peto

ta

Ch

ile P

I 498

311

UA

C 1

322

AF5

0082

5

MAJOR CLADES IN SOLANUM BASED ON ndhF SEQUENCE DATA

31

Page 6: MAJOR CLADES IN SOLANUMBASED ON ndhF SEQUENCE DATA

Sola

nu

m e

volv

ulif

oliu

m G

reen

m.1

Bas

sovi

aH

erp

ysti

chu

mg

Pan

ama

Kna

pp &

Mal

let 9

178

(BM

)A

F500

826

Sola

nu

m f

ero

ciss

imu

m L

ind

l.2Le

pto

stem

on

um

Gra

cilif

lora

BIR

M S

.081

9R

GO

S-8

3 (W

TU)

AF5

0082

7

Sola

nu

m f

ieb

rig

iiB

itte

r1So

lan

um

Sola

nu

mB

oliv

iaB

oh

s et

al.

2784

(UT)

AF5

0082

8

Sola

nu

m f

raxi

nif

oliu

m D

un

al1

Pota

toe

Bas

arth

rum

Co

sta

Ric

aB

oh

s 25

58 (

UT)

AF5

0081

0

Sola

nu

m f

urf

ura

ceu

m R

. Br.2

Lep

tost

emo

nu

mU

ncl

ear

BIR

M S

.144

2R

GO

S-8

4 (W

TU)

AF5

0082

9

Sola

nu

m g

lau

cop

hyl

lum

Des

f.2

Sola

nu

mG

lau

cop

hyl

lum

D’A

rcy

colle

ctio

nn

on

eU

7275

3

Sola

nu

m h

avan

ense

Jac

q.1

Sola

nu

mD

iam

on

on

eN

IJ 9

0475

0122

Bo

hs

3076

(U

T)A

F500

830

Sola

nu

m h

ercu

leu

m B

oh

s2g

enu

s Tr

igu

era

Mo

rocc

oJu

ry 1

3742

(R

NG

)A

F224

065

Sola

nu

m h

ind

sian

um

Ben

th.1

Lep

tost

emo

nu

mU

ncl

ear

Mex

ico

Bo

hs

2975

(U

T)A

F500

831

Sola

nu

m h

oeh

nei

C. V

. Mo

rto

n1

Lep

tost

emo

nu

mN

emo

ren

seB

razi

lFo

lli 1

668

(MO

)A

F500

832

Sola

nu

m in

eleg

ans

Ru

sby1

Min

on

Ho

lop

hyl

laB

oliv

iaN

ee e

t al

. 518

13(N

Y)

AF5

0083

3

Sola

nu

m ip

om

oeo

ides

Ch

od

at &

Has

sl.1

Sola

nu

mg

Du

lcam

arag

Bo

livia

Bo

hs

& N

ee 2

766

(UT)

AF5

0083

4

Sola

nu

m ja

mai

cen

seM

ill.2

Lep

tost

emo

nu

mEr

iop

hyl

laB

IRM

S.1

209

RG

O S

-85

(WTU

)A

F224

073

Sola

nu

m ja

smin

oid

es P

axto

n2

Pota

toe

Jasm

ino

sola

nu

mC

olo

mb

iaR

GO

S-8

6 (W

TU)

AF5

0083

6

Sola

nu

m ju

gla

nd

ifo

lium

Du

nal

4Po

tato

ePe

tota

Co

lom

bia

LA 2

788

AF5

0083

7

Sola

nu

m la

cin

iatu

mA

ito

n1

Arc

hae

sola

nu

mA

rch

aeso

lan

um

New

Zea

lan

dB

oh

s 25

28 (

UT)

U47

420

Sola

nu

m le

pid

otu

mD

un

al1

Min

on

Lep

ido

tum

Co

sta

Ric

aB

oh

s 26

21 (

UT)

AF5

0083

8

Sola

nu

m li

dii

Sun

din

g1

Lep

tost

emo

nu

mN

ycte

riu

mN

IJ 9

3475

0022

Bo

hs

2903

(U

T)A

F500

839

Sola

nu

m lu

teo

alb

um

Pers

.1G

enu

s C

yph

om

and

raC

yph

om

and

rop

sis

BIR

M S

.004

2B

oh

s 23

37 (

UT)

U72

749

Sola

nu

m ly

cop

ersi

cum

L.2

Gen

us

Lyco

per

sico

nLy

cop

ersi

con

U.S

.A. (

cult

.)n

on

eU

0892

1

Sola

nu

m m

acro

carp

on

L.2

Lep

tost

emo

nu

mM

elo

ng

ena

BIR

M S

.013

3R

GO

S-8

8 (W

TU)

AF2

2406

8

Sola

nu

m m

aho

rien

se D

’Arc

y &

Rak

ot.

1Le

pto

stem

on

um

Cry

pto

carp

um

iM

adag

asca

rB

oh

s 25

76 (

UT)

AF5

0084

1

Sola

nu

m m

amm

osu

m L

.2Le

pto

stem

on

um

Aca

nth

op

ho

raB

IRM

S.0

983

RG

O S

-89

(WTU

)A

F224

074

Sola

nu

m m

apir

ien

se B

itte

r1N

on

efA

llop

hyl

lum

fB

oliv

iaN

ee &

Sol

omon

303

05(U

T)A

F500

842

Sola

nu

m m

auri

tian

um

Sco

p.2

Min

on

Bre

van

ther

um

BIR

M S

.086

0R

GO

S-9

0 (W

TU)

AF5

0084

3

Tax

ona

Subg

enus

bSe

ctio

nb

Col

lect

ion

Vou

cher

dG

enB

ank

loca

lity

cac

cess

ion

num

ber

32

A FESTSCHRIFT FOR WILLIAM G. D’ARCY

TA

BL

E2

CO

NT

INU

ED.

Page 7: MAJOR CLADES IN SOLANUMBASED ON ndhF SEQUENCE DATA

MAJOR CLADES IN SOLANUM BASED ON ndhF SEQUENCE DATA

33

Sola

nu

m m

elo

ng

ena

L.2

Lep

tost

emo

nu

mM

elo

ng

ena

BIR

M S

.065

7R

GO

S-9

1 (W

TU)

AF2

2406

9

Sola

nu

m m

on

tan

um

L.1

Pota

toe

Reg

man

dra

NIJ

904

7502

05B

oh

s 28

70 (

UT)

AF5

0084

4

Sola

nu

m m

ult

ifid

um

Ru

iz &

Pav

.1Po

tato

eR

egm

and

raN

IJ 9

0475

0205

Bo

hs

2863

(U

T)A

F500

845

Sola

nu

m m

uri

catu

mA

ito

n2

Pota

toe

Bas

arth

rum

Co

lom

bia

RG

O S

-93

(WTU

)A

F500

846

Sola

nu

m n

emo

ren

se D

un

al1

Lep

tost

emo

nu

mN

emo

ren

seB

oliv

iaB

oh

s &

Nee

275

7(U

T)A

F500

847

Sola

nu

m n

itid

um

Ru

iz &

Pav

.1M

ino

nH

olo

ph

ylla

Bo

livia

Nee

319

44

(NY

)A

F224

075

Sola

nu

m o

chro

ph

yllu

m V

an H

eurc

k &

ll. A

rg.1

Sola

nu

mG

emin

ata

Bo

livia

Bo

hs

& N

ee 2

805

(UT)

AF5

0084

8

Sola

nu

m p

alit

ans

C. V

. Mo

rto

n1

Sola

nu

mPa

raso

lan

um

BIR

M S

.083

7/70

Bo

hs

2449

(U

T)A

F224

064

Sola

nu

m p

has

eolo

ides

Po

l.1B

asso

via

Her

pys

tich

um

Co

sta

Ric

aB

oh

s 24

85 (

UT)

AF5

0084

9

Sola

nu

m p

hys

alif

oliu

mR

usb

yva

r. n

itid

ibac

catu

m(B

itte

r) E

dm

on

ds1

Sola

nu

mSo

lan

um

U.S

.A.

Bo

hs

2467

(U

T)U

4742

1

Sola

nu

m p

inn

atis

ectu

m D

un

al4

Pota

toe

Peto

taM

exic

o P

I 347

766

Tarn

205

AA

F500

850

Sola

nu

m p

iura

e B

itte

r4Po

tato

ePe

tota

Peru

PI 3

1099

7H

awke

s 24

43A

F500

851

Sola

nu

m p

rin

op

hyl

lum

Du

nal

1Le

pto

stem

on

um

Olig

anth

esh

NIJ

904

7501

71B

oh

s 27

25 (

UT)

AF5

0085

2

Sola

nu

m p

seu

do

cap

sicu

m L

.2M

ino

nPs

eud

oca

psi

cum

BIR

M S

.087

0n

on

eU

4742

2

Sola

nu

m p

tych

anth

um

Du

nal

2So

lan

um

Sola

nu

mU

.S.A

.R

GO

S-9

4 (W

TU)

U47

423

Sola

nu

m p

ub

iger

um

Du

nal

1M

ino

nH

olo

ph

ylla

NIJ

904

7501

04n

on

eA

F500

853

Sola

nu

m p

yrac

anth

um

Lam

.2Le

pto

stem

on

um

Olig

anth

escu

lt.(

UCS

B Bo

t.G

ard.

)R

GO

S-9

5 (W

TU)

AF5

0085

4

Sola

nu

m q

uad

ran

gu

lare

L.f

.2So

lan

um

Qu

adra

ng

ula

reSo

uth

Afr

ica

RG

O 9

9-46

(W

TU)

AF5

0085

5

Sola

nu

m r

ioje

nse

Bit

ter1

Sola

nu

mEp

isar

cop

hyl

lum

Arg

enti

na

Nee

& B

oh

s 50

843

(NY

)A

F500

856

Sola

nu

m r

ost

ratu

mD

un

al1

Lep

tost

emo

nu

mA

nd

roce

ras

U.S

.A.

no

ne

U47

424

Sola

nu

m r

ovi

rosa

nu

m D

on

n. S

m.1

Sola

nu

mG

emin

ata

Co

sta

Ric

aB

oh

s 29

19 (

UT)

AF5

0085

7

Sola

nu

m r

ug

osu

m D

un

al1

Min

on

Bre

van

ther

um

Co

sta

Ric

aB

oh

s 30

11 (

UT)

AF5

0085

8

Sola

nu

m s

and

wic

ense

Ho

ok.

& A

rn.1

Lep

tost

emo

nu

mIr

eno

sola

nu

mH

awai

iB

oh

s 29

92 (

UT)

AF5

0085

9

Sola

nu

m s

chim

per

ian

um

Ho

chst

.2Le

pto

stem

on

um

Torv

aB

IRM

S.1

538

RG

O S

-97

(WTU

)A

F500

860

Sola

nu

m s

chle

chte

nd

alia

nu

m W

alp

.1M

ino

nEx

ten

sum

Co

sta

Ric

aB

oh

s 29

15 (

UT)

AF5

0086

1

Sola

nu

m s

eafo

rth

ian

um

An

dre

ws2

Pota

toe

Jasm

ino

sola

nu

mB

IRM

S.0

051

no

ne

U47

425

Sola

nu

m s

isym

bri

ifo

lium

Lam

.1Le

pto

stem

on

um

Cry

pto

carp

um

Arg

enti

na

Bo

hs

2533

(U

T)A

F500

862

Sola

nu

m s

ten

op

hyl

lidiu

m B

itte

r1Po

tato

ePe

tota

NIJ

904

7500

79B

oh

s 28

55 (

UT)

AF5

0080

2

Sola

nu

m s

tram

on

ifo

lium

Jac

q.5

Lep

tost

emo

nu

mLa

sio

carp

aPe

ruW

hal

en 8

60 (

HU

T)A

F500

863

Page 8: MAJOR CLADES IN SOLANUMBASED ON ndhF SEQUENCE DATA

34

A FESTSCHRIFT FOR WILLIAM G. D’ARCY

Tax

ona

Subg

enus

bSe

ctio

nb

Col

lect

ion

Vou

cher

dG

enB

ank

loca

lity

cac

cess

ion

num

ber

Sola

nu

m t

erm

inal

e Fo

rssk

.1So

lan

um

Afr

oso

lan

um

NIJ

814

7500

72B

oh

s 27

19 (

UT)

AF5

0086

4

Sola

nu

m t

hel

op

od

ium

Sen

dtn

.1U

ncl

earj

Un

clea

rjB

oliv

iaN

ee &

Bo

hs

5085

8(N

Y)

AF5

0086

5

Sola

nu

m t

olia

raea

D’A

rcy

& R

ako

t.1

Lep

tost

emo

nu

mU

ncl

eari

Mad

agas

car

Bo

hs

2574

(U

T)A

F500

866

Sola

nu

m t

orv

um

Sw.2

Lep

tost

emo

nu

mTo

rva

BIR

M S

.083

9R

GO

S-1

01 (

WTU

)L7

6286

Sola

nu

m t

rid

ynam

um

Du

nal

2Le

pto

stem

on

um

Nyc

teri

um

BIR

M S

.183

1R

GO

S-1

02 (

WTU

)A

F500

867

Sola

nu

m t

rifl

oru

m N

utt

.1So

lan

um

Para

sola

nu

mU

.S.A

.B

oh

s 30

62 (

UT)

AF5

0086

8

Sola

nu

m t

rip

arti

tum

Du

nal

1So

lan

um

Pa

raso

lan

um

BIR

M S

.070

8/71

Bo

hs

2465

(U

T)U

7275

0

Sola

nu

m t

rise

ctu

m D

un

al1

Pota

toe

No

rman

iaFr

ance

Bo

hs

2718

(U

T)A

F224

063

Sola

nu

m t

rizy

gu

m B

itte

r1B

asso

via

Pter

oid

eaC

ost

a R

ica

Bo

hs

2511

(U

T)U

7275

4

Sola

nu

m t

ub

ero

sum

L.2

Pota

toe

Peto

taU

.S.A

. (cu

lt.)

WR

F 16

10L7

6287

PI (

2457

93U

SDA

NR

SP-6

X 2

4579

6)

Sola

nu

m t

urn

ero

ides

Ch

od

at1

Sola

nu

mG

on

ato

tric

hu

mB

oliv

iaN

ee e

t al

. 517

16(N

Y)

AF5

0086

9

Sola

nu

m u

lean

um

Bit

ter1

Bas

sovi

aPt

ero

idea

D’A

rcy

colle

ctio

nB

oh

s 27

20 (

UT)

AF5

0087

0

Sola

nu

m v

esp

erti

lio A

ito

n2

Lep

tost

emo

nu

mN

ycte

riu

mB

IRM

S.2

091

RG

O S

-103

(W

TU)

AF2

2407

0

Sola

nu

m v

illo

sum

Mill

.1So

lan

um

Sola

nu

mIr

an P

I 304

600

Bo

hs

2553

(U

T)A

F224

066

Sola

nu

m w

alla

cei (

A. G

ray)

Par

ish

1Po

tato

eeC

alif

orn

iso

lan

um

eU

.S.A

.B

oh

s 24

38 (

UT)

U47

426

Sola

nu

m w

end

lan

dii

Ho

ok.

f.2

Lep

tost

emo

nu

mA

cule

iger

um

BIR

M S

.048

8n

on

eU

4742

7

Wit

her

ing

ia s

ola

nac

ea L

’Hér

.1C

ost

a R

ica

Bo

hs

2416

(U

T)U

7275

5

TA

BL

E2

CO

NT

INU

ED.

Page 9: MAJOR CLADES IN SOLANUMBASED ON ndhF SEQUENCE DATA

MAJOR CLADES IN SOLANUM BASED ON ndhF SEQUENCE DATA

extracted with the modified CTAB method werepurified using cesium chloride density gradientcentrifugation or a phenol-chloroform protocol.Amplification and sequencing of the ndhF geneused the primers and PCR program given in Bohsand Olmstead (1997). PCR products were cleanedusing QiaQuick spin columns and sequenced onan ABI automated sequencer. Sequences wereedited and contigs assembled using the programSequencher (Gene Codes Corp.). After a consen-sus sequence was obtained, it was aligned by eyeto a template sequence (Nicotiana tabacum L.).Base changes relative to the template sequencewere then double-checked against the chro-matograms. No alignment difficulties wereencountered in assembling the sequences into adata set in NEXUS file format. All new sequencesreported here have been submitted to GenBank(Table 2). The data set and resultant phylogenet-ic trees have been submitted to TreeBASE (acces-sion numbers S735 and M1167).

The data matrix was analyzed using unweightedparsimony with the program PAUP*4.0b10(Swofford, 2002). The analysis used the heuristicsearch algorithm with the TBR and MulTreesoptions, 714 random addition replicates withrearrangements limited to 100,000 per replicate,and gaps treated as missing data. Trees wererooted using Physalis alkekengi as the outgroup.Bootstrap analyses were performed with 500replicates using the heuristic search option, TBRand MulTrees, MaxTrees set to 1000, and1,000,000 rearrangements per replicate.

The data were also analyzed using the parsimonyratchet (Nixon, 1999) as implemented in the pro-gram PAUPRat (Sikes & Lewis, 2001). Five repli-cate searches of 200 iterations each were per-formed. The shortest trees from all searches wereretained and combined into a single consensustree.

The same data matrix was analyzed by maximumlikelihood using the program fastDNAml (Olsenet al., 1994) on a UNIX platform computer.Parameters used in the analysis were a transi-tion/transversion ratio of 1.0006 (estimated using

ML in PAUP from a neighbor-joining tree of the120-taxon data set), empirical base frequencies (A= 0.27665, C = 0.15518, G = 0.18366, T = 0.38450),and random addition order.

RESULTSThe ndhF sequences obtained for all taxa exceptLycianthes heteroclita, Solanum wendlandii, S. diploconos, and S. deflexum were 2086 basepairs long, corresponding to positions 24 through2109 in the tobacco ndhF sequence. Lycianthesheteroclita had a 15 bp insertion, S. wendlandiihad a 33 bp insertion, and S. diploconos had a 24bp insertion between positions 1476 and 1477.Solanum deflexum had a 9 bp deletion betweenpositions 1703 and 1711.

Of 2119 total characters in the data set, 541 werevariable and 288 of these were parsimony-informative. Pairwise sequence divergence calcu-lated using the Kimura 2-parameter modelranged from 3.4% between S. candidum versusLycianthes heteroclita to 0.048% in the closelyrelated species pairs S. ferocissimum versus S.chenopodinum, S. vespertilio versus S. liddii, S.doddsii versus S. stenophyllidium, and S. piuraeversus S. doddsii. Solanum schlechtendalianumand S. lepidotum had identical ndhF sequences.

The available memory capacity of PAUP on aPower Macintosh G4 was reached after saving18,200 most parsimonious trees from 714 randomaddition replicates. These trees were 1053 stepslong with a CI (excluding uninformative charac-ters) of 0.497 and RI of 0.819. PAUPRat saved 992trees of 1053 steps out of 1000 iterations. Thestrict consensus trees from the heuristic parsimo-ny and the PAUPRat searches were nearly identi-cal, differing only in greater resolution at two ofthe branch tips in the PAUPRat consensus tree(not shown). Likewise, the maximum likelihoodtopology (not shown) was virtually identical tothe parsimony trees and included the same taxain the major clades described below. This analysiswas completed overnight, examined 39,626 trees,and resulted in a tree with a log likelihood of–13487.40739.

35

Page 10: MAJOR CLADES IN SOLANUMBASED ON ndhF SEQUENCE DATA

36

A FESTSCHRIFT FOR WILLIAM G. D’ARCY

In these trees, Solanum forms a monophyleticclade, with members of the former generaLycopersion, Cyphomandra, Normania, andTriguera nested within it (Fig. 1). Species of allthese genera have been transferred to Solanum(Spooner et al., 1993; Bohs, 1995; Bohs &Olmstead, 2001). Capsicum plus Lycianthesemerges as the sister group to the Solanum cladewith bootstrap support of 70%. Solanum plus thegenera Jaltomata, Lycianthes, and Capsicum forma well-supported clade (bootstrap = 100%), andLycianthes plus Capsicum form a well-supportedgroup (bootstrap = 89%).

At least 12 major clades can be discerned withinSolanum (Fig. 1, see pp. 48–49). These clades aresupported with bootstrap values ranging from51% (Leptostemonum s.l.) to 100% (theRegmandra, Archaesolanum, and Normaniaclades). However, the relationships among thesemajor clades are unclear, because for the mostpart they form a polytomy at the base ofSolanum. Several of these clades conform toinfrageneric groups recognized by previoussystematists, but others do not.

These clades have been given informal cladenames and are briefly described below with a listof their constituent sections and non-molecularsynapomorphies that may define them. Asterisks(*) indicate sections or species groups that havebeen sampled in the present analysis. Othergroups listed under each clade are inferred tobelong there due to morphological similarity.Brief comparisons are made with reference toD’Arcy’s (1972) classification and with severalother schemes.

DISCUSSIONMajor clades defined by ndhF data:

1. Thelopodium clade

3 spp., South America

Included taxa:

Solanum thelopodium species group sensu Knapp (2000)*

This group is morphologically distinctive due toits enlarged roots, single-stemmed growth habit,reduced number of sympodia, and narrow,tapered, dimorphic anthers. It was revised recent-ly by Knapp (2000), who recognized three species.One of them, S. thelopodium, was included in thendhF analysis, where it forms a single branch atthe very base of Solanum. This placement is sur-prising and has not been suggested by recentSolanaceae systematists, although Bitter thoughtthat S. thelopodium was sufficiently distinct tomerit generic rank (Knapp, 2000). Dunal (1852)and Seithe (1962) placed S. thelopodium intoSolanum sect. Anthoresis (Dunal) Bitter, but thismeans little, as section Anthoresis is a catch-allgroup of disparate taxa. D’Arcy did not include itin either of his summary classifications (D’Arcy,1972, 1991). Nee (1999) put this species intoSolanum sect. Pteroidea (Potato clade), but thendhF data do not support this placement. Furthersampling is needed to determine if the basal posi-tion of this clade in Solanum is correct or is per-haps a long branch artifact.

2. Regmandra clade

ca. 7 spp., South America

Included taxa:

Solanum subg. Potatoe (G. Don) D’Arcy pro parte

Solanum sect. Regmandra (Dunal) D’Arcy*

D’Arcy (1972, 1991) placed this small group ofspecies from Pacific coastal deserts of SouthAmerica into Solanum subg. Potatoe. Nee (1999)also allied this section with the potatoes, where-as Child and Lester (2001) put it into Solanumsubg. Solanum, and Hunziker (2001) consideredits subgeneric position uncertain. Taxa ofSolanum sect. Regmandra included in the ndhFdata set are S. montanum and S. multifidum, andthey fall out together on a well-supported butisolated clade near the base of Solanum.

Non-molecular characters that may distinguishthis clade include herbaceous habit and usually

Page 11: MAJOR CLADES IN SOLANUMBASED ON ndhF SEQUENCE DATA

MAJOR CLADES IN SOLANUM BASED ON ndhF SEQUENCE DATA

pinnately dissected and rather thick leaves, some-times with winged petioles and stems. Plants ofSolanum montanum and S. multifidum grown inthe University of Utah greenhouse had nearlyrotate corollas and notably expanded stigmas.Solanum montanum is reported to bear tubers(Dunal, 1852; Macbride, 1962), but the ndhFresults do not suggest a direct relationshipbetween the Regmandra clade and the tuber-bearing members of the Potato clade.

3. Archaesolanum clade

ca. 8 spp., Australia, New Guinea, New Zealand

Included taxa:

Solanum subg. Archaesolanum Marzell

Solanum sect. Archaesolanum(Marzell) Danert*

This is a distinctive group with no obvious closerelatives within Solanum. It is distinguished by itsaneuploid chromosome number based on n = 23,a number unique in the genus. All species of thisgroup occur in Australia and the South Pacific(New Guinea, Australia, Tasmania, New Zealand).Aside from its chromosome number, possiblenon-molecular synapomorphies of this cladeinclude plurifoliate sympodial units, rotate corol-las with abundant interpetalar tissue, looselyerect anthers on relatively long filaments, andfruits with abundant stone cell aggregates. Thebasal position of this clade may indicate a rela-tively old radiation in the South Pacific.

The Archaesolanum clade has been recognized asdistinct by virtually all previous Solanum workers,including D’Arcy (1972, 1991), Bitter in Marzell(1927), Danert (1970), and Symon (1994).Olmstead and Palmer (1997) included S. avicularein their analysis of Solanum using chloroplastrestriction site data, and it formed a clade with76% bootstrap support along with S. ptychan-thum, S. crispum, S. dulcamara, and S. jasmi-noides. However, sampling within non-spinySolanum taxa was sparse in their study, with 17non-spiny representatives out of 36 totalSolanum species. Bohs and Olmstead (2001)

found that S. aviculare and S. laciniatum formeda well-supported basal clade in Solanum in analy-ses using nuclear ITS sequence data as well as ITScombined with ndhF data. It seems safe to saythat the Archaesolanum clade represents an iso-lated group whose closest relatives have not yetbeen identified.

4. Normania clade

3 spp., Macaronesia, Spain, NW Africa

Included taxa:

Solanum sect. Normania (Lowe) Bitter [genus Normania Lowe]* genus Triguera Cav.*

This clade includes two enigmatic groups endem-ic to Macaronesia and adjacent areas of Spainand northwestern Africa. Although these taxahave been recognized as the segregate generaNormania and Triguera, molecular data indicatethat both are nested within Solanum and thethree species of both genera have been trans-ferred to Solanum (Bohs & Olmstead, 2001).Francisco-Ortega et al. (1993) made a thoroughmorphological analysis of Normania and Trigueraand concluded that they were closely related.

Numerous non-molecular characters unite thespecies of the Normania clade, including herba-ceous or weakly woody habit, foliaceous andaccrescent calyces, zygomorphic corollas, sube-qual to very unequal stamens, anther dehiscenceby both apical pores and longitudinal slits,anthers with horned projections, fruits dry orwith sparse pulp, seeds large and few per fruitwith the seed coat cell walls radially expanded,and pollen grains with colpi joined at the poles.Affinities of the Normania clade within Solanumare presently obscure. In combined analyses ofndhF and ITS data this clade forms a group withmembers of the Potato and Morelloid/Dulcamaroid clade (Bohs & Olmstead, 2001), butthis placement is poorly supported, with a boot-strap value of 17%. As with the Archaesolanumclade, the Normania clade appears to form an iso-lated group within Solanum without obviousclose relatives.

37

Page 12: MAJOR CLADES IN SOLANUMBASED ON ndhF SEQUENCE DATA

38

A FESTSCHRIFT FOR WILLIAM G. D’ARCY

5. African non-spiny clade

ca. 7 spp., Africa

Included taxa:

Solanum subg. Lyciosolanum Bitter*

Solanum subg. Solanum pro parte

Solanum sect. Afrosolanum Bitter*

Solanum sect. QuadrangulareBitter*

Solanum sect. Benderianum Bitter

D’Arcy (1972, 1991) recognized Solanum subg.Lyciosolanum as monotypic, with S. aggregatumas its sole member, but the ndhF data indicatethat probably this group should be expanded toinclude members of Solanum sects. Afrosolanum,Quadrangulare, and perhaps Benderianum, allplaced by D’Arcy (1972, 1991) in Solanum subg.Solanum. This clade forms an isolated groupwithin Solanum. It is poorly known taxonomical-ly, but possible non-molecular synapomorphiesmay include shrubby or climbing habit,unbranched or dendritically branched hairs, andpurple or white stellate corollas. This group needsbetter molecular sampling and morphologicalcharacterization.

No DNA samples are available from representa-tives of Solanum sects. Lemurisolanum Bitter andMacronesiotes Bitter, two non-spiny sectionsendemic to Madagascar. Their affinities may liewith the African non-spiny clade or with theDulcamaroid clade.

6. Potato clade

ca. 200–300 spp., New World

Included taxa:

Solanum subg. Potatoe (G. Don) D’Arcy pro parte

Solanum sect. Petota Dumort.*

Solanum sect. AnarrhichomenumBitter*

Solanum sect. Basarthrum

(Bitter) Bitter*

Solanum sect. Lycopersicon (Mill.) Wettst.*

Solanum sect. NeolycopersiconCorrell

Solanum sect. Juglandifolium(Rydb.) A. Child*

Solanum sect. Etuberosum(Bukasov & Kamaraz) A. Child*

Solanum sect. Articulatum(Correll) A. Child

Solanum sect. TaeniotrichumA. Child

Solanum subg. Bassovia (Aubl.) Bitter pro parte

Solanum sect. HerpystichumBitter*

Solanum sect. PteroideaDunal*

This clade includes most of the groups of D’Arcy’ssubgenera Potatoe and Bassovia. Child’s treat-ment of subgenus Potatoe (Child, 1990; Child &Lester, 2001) included these groups, but his con-cept also encompassed a number of disparate ele-ments that are placed here in different clades,such as Solanum sect. Normania (here placed inthe Normania clade), the dulcamaroid taxa sensuChild and Lester (2001; sects. Dulcamara,Jasminosolanum, and Californisolanum, hereplaced in the Dulcamaroid clade), and the“anomalously prickly” taxa sensu Child (1990;sects. Aculeigerum, Nemorense, andHerposolanum, here placed in theWendlandii/Allophyllum and Leptostemonumclades). Nee’s recent Solanum scheme (Nee, 1999)considered the taxa that here belong to thePotato clade to represent two distinct evolution-ary lines. He included the potatoes and their rel-atives (sects. Petota, Anarrhichomenum,Basarthrum) in a large and morphologicallydiverse subgenus Solanum, along with othergroups such as sections Dulcamara, Solanum,

Page 13: MAJOR CLADES IN SOLANUMBASED ON ndhF SEQUENCE DATA

MAJOR CLADES IN SOLANUM BASED ON ndhF SEQUENCE DATA

Holophylla, Brevantherum, Regmandra, andArchaesolanum. He also included members ofsection Herpystichum in this clade. As Nee (1999)noted, the type of section Herpystichum is notknown with certainty and the group is not wellcircumscribed, but he listed S. phaseoloides and S.evolvulifolium as members of the section. Thesespecies are sampled in the ndhF analyses, andthey both fall out in the Potato clade.

On the other hand, Nee (1999) maintainedSolanum subg. Bassovia, amplifying it to includesections Cyphomandropsis and Pachyphylla of theCyphomandra clade and section Allophylla of theWendlandii/Allophyllum clade along with sectionPteroidea, which was placed in subgenus Bassoviaby previous workers such as Bitter (1921), Seithe(1962), Danert (1970), and D’Arcy (1972). Knappand Helgason (1997) revised the species of sectionPteroidea, but they were unsure of the higher-level relationships of the section.

The ndhF data indicate that section Pteroideabelongs to the Potato clade, and that the sam-pled representatives of the subgenera Potatoeand Bassovia sensu D’Arcy (1972) each formmonophyletic clades. Non-molecular synapomor-phies that may unite both of these groups includeherbaceous to weakly woody and often scandenthabit, exclusively unbranched hairs, presence ofrhizomes or tubers in many taxa, presence ofcompound leaves in most species, and lack ofstone cell aggregates in the fruits. The presenceof solanidine/tomatidine alkaloids may be themost consistent synapomorphy that defines thesubgenus Potatoe. Whether members of the sub-genus Bassovia possess these types of alkaloids isunknown.

Child (1990) placed Solanum evolvulifolium insection Anarrhichomenum, whereas Nee (1999)placed this species in section Herpystichum. ThendhF data show that S. evolvulifolium is moreclosely related to S. phaseoloides (sect.Herpystichum) than to S. appendiculatum (sect.Anarrhichomenum).

The placement of this monotypic Solanum sect.Rhynchantherum Bitter has been debated. Dunal(1852), D’Arcy (1972, 1991), and Hunziker (2001)assigned it to subgenus Potatoe, Bitter (1913a)proposed an affinity with S. reptans of sectionHerposolanum (cf. S. hoehnei in theLeptostemonum clade), and Miers (1855) andChild (1984b; Child & Lester, 2001) placed it in thegenus Cyphomandra (Cyphomandra clade).Although no DNA data are available, its pinnate-ly compound leaves and anther structure(described in Bohs, 1994) argue for placement inthe Potato clade.

7. Morelloid/Dulcamaroid clade

This group comprises two subclades, which willbe discussed separately. Bootstrap support for theassociation of the two groups is strong (94% ofbootstrap replicates) in the ndhF data set, butadditional molecular data from other genes areneeded to ascertain whether this group shouldbe better recognized as two separate clades. Forinstance, ITS data from a small subset of the taxaconsidered here provided weak support (19% ofbootstrap replicates) for the association of themorelloid and dulcamaroid subgroups (Bohs &Olmstead, 2001).

7a. Morelloid clade

ca. 75 spp., worldwide

Included taxa:

Solanum subg. Solanum pro parte

Solanum sect. Solanum*

Solanum sect. Campanulisolanum Bitter*

Solanum sect. ParasolanumA. Child*

Solanum sect. Episarcophyllum Bitter*

Solanum sect. Chamaesarachidium Bitter

39

Page 14: MAJOR CLADES IN SOLANUMBASED ON ndhF SEQUENCE DATA

40

A FESTSCHRIFT FOR WILLIAM G. D’ARCY

This clade includes the core of Solanum speciesoften known as the morelloid taxa. The four sec-tions exclusive of section Parasolanum are mor-phologically homogeneous, and sectional distinc-tions are not clear-cut. Three members ofSolanum sect. Parasolanum (S. tripartitum, S. pal-itans, S. triflorum) were sampled in the ndhFanalyses, and all are included in the morelloidclade. However, these three taxa do not fall outtogether, indicating that section Parasolanum ascircumscribed by Child (1984a) may not be amonophyletic group. In the ndhF analyses, S. tri-partitum and S. palitans form a strongly support-ed clade, which, in turn, is strongly associatedwith the rest of the Morelloid clade (95% boot-strap support). However, these two species form aseparate group distinct from the rest of theMorelloid clade in trees based on ITS sequences(Bohs & Olmstead, 2001). More extensive ITS sam-pling along with molecular data from additionalgenes may enhance the circumscription andplacement of section Parasolanum.

Some non-molecular characters that may serve tounite this clade include herbaceous or weaklywoody habit, 2- to 3-foliate sympodial units,pubescent filaments and styles in many taxa, andsmall stone cell aggregates in the fruits.

7b. Dulcamaroid clade

ca. 40 spp., worldwide

Included taxa:

Solanum subg. Potatoe(G. Don) D’Arcy pro parte

Solanum sect. Dulcamara Dumort.*

Solanum sect. JasminosolanumSeithe*

Solanum sect. CalifornisolanumA. Child*

Solanum subg. Solanum pro parte

Solanum sect. Lysiphellos (Bitter) Seithe

Solanum subg. Minon Raf. pro parte

Solanum sect. Holophylla Walp. pro parte*

This clade consists of elements from three ofD’Arcy’s subgenera. Sectional limits are not welldefined, and the majority of groups includedhere are in need of critical taxonomic revision andnomenclatural clarification. The ndhF results indi-cate that Solanum sect. Holophylla is not mono-phyletic as traditionally defined. Part of Solanumsect. Holophylla that includes the species S.aligerum, S. pubigerum, and members of the S.nitidum group [Knapp, 1989; equivalent to S. sub-sect. Nitidum A. Child (Child, 1998)] belongs tothe Dulcamaroid clade. At least part of theremainder of Solanum sect. Holophylla, repre-sented in the ndhF trees by S. argentinum,belongs to the Geminata clade. Morphologicalsynapomorphies of the Dulcamaroid clade mayinclude vining habit in many taxa, the presence ofunbranched, dendritic, or echinoid hairs, 3- tomany-foliate sympodial units, and fruits lackingstone cell aggregates.

The following clades form a large group inSolanum with 98% bootstrap support (Fig. 1).Although the majority of species in this groupbelong to the spiny Solanum subg.Leptostemonum (the Leptostemonum clade),four other predominantly non-spiny clades arerepresented here. This group is morphologicallyheterogeneous and has not been recognized for-mally at any rank.

8. Wendlandii/Allophyllum clade

ca. 10 spp., New World

Included taxa:

Solanum sect. Allophyllum(Child) Bohs*

Solanum subg. Leptostemonumpro parte

Solanum sect. Aculeigerum Seithe*

Page 15: MAJOR CLADES IN SOLANUMBASED ON ndhF SEQUENCE DATA

MAJOR CLADES IN SOLANUM BASED ON ndhF SEQUENCE DATA

This clade is perhaps the most unusual and sur-prising in all of Solanum. Thus far it consists oftwo groups whose relationships to otherSolanum taxa have been debated. Species ofSolanum sect. Allophyllum were previouslyplaced in the genus Cyphomandra (D’Arcy, 1973;Child, 1984b; Bohs, 1988), but Bohs (1989)showed that they did not have the characters ofthe Cyphomandra clade. The subgeneric place-ment of Solanum sect. Allophyllum, however, hasbeen obscure (Bohs, 1990). Solanum sect.Aculeigerum has usually been placed in subgenusLeptostemonum because the plants bear spines(D’Arcy, 1972, 1991; Whalen, 1984). However,they lack stellate hairs, a hallmark of the sub-genus, so some workers have placed this sectionin with the non-spiny species of Solanum in eithersubgenus Solanum (Seithe, 1962) or Potatoe(Child, 1990; Child & Lester, 2001). Molecular dataof Bohs and Olmstead (1997, 1999, 2001) showedthat Solanum sect. Aculeigerum probably doesnot belong in the spiny Solanum subg.Leptostemonum, but is instead allied to a spine-less group, section Allophyllum. The ndhF analy-ses presented here continue to support thatplacement. Species of Solanum sectionsAllophyllum and Aculeigerum are morphological-ly distinctive, but both groups have narrow,tapered anthers that dehisce by small terminalpores, exclusively unbranched hairs, and fre-quently have pinnately lobed leaves.

9. Cyphomandra clade

ca. 50 spp., New World

Included taxa:

Solanum sect. Pachyphylla (Dunal) Dunal [genus Cyphomandra Sendtn.]*

Solanum sect. Cyphomandropsis Bitter*

Solanum sect. Glaucophyllum A. Child*

The association of these three sections and theirrelationship to Solanum have been controversial.From 1845 to 1995, Cyphomandra was recog-nized as a separate genus (Sendtner, 1845; Bohs,1994, and references therein). However, molecu-lar data establish that it is nested within Solanum,

and all species of Cyphomandra were transferredto Solanum in 1995 (Bohs, 1995). Solanum sect.Cyphomandropsis was considered to be part ofCyphomandra by some workers (D’Arcy, 1972;Child, 1984b; Child & Lester, 2001), whereas oth-ers maintained this group in Solanum (Bitter,1913b; Seithe, 1962; Gilli, 1970; Danert, 1970;Morton, 1976). Within Solanum, its subgenericplacement has been debated, with Seithe (1962)placing it in subgenus Solanum and Smith andDowns (1966) and Morton (1976) placing it insubgenus Leptostemonum. Most authors haveconsidered S. glaucophyllum to belong toSolanum sect. Cyphomandropsis, but Child (1986)removed it to its own monotypic section andplaced it in subgenus Solanum. Hunziker (2001)disagreed with this view on morphologicalgrounds and placed it within Solanum subg.Potatoe. Morphological, cytological, and molecu-lar studies have confirmed the close association ofSolanum sections Pachyphylla, Cyphomandropsis,and Glaucophyllum (Morton, 1976; Moscone,1992; Bohs, 2001; Bohs & Olmstead, 2001), andmolecular data indicate that they form a distinctclade within Solanum whose close relatives areunclear (Fig. 1).

Species of the Cyphomandra clade are woodyshrubs or trees that often have enlarged or elab-orated anther connectives or dorsal anther sur-faces. The synapomorphy that unites this group isthe presence of very large chromosomes, whichhave been found in all species of the clade inves-tigated to date.

10. Geminata clade

ca. 140 spp., mainly New World

Included taxa:

Solanum subg. Solanum pro parte

Solanum sect. Geminata (G. Don) Walp.*

Solanum sect. Delitescens Hunz. & Barboza*

Solanum sect. Diamonon (Raf.) A. Child*

41

Page 16: MAJOR CLADES IN SOLANUMBASED ON ndhF SEQUENCE DATA

42

A FESTSCHRIFT FOR WILLIAM G. D’ARCY

Solanum subg. Minon Raf. pro parte

Solanum sect. Holophylla pro parte*

Solanum sect. Pseudocapsicum(Moench) Bitter*

Although placed by D’Arcy (1972, 1991) in sepa-rate subgenera of Solanum, both morphologicalstudies (Knapp, 2002) and the ndhF analyses con-firm that section Geminata and sectionPseudocapsicum are closely related. Both groupshave mainly leaf-opposed inflorescences andoften 1- to 2-foliate sympodial units. Yet otherelements belong to the Geminata clade, such as S.argentinum, S. delitescens, and S. havanense.Solanum argentinum has been placed in sectionHolophylla, but this group is apparently poly-phyletic, with at least part of the section belong-ing to the Dulcamaroid clade.

The systematic position of S. delitescens has beenunclear. Knapp (2002) includes it in her treatmentof Solanum sect. Geminata, but lists it under taxaof uncertain placement. Nee (1999) included itwithin the heterogeneous Solanum sect.Holophylla within subgenus Solanum. Hunzikerand Barboza (in Hunziker, 2000) created themonotypic Solanum sect. Delitescens to accom-modate this species and also placed it within sub-genus Solanum. The ndhF data indicate thatSolanum sections Geminata, Pseudocapsicum,and Delitescens are closely related to each otherand are not allied with the morelloid species thatmake up the core of subgenus Solanum.

Likewise, the affinities of Solanum havanensehave been uncertain. This species occurs in Cubaand Jamaica and, according to Knapp (2002), isallied to the Jamaican species S. troyanum Urb.Knapp (2002) excluded these two species fromSolanum sect. Geminata and regarded them as anisolated lineage in Solanum, which she called theS. havanense species group (Knapp, 2002). Child(1998) created the monotypic Solanum sect.Diamonon to accommodate S. havanense andhypothesized that it may belong near sectionPseudocapsicum. In the ndhF trees, S. havanensebelongs to the Geminata clade along with mem-bers of Solanum sections Geminata,

Pseudocapsicum, and Delitescens.

Characters that may unite the taxa of this cladeinclude woody habit, unbranched to dendriticallybranched hairs, oblong anthers with large terminal pores, and fruits lacking stone cellaggregates.

11. Brevantherum clade

ca. 60 spp., New World

Included taxa:

Solanum subg. Brevantherum (Seithe) D’Arcy pro parte [Solanum subg. Minonpro parte in D’Arcy (1991)]

Solanum sect. Brevantherum Seithe*

Solanum sect. Extensum D’Arcy*

Solanum sect. Lepidotum Seithe*

Solanum sect. StellatigeminatumA. Child*

Solanum sect. Cernuum Carvalho & G. J. Sheph.

Solanum subg. Solanum pro parte

Solanum sect. GonatotrichumBitter*

For the most part, this clade consists of a numberof morphologically similar groups that often havestellate hairs or lepidote scales, oblong antherswith large terminal pores, and green, yellow, orpurple fruits. D’Arcy (1991) used the subgenericname Minon to refer to an analogous group inSolanum, which, however, also included elementssuch as sections Holophylla and Pseudocapsicumthat are here referred to different clades. Sincethe type species of subgenus Minon is S. pseudo-capsicum, which belongs to the Geminata clade,the appropriate name for the Brevantherumclade at subgeneric rank would be Solanum subg.Brevantherum.

The sections of Solanum subg. Brevantherum arenot well demarcated. The three members ofSolanum sect. Brevantherum (S. abutiloides, S. mauritianum, S. rugosum) sampled in the ndhF

Page 17: MAJOR CLADES IN SOLANUMBASED ON ndhF SEQUENCE DATA

MAJOR CLADES IN SOLANUM BASED ON ndhF SEQUENCE DATA

trees do not form a monophyletic group, butadditional data and sampling are needed toresolve relationships in the Brevantherum clade.There are a number of species that fall outsidethe traditional limits of the established sectionslisted above. One example is Solanum inelegans,placed by Nee (1999) in the polymorphic and ill-defined Solanum sect. Holophylla and evidently amember of the Brevantherum clade according tothe ndhF data.

The odd group out from a morphological per-spective is Solanum sect. Gonatotrichum (S.adscendens, S. turneroides, S. deflexum). Itsplacement here is surprising, because Solanumsect. Gonatotrichum has few of the characterslisted above for the Brevantherum clade and hasbeen thought to be more closely related to theMorelloid clade (D’Arcy, 1972, 1991; Nee, 1999;Child & Lester, 2001) or to Solanum sect.Pseudocapsicum of the Geminata clade(Hunziker, 2001). Molecular data indicate thatSolanum sect. Gonatotrichum forms a distinctsubclade within the Brevantherum clade (Fig. 1),but it clearly does not belong to the Morelloidclade. The names S. adscendens and S. deflexummay be synonymous (Nee, 1989, 1999; D’Arcy,2001) but the two species exhibit a fair amount ofsequence divergence in ndhF (1.0%) and areapparently allopatric (Bitter, 1912).

12. Leptostemonum clade

ca. 450 spp., worldwide

Includes all spiny sections and species groups except Solanum sect. AculeigerumSeithe

Possibly includes Solanum sect. Herposolanum Bitter

Sampling to date includes at least 20 sections and 20 species groups sensuWhalen (1984)

This is the largest and most complex of the majorclades of Solanum and encompasses the vastmajority of species traditionally placed inSolanum subg. Leptostemonum. Data thus far

indicate that all the species of Solanum that bearspines form a clade with the exception of sectionAculeigerum mentioned above. Nearly all mem-bers of this group have stellate hairs as well asspines. The anthers are narrow and tapered withsmall terminal pores that do not enlarge into lon-gitudinal slits. Much work is still needed to revealthe phylogenetic structure within theLeptostemonum clade and to interpret patternsof character evolution and biogeography withinthe group. A more detailed analysis of theLeptostemonum clade using ndhF and nuclear ITSsequence data is under way (L. Bohs, unpublisheddata) and will be summarized in a later publica-tion.

The ndhF data indicate members of Solanum sec-tions Nemorense (S. nemorense) andHerposolanum (S. hoehnei) may represent thebasalmost branches in the Leptostemonum clade,but the bootstrap support for this grouping is low(51%). These taxa are similar to Solanum sect.Aculeigerum in that they have spines but lackstellate hairs. The placement of Solanum sect.Herposolanum has been particularly problematic;D’Arcy (1972, 1991) put it into Solanum subg.Bassovia, whereas Child (1983) suggested a rela-tionship with Solanum sect. Aculeigerum (theWendlandii/Allophyllum clade above) and provi-sionally placed it in Solanum subg. Potatoe (Child,1990; Child & Lester, 2001). Whalen (1984)merged Solanum sections Herposolanum andNemorense into his S. nemorense species group,which he considered to belong to Solanum subg.Leptostemonum. Nee (1999) included Solanumsect. Aculeigerum in section Herposolanum andregarded both as members of subgenusLeptostemonum. The ndhF data do not fullyresolve these questions, but Solanum sectionsHerposolanum and Nemorense apparently donot belong to the Potato clade and are not close-ly related to section Aculeigerum.

Solanum sect. Acanthophora (S. capsicoides, S.mammosum) also appears to be relatively basal inthe Leptostemonum clade. This group often hasunbranched or weakly stellate hairs in addition tospines. These have been interpreted as being

43

Page 18: MAJOR CLADES IN SOLANUMBASED ON ndhF SEQUENCE DATA

44

A FESTSCHRIFT FOR WILLIAM G. D’ARCY

reduced stellate hairs (Nee, 1979), but a thoroughexamination of the ontogeny of hairs in this cladeshould be undertaken with a phylogenetic per-spective to determine if these simple hairs repre-sent an ancestral rather than derived state in theLeptostemonum group.

GENERAL RECOMMENDATIONThis is not the last word on phylogenetic structure orevolutionary relationships in Solanum. The majorclades identified here, although well supported fromndhF data, need to be corroborated by data fromother genes. Additional sampling, especially frommorphologically unusual, underrepresented, and/orputatively isolated groups, is needed to test the distinctiveness of the major ndhF clades and to ascer-tain the phylogenetic position of enigmatic taxa. Forinstance, no molecular data are available for the twospecies placed in Solanum sect. Solanocharis (Bitter)A. Child. The two species may not be closely related(M. Nee, pers. comm.), and they may not belong toSolanum. The type of the section is S. albescens(Britton) Hunz., which apparently has longitudinalanther dehiscence and has been regarded by some asbelonging to the genera Solanocharis, Poecilo-chroma, or Saracha (Rusby, 1896; Bitter, 1918; M.Nee, pers. comm.). Molecular data will certainly aidin the interpretation of this puzzling group.

Morphological and biochemical characters alsoshould be examined, especially in the light ofmolecular findings, in order to identify non-molecular synapomorphies that support the ndhFclades. Taxonomic studies at lower levels todemarcate species limits are desperately neededfor many subgeneric groups. Many nomenclatur-al issues also need careful clarification.

In light of these uncertainties, new formal taxo-nomic designations for infrageneric categories inSolanum are strongly discouraged without moreextensive data and sampling. Progress will not befacilitated by the creation of yet more formalnames that must be sifted through by all subse-quent workers in the group. Informal names forspecies groups or clades (e.g., Whalen, 1984; Knapp, 1989, 2000, 2002; Bohs, 1994, 2001) are

encouraged until enough data have accumulatedto positively demarcate and define distinct evolu-tionary units within Solanum.

ACKNOWLEDGMENTSThis paper is dedicated to the late W. G. D’Arcy, apioneer in the field of Solanaceae systematics anda gracious and supportive colleague. His exten-sive knowledge and sage advice on many mattersof nomenclature, morphology, and evolution ofsolanaceous plants have been greatly appreciat-ed and are sorely missed. I especially acknowl-edge Bill’s constant support of my research andcareer, beginning from my graduate student dayswhen I knew next to nothing about Solanaceae.From revealing obscure field sites for rareSolanum species to providing advice for dealingwith difficult colleagues, Bill was unfailingly posi-tive, helpful, and human.

I also thank other friends and colleagues for theirhelp with this project: R. G. Olmstead, who hasshared freely of his expertise, lab facilities, sam-ples, sequences, and ideas; M. Nee, S. Knapp, andD. Spooner, who provide constant assistance of allkinds; M. Johnson, A. Freeman, S. King-Jones, A.Egan, A. Moore, and P. Reeves for technical assis-tance; D. Reed for help with the likelihood analy-sis; D. Spooner and an anonymous reviewer forcomments on the manuscript; the greenhousestaff of the University of Utah and DukeUniversity for maintaining living collections; J.Solomon of MO for granting permission toremove leaf material from herbarium specimens;T. Mione, A. Child, J. Franciso-Ortega, R. N. Lester,M. Welman, A. Egan, the Botanic Garden at theUniversity of Nijmegen, The Netherlands, andnumerous field companions for help in obtainingmaterial of Solanaceae. This research was sup-ported by National Geographic Society Grant6189-98 and National Science Foundation grantsDEB-9207359 and DEB-9996199.

LITERATURE CITED Bitter, G. 1912. Solana nova vel minus cognita. III.

X. Sectio: Gonatotrichum Bitter, nov.sect. Repert. Spec. Nov. Regni Veg. 11:230–234.

Page 19: MAJOR CLADES IN SOLANUMBASED ON ndhF SEQUENCE DATA

MAJOR CLADES IN SOLANUM BASED ON ndhF SEQUENCE DATA

45

—. 1913a. Solana nova vel minus cognita. X. XXIII.Sectio: Rhynchantherum Bitter, nov. sect.Repert. Spec. Nov. Regni Veg. 12: 61–65.

—. 1913b. Solana nova vel minus cognita XII.XXXVII. Sectio: Cyphomandropsis Bitter,nov. sect. Repert. Spec. Nov. Regni Veg.12: 461–467.

—. 1918. XXIII. Solanaceae quattuor austro-amer-icanae adhuc generibus falsis adscriptae.Repert. Spec. Nov. Regni Veg. 15:149–155.

—. 1919. Die papuasischen Arten von Solanum.Bot. Jahrb. 55: 59–113.

—. 1921. Aufteilung der Gattung Bassovia (imDunalschen Sinne) zwischen Solanum,Capsicum, und Lycianthes. Repert. Spec.Nov. Regni Veg. 17: 328–335.

Bohs, L. 1988. The Colombian species ofCyphomandra. Revista Acad. Colomb. Ci.Exact. 16: 67–75.

—. 1989. Solanum allophyllum (Miers) Standl. andthe generic delimitation of Cyphoman-dra and Solanum (Solanaceae). Ann.Missouri Bot. Gard. 76: 1129–1140.

—. 1990. The systematics of Solanum sectionAllophyllum (Solanaceae). Ann. MissouriBot. Gard. 77: 398–409.

—. 1994. Cyphomandra (Solanaceae). Fl. Neotrop.Monogr. 63.

—. 1995. Transfer of Cyphomandra (Solanaceae)and its species to Solanum. Taxon 44:583–587.

—. 2001. A revision of Solanum sectionCyphomandropsis (Solanaceae). Syst.Bot. Monogr. 61: 1–85.

— & R. G. Olmstead. 1997. Phylogenetic relation-ships in Solanum (Solanaceae) based onndhF sequences. Syst. Bot. 22: 5–17.

— & —. 1999. Solanum phylogeny inferred fromchloroplast DNA sequence data. Pp.97–110 in M. Nee, D. E. Symon, R. N.Lester & J. P. Jessop (editors), Solanaceae

IV: Advances in Biology and Utilization.Royal Botanic Gardens, Kew.

— & —. 2001. A reassessment of Normania andTriguera (Solanaceae). Pl. Syst. Evol. 228:33–48.

Child, A. 1983. Taxonomic studies in Solanum L. 1.Section Nemorense Child, sectio nova.Feddes Repert. 94: 35–42.

—. 1984a. Taxonomic studies in Solanum L. 2. Twonew infrageneric taxa for the subgenusSolanum. Feddes Repert. 95: 141–150.

—. 1984b. Studies in Solanum L. (and related gen-era) 3. A provisional conspectus of thegenus Cyphomandra Mart. ex Sendtner.Feddes Repert. 95: 283–298.

—. 1986. Taxonomic studies in Solanum L. (andrelated genera) 4. Cyphomandra casanaChild sp. nov. and Solanum sect.Glaucophyllum Child sect. nov. FeddesRepert. 97: 143–146.

—. 1990. A synopsis of Solanum subgenusPotatoe (G. Don) D’Arcy (Tuberarium(Dun.) Bitter (s.l.)). Feddes Repert.101(5–6): 209–235.

—. 1998. Studies in Solanum and related genera(6). New infrageneric taxa for the genusSolanum L. (Solanaceae). Feddes Repert.109(5–6): 407–427.

— & R. N. Lester. 2001. Synopsis of the genusSolanum L. and its infrageneric taxa. Pp.39–52 in R. G. van den Berg, G. W. M.Barendse, G. M. van der Weerden & C.Mariani (editors), Solanaceae V:Advances in Taxonomy and Utilization.Nijmegen Univ. Press, The Netherlands.

Danert, S. 1970. Infragenerische Taxa der GattungSolanum L. Kulturpflanze 18: 253–297.

D’Arcy, W. G. 1972. Solanaceae studies II:Typification of subdivisions of Solanum.Ann. Missouri Bot. Gard. 59: 262–278.

—. 1973. Solanaceae. Flora of Panama. Ann.Missouri Bot. Gard. 60: 573–780.

Page 20: MAJOR CLADES IN SOLANUMBASED ON ndhF SEQUENCE DATA

46

A FESTSCHRIFT FOR WILLIAM G. D’ARCY

—. 1986. The calyx in Lycianthes and some othergenera. Ann. Missouri Bot. Gard. 73:117–127.

—. 1991. The Solanaceae since 1976, with areview of its biogeography. Pp. 75–137in J. G. Hawkes, R. N. Lester, M. Nee & N.Estrada (editors), Solanaceae III:Taxonomy, Chemistry, Evolution. RoyalBotanic Gardens, Kew.

—. 1992. Solanaceae of Madagascar: Form andgeography. Ann. Missouri Bot. Gard. 79:29–45.

—. 2001. Solanaceae. Pp. 2376–2426 in W. D.Stevens, C. Ulloa Ulloa, A. Pool & O. M.Montiel (editors), Flora de Nicaragua.Monogr. Syst. Bot. Missouri Bot. Gard. 85(Tomo 3).

Doyle, J. J. & J. L. Doyle. 1987. A rapid DNA isola-tion procedure for small quantities offresh leaf tissue. Phytochem. Bull. 19:11–15.

Dunal, M.-F. 1813. Histoire des Solanum, et desgenres qui ont été confondus avec eux.Koenig, Paris.

—. 1816. Solanorum generumque affinium syn-opsis, Ed. 2. Renaud, Montpellier.

—. 1852. Solanaceae. Pp. 1–690 in A. P. deCandolle (editor), Prodromus SystematisNaturalis Regni Vegetabilis, Vol. 13(1).Victoris Masson, Paris.

Francisco-Ortega, J., J. G. Hawkes, R. N. Lester & J.R. Acebes-Ginovés. 1993. Normania, anendemic Macaronesian genus distinctfrom Solanum (Solanaceae). Pl. Syst.Evol. 185: 189–205.

Gilli, A. 1970. Bestimmungsschlüssel derSubgenera und Sektionen der GattungSolanum. Feddes Repert. 81: 429–435.

Hunziker, A. T. 2000. Miscellaneous novelties inthe taxonomy of Solanaceae. Kurtziana28: 55–64.

—. 2001. Genera Solanacearum. A. R. G. Ganter, Ruggell.

Knapp, S. 1989. A revision of the Solanumnitidum group (section Holophylla proparte): Solanaceae. Bull. Brit. Mus. (Nat.Hist.), Bot. 19: 63–112.

—. 2000. A revision of Solanum thelopodiumspecies group (section Anthoresis sensuSeithe, pro parte): Solanaceae. Bull. Nat.Hist. Mus. Lond. (Bot.) 30: 13–30.

—. 2002. Solanum section Geminata(Solanaceae). Fl. Neotrop. Monogr. 84.

— & T. Helgason. 1997. A revision of Solanum sec-tion Pteroidea: Solanaceae. Bull. Nat.Hist. Mus. Lond. (Bot.) 27: 31–73.

Linnaeus, C. 1753. Species Plantarum. [Facsimileof the first edition, 1957.] The RaySociety, London.

Macbride, J. F. 1962. Solanaceae. Flora of Peru.Field Mus. Nat. Hist., Bot. Ser. 13(5B):1–267.

Marzell, H. 1927. Solanaceae. Pp. 2548–2625 in G.Hegi (editor), Illustrierte Flora vonMittel-Europa. Vol. 5, Part 4. J. F.Lehmanns, Munich, Germany.

Miers, J. 1855. XVII. On the genera Pionandra,Cliocarpus, and Paecilochroma.Pionandra. Ann. Mag. Nat. Hist., ser. 2.15: 196–200.

Morton, C. V. 1976. A Revision of the ArgentineSpecies of Solanum. Academia Nacionalde Ciencias, Córdoba, Argentina.

Moscone, E. A. 1992. Estudios de cromosomasmeióticos en Solanaceae de Argentina.Darwiniana 31: 261–297.

Nee, M. 1979. A Revision of Solanum sectionAcanthophora. Ph.D. Thesis, Universityof Wisconsin, Madison.

—. 1989. Notes on Solanum sect. Gonatotrichum.Solanaceae Newslett. 3(1): 80–82.

—. 1999. Synopsis of Solanum in the New World.Pp. 285–333 in M. Nee, D. E. Symon, R. N.Lester & J. P. Jessop (editors), SolanaceaeIV: Advances in Biology and Utilization.Royal Botanic Gardens, Kew.

Page 21: MAJOR CLADES IN SOLANUMBASED ON ndhF SEQUENCE DATA

MAJOR CLADES IN SOLANUM BASED ON ndhF SEQUENCE DATA

Nixon, K. C. 1999. The parsimony ratchet, a newmethod for rapid parsimony analysis.Cladistics 15: 407–414.

Olmstead, R. G. & J. D. Palmer. 1992. A chloroplastDNA phylogeny of the Solanaceae:Subfamilial relationships and characterevolution. Ann. Missouri Bot. Gard. 79:346–360.

— & —. 1997. Implications for the phylogeny, clas-sification, and biogeography of Solanumfrom cpDNA restriction site variation.Syst. Bot. 22: 19–29.

—, J. A. Sweere, R. E. Spangler, L. Bohs & J. D.Palmer. 1999. Phylogeny and provisionalclassification of the Solanaceae based onchloroplast DNA. Pp. 111–137 in M. Nee,D. E. Symon, R. N. Lester & J. P. Jessop(editors), Solanaceae IV: Advances inBiology and Utilization. Royal BotanicGardens, Kew.

Olsen, G. J., H. Matsuda, R. Hagstrom & R.Overbeek. 1994. fastDNAml: A tool forconstruction of phylogenetic trees ofDNA sequences using maximum likeli-hood. Computer Applic. Biosci. 10:41–48.

Rusby, H. H. 1896. On the collections of Mr.Miguel Bang in Bolivia—Part III. Mem.Torrey Bot. Club 6: 1–130.

Seithe, A. 1962. Die Haararten der GattungSolanum L. und ihre taxonomischeVerwertung. Bot. Jahrb. 81(3): 261–336.

Sendtner, O. 1845. De Cyphomandra, novoSolanacearum genere tropicaeAmericae. Flora 28: 161–176.

Sikes, D. S. & P. O. Lewis. 2001. PAUPRat: PAUP*Implementation of the ParsimonyRatchet. Beta software, version 1.Distributed by the authors, Departmentof Ecology and Evolutionary Biology,University of Connecticut, Storrs.

Smith, L. B. & R. J. Downs. 1966. Solanáceas. Pp.1–321 in P. R. Reitz (editor), FloraIlustrada Catarinense. Itajaí, Brazil.

Spooner, D. S., G. J. Anderson & R. K. Jansen.1993. Chloroplast DNA evidence for theinterrelationships of tomatoes, pota-toes, and pepinos (Solanaceae). Amer. J.Bot. 80: 676–688.

Swofford, D. 2002. PAUP*. Version 4.0b10.Sinauer, Sunderland, Massachusetts.

Symon, D. E. 1981. A revision of the genusSolanum in Australia. J. Adelaide Bot.Gard. 4: 1–367.

—. 1994. Kangaroo apples: Solanum sect.Archaesolanum. State Herbarium ofSouth Australia, Adelaide, Australia.

Whalen, M. D. 1984. Conspectus of species groupsin Solanum subgenus Leptostemonum.Gentes Herb. 12: 179–282.

47

Page 22: MAJOR CLADES IN SOLANUMBASED ON ndhF SEQUENCE DATA

48

A FESTSCHRIFT FOR WILLIAM G. D’ARCY

Figure 1. Strict consensus of 18,200 trees of 1053 steps from parsimony analysis of ndhF data. Numbers above branches are bootstrap values (500 replicates). Major clades in Solanum discussed in the text are labeled.

Page 23: MAJOR CLADES IN SOLANUMBASED ON ndhF SEQUENCE DATA

MAJOR CLADES IN SOLANUM BASED ON ndhF SEQUENCE DATA

49

Figure 1 continued.

Page 24: MAJOR CLADES IN SOLANUMBASED ON ndhF SEQUENCE DATA