Magnificent Magnets - Magnets science in HigH Magnetic ......

download Magnificent Magnets - Magnets science in HigH Magnetic ... kitchen•magnets•or•the•magnets•found•in•wind•turbines•and ... developing•magnetic•levitation.

of 24

  • date post

    15-Mar-2018
  • Category

    Documents

  • view

    216
  • download

    2

Embed Size (px)

Transcript of Magnificent Magnets - Magnets science in HigH Magnetic ......

  • D

    . Mor

    el P

    hoto

    grap

    heMagnificent Magnets science in HigH Magnetic fields

  • 1

    32

    4

    1 HfMl nijmegen

    2 lncMi toulouse

    3 lncMi grenoble

    4 Hld dresden

    contents

    Welcome 3taming extremely strong forces 4eMfl Research in Your Hands 5High Magnetic fields 8inviting the Worlds Best scientists 11 international Users 12training Young Researchers 14nobel Prize: sir Konstantin novoselov 16Reaching out science and economy 19Reaching out the Public 20imprint 23

  • 3

    WelcoMe to tHe eURoPean Magnetic field laBoRatoRY

    Highmagneticfieldsarepowerfultoolsusedtostudy,modify, andcontrolthedifferentstatesofmatter.Itisthemissionoftheeuropean Magnetic field laboratory (eMfl) to generate the highestpossiblemagneticfieldsforuseinscientificresearchandmakethemavailabletothescientificcommunity.

    InatrulyEuropeanspirit,thethreeEuropeanmajorhighmagneticfieldlaboratoriesareworkingtogetherasasingleunit:theEMFL.LocatedintheheartofEurope,theuniquemagnetsattractscientistsfromallovertheworldwhoareinneedoftheseextremefieldsfortheirresearch.TheEMFLshighmagneticfieldshelpscientistsrevealsometimesunexpectedbutalwayshighlyvaluablepropertiesofthematerialstheyarestudying.Thestrongfieldscanbearrangedinsuchawaythattheyareevenabletoturngravityupsidedown!Noneedtoconductresearchinaspaceshipwhenyouhaveastrongmagnetyoucanuseinstead.

    Highmagneticfieldexperimentsaretheidealwaytogaininsightsintothematterthatsurroundsus.Magneticfieldsallowforthesystematicmanipulationandcontrolofmaterialpropertieswhichiswhythesekindsofexperimentsareconductedonnewmaterialssothattheirfundamentalpropertiescanbeexploredandsothattheycanbeoptimisedforfutureapplication.Verycommonly,ma-terialsresearchprovidesthebasisforinnovationsthathelpboosttheeconomywhileofferingcleantechnologysolutionstoproblemswearefindingourselvesfacedwithintodaysworld.Thinkonlyofenergy-efficientdatastorage,solarcells,sensorsthelistgoeson.

    16 Nobel Prizes iN Physics, chemistry, aNd mediciNe are closely liNked to magNetic field research.

    a euroPeaN collaboratioN

    iNNovatioNs

  • 4

    TheforcesactingwithintheEMFLmagnetsareincrediblypowerful.Inastrongmagneticfieldofabout100teslas,themagneticforceinsidetheconductorwouldgenerateapressurethatequals40,000timestheairpressureatsealevel.However,oneshouldalwaysbearin mind that these magnets are research tools and that their utility doesntdependexclusivelyonthefieldstrength.Otherfactorssuchaspulsedurationandboresizearealsoimportantforrealizingstate-of-the-arthigh-fieldmeasurements.

    Transportablepulsedmagnetsandgeneratorsallowingfieldsofupto40teslastobecombinedwithlargeneutron,X-ray,orlasersourceshavebeendevelopedattheEMFLlabs.Neutronandsynchrotronex-perimentsinpulsedfieldsallowresearcherstorevealthemicroscopicpropertiesofmatter;theyareconductedjointlybetweentheEMFLandanumberoflargefacilitiesthatareleadersintheirfield,suchasthe institut laue-langevin and the european synchrotron Radiation SourceinGrenoble,France,bothofthemEuropeanresearchfacilities.

    Magneticfieldscanhelpdefeatcancer.Notonlyaretheyusedtotracetumourswiththehelpofmagneticresonanceimaging(MRI),EMFLresearchersalsowanttousethemtocomeupwithacompactand inexpensive alternative to present-day cancer therapies such asprotonbeamtherapyusinglaser-particleacceleration.Pulsedmagnets,developedandbuiltintheEMFLlabs,couldbeusedtofocustheraysonthetumourwithhighprecisionsothattheenergycanbedischargedinexactlytherightspot.However,untilthesenewdevelopmentsfindtheirwayintohospitalsandtopatients,alotmoreresearchhastobedone.

    Alongwiththeirexternalpartners,EMFLresearchersareinvestiga- tingpossibilitiesforforming,joining,andweldingmetals,whichcouldotherwisenotbewelded.Howisthissupposedtowork?Byusingveryshortandintensemagnetic-fieldpulses,largecompressiveforcesmayactonmaterials.Forthatreason,workpiecescanbedeformedatenormousspeedseventothepointwheretheygetjointorweldedtogetheralthoughnotheated.Pulsedelectromagneticfieldforming,joining,andweldingisanenergy-efficientcutting-edgetechnologywithmanyextrabenefitsforeconomyandenvironment.

    aMong ManY OTHERTHINGS,THE eMfl scientists tame extremely stroNg forces

    fight caNcer

    form metal

    create magNets for other euroPeaN or NatioNal large research facilities

  • 5

    Your mobile phone is actually madeupofalotofdifferentma-terials and technologies that all originatedinmaterialsresearch.Theprocessorconsistsofmanytiny transistors in the nanometre range.Thebrightscreenthatsobrilliantlyshowsyourpicturesismostlikelymadefromathinfilm.Electronsrunthroughthisfilm,inthe process changing the colours so that you end up getting this verybrilliantimage.Andthememoryismadefrommaterialsdesignedwithinsightsgainedfrommagneticfieldresearch.

    A

    ndre

    s R

    odri

    guez

    F

    otol

    ia.c

    om

    eMfl ReseaRcH in YoUR Hands

  • 6

    The EMFL labs capacitor banks in Toulouse and Dresden are capable of generating the large currents necessary to produce pulsed high magnetic fields.

    Cyri

    l Fr

    sillo

    n / C

    NR

    S

    What does it take to create a magnetic field?

    Electric currents generate a magnetic field. By winding a metallic wire into a coil, the magnetic field is concentrated at its centre. Enormous currents are needed to create a strong magnetic field.

  • 7

    dr kamraN behNia laBoRatoiRe de PHYsiqUe et dtUde dESMATRIAuX,PARIS

    Overthepastcoupleofdecades,Ivebeenexploringthewayen-tropyiscarriedbyelectronstravellinginasolidbody.Oneparticu-larly interesting phenomenon is the Nernsteffect ,atinyvoltage,whichappearswhenheatflowsinthepresenceofamagneticfield.TheNernsteffectisparticularlysignificantinsuchsemi-metalsasbismuthandgraphite,whichhavealowconcentrationofconduc-tionelectrons.Inthesesolids,asinglemobileelectronissharedbyseveralthousandatoms,whichgivesitaratherlongwavelength.Moreover,eachsingleoneoftheseelectronsisextremelymobileandcapableofcarryingalotofentropy.

    MygrouphasbecomearegularvisitorattheEMFLhighfieldfacil-itieswhereweareabletostudytheNernsteffect.Forourinvesti-gations,weneedstrongmagneticfields.Amagneticfieldconfineselectronstoquantizedorbits.Thelargerthemagneticfield,thesmallerthequantizedorbit.Aparticularlyinterestingsituationariseswhentheorbitsradiusbecomescomparabletotheelectronwavelength.Thisisthequantumlimitwhentheelectronsparticle-andwave-likepersonalitiesclash.OurNernstexperimentshaveshownthatthephysicsbecomehighlycomplexinthiscasemuchlikeanintricatepuzzlewithmanydifferentpiecesthathavetoallbearrangedintheproperorder.

    Overthelastfewyears,wehaveperformedexperimentsonvari-oussystemsrangingfromsuperconductorstoinsulatorsinworld-classfacilitiesatGrenoble,Toulouse,andNijmegen.Notonlydidourhostsatthesefacilitiesgrantusaccesstotheirpowerfulmagnets,theyalsosharedwithustheirimpressivetechnicalknow-how.Wegreatlyappreciatetheuser-friendlyatmosphere,whichisverywelcomingtopeoplelikeuswishingtoimplementanew,unusualexperimentaltechniqueinstrongmagneticfields.WehopetoberegularvisitorsattheEMFLfacilitiesalsointhefuture.

    Why are magnetic fields so useful for research?

    Anyone who has ever played with a magnet will have witnessed its ability to attract iron from a distance. Magnetic fields force materials to change the orbit and magnetic spin of their elec-trons. This allows for changing and controlling of material prop-erties, with many benefits for applications and research. The tailored manipulation of material properties make high magnetic fields a perfect research tool.

    Today, strong magnets are used almost routinely in medical diagnostic equipment like MRI scanners, which expose patients to magnetic fields 50,000 times more powerful than Earths own magnetic field.

  • 8

    HigH Magnetic fields alloW scientists to:

    exPlore the ProPerties of New materialsSoonafterAndreGeimandKonstantinNovoselovfirstcreatedgrapheneacarbonsheetoneatominthicknessinManchester,theyrushedacrosstheChanneltoinvestigatethepropertiesofthisextraordinarymaterialinahighmagneticfield.AttheNijmegenEMFLmagnetlab,theysoondiscoveredgraphenesremarkableelectronicandconductiveproperties,afeatwhichultimatelyledtotheirwinningthe2010NobelPrizeinPhysics.Thefirstcommercial-lyavailabletechnologicalapplicationsofgraphenesuchasmobilephoneswithflexiblescreensarenowonlyamatteroftime.

    maNiPulate matterSyntheticororganicmaterialsarefrequentlymadeupoflong,entangledmolecules.Theirstructureresemblesaplateofcookedspaghetti.Whenthesemoleculesareexposedtoamagneticfield,theycanbealignedinonedirectionlikeboxeddryspaghetti.Thiscanchangeanopaqueintoatransparentmaterialorimprovetheelectricalconductivityoforganicmaterials.Becauselikethespa-ghetti,themoleculeswillallbepointinginthesamedirection,andtheylltransportenergymuchmoreefficiently.usingthistechnique, coronenemoleculeswereusedtocreateanorganictransistor.

    What does tesla mean anyWay?

    The tesla (abbreviated T) is the international standard unit of the magnetic field or, more precise, of the magnetic flux density. A traditional horseshoe magnet is one tenth of a tesla. Earths magnetic field is consid-erably smaller (thirty thousand times smaller than a tesla). The EMFL magnets range from 35 teslas for a co