Magnetic Superfluidity (from HPD to Q – ball)

48
Yuriy M. Bunkov CRTBT - CNRS, Grenoble, France Magnetic Superfluidity (from HPD to Q – ball)

description

Magnetic Superfluidity (from HPD to Q – ball). Yuriy M. Bunkov. CRTBT - CNRS, Grenoble, France. Spin supercurrent. Fast relaxation in 3He-A. Real explanation. Instability of homogeneous precession (Fomon, Borovik-Romanov, Bunkov, Dmitriev Mukharskiy). Review. - PowerPoint PPT Presentation

Transcript of Magnetic Superfluidity (from HPD to Q – ball)

Page 1: Magnetic Superfluidity (from HPD to Q – ball)

Yuriy M. Bunkov

CRTBT - CNRS, Grenoble, France

Magnetic Superfluidity (from HPD to Q – ball)

Page 2: Magnetic Superfluidity (from HPD to Q – ball)

1. Spin supercurrent2 20 years of homogeneously precessing domain3. Other coherent magnetic states in 3He4. Q-balls

Spin supercurrent

Fast relaxation in 3He-A

Real explanation. Instability of homogeneous precession (Fomon, Borovik-Romanov, Bunkov, Dmitriev Mukharskiy)

Review

Strange Long Lived Induction Decay Signal

Page 3: Magnetic Superfluidity (from HPD to Q – ball)

A.S. Borovik-RomanovYu.M. BunkovV.V.DmitrievYu.M.Mukharsky

I.A.Fomin

1984

A.S.Borovik-Romanov, Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy, JETP Letters v.40, p.1033, (1984). I.A.Fomin, JETP Letters v.40, p.1036, (1984).

HPD discovery

1. Closed geometry of the cell2. Digital memory recorder.

1. 100% Long Lived IDS2. Frequency changes with amplitude

Page 4: Magnetic Superfluidity (from HPD to Q – ball)

e I(r t)e I(r t)

Mass superflow

ki

Spin supercurrent

Page 5: Magnetic Superfluidity (from HPD to Q – ball)

H H

Domain with Homogeneous Precession of Magnetization, 1984

Page 6: Magnetic Superfluidity (from HPD to Q – ball)

H H

A.S.Borovik-Romanov, Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy, JETP Letters v.40, p.1033, (1984). Sov.Phys.JETPh, v.61, p.1199, (1985). I.A.Fomin, JETP Letters v.40, p.106, (1984).

Domain with Homogeneous Precession of Magnetization, 1984

Domain with Homogeneous Precession of Magnetization, 1984

Page 7: Magnetic Superfluidity (from HPD to Q – ball)

H H

A.S.Borovik-Romanov, Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy, JETP Letters v.40, p.1033, (1984). Sov.Phys.JETPh, v.61, p.1199, (1985). I.A.Fomin, JETP Letters v.40, p.1036, (1984).

Domain with Homogeneous Precession of Magnetization, 1984

Domain with Homogeneous Precession of Magnetization, 1984

Page 8: Magnetic Superfluidity (from HPD to Q – ball)

H H

A.S.Borovik-Romanov, Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy, JETP Letters v.40, p.1033, (1984). Sov.Phys.JETPh, v.61, p.1199, (1985). I.A.Fomin, JETP Letters v.40, p.1036, (1984).

Domain with Homogeneous Precession of Magnetization, 1984

Domain with Homogeneous Precession of Magnetization, 1984

JMJM = A + B

Page 9: Magnetic Superfluidity (from HPD to Q – ball)

H H

A.S.Borovik-Romanov, Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy, JETP Letters v.40, p.1033, (1984). Sov.Phys.JETPh, v.61, p.1199, (1985). I.A.Fomin, JETP Letters v.40, p.1036, (1984).

Domain with Homogeneous Precession of Magnetization, 1984

Domain with Homogeneous Precession of Magnetization, 1984

H =

d Ed

d Sz

Page 10: Magnetic Superfluidity (from HPD to Q – ball)

s

s

s

R(n)

L

SH

R(n) L

H

S

Ed

Ed

Yu.M.Bunkov, G.E.Volovik, Homogeneously Precessing Domains in 3He-B, JETP, v.76, p. 794, (1993).

0

0

1 1

SzLz

Page 11: Magnetic Superfluidity (from HPD to Q – ball)

Dipole + magnetic gradient energy

104°

H

L

104°

R(n,)

S H

Dipole energy

Brinkman – Smith mode

1. Magnetization conservation2. Longitudinal Magnetization conservation

Page 12: Magnetic Superfluidity (from HPD to Q – ball)

H H

RF

JM

RF

Magnetization transport by Spin Supercurrent

+ Spin vortex phase slippage

Critical current

Page 13: Magnetic Superfluidity (from HPD to Q – ball)

H H

RF

JM

Josephson effect

RF

Linear and non-linear

Page 14: Magnetic Superfluidity (from HPD to Q – ball)

HPD

Catastropha

PSPS

Grenoble, 1999Coherent, Magnetically Excited States

Catastrophic relaxation

Yu.M.Bunkov, V.V.Dmitriev, Yu.M.Mukharskiy, J.Nyeki, D.A.Sergatskov, Europhysics Letters, v.8, p.645, (1989).

Page 15: Magnetic Superfluidity (from HPD to Q – ball)

Yu.M.Bunkov, G.E.Volovik, "On the possibility of the Homogeneously Precessing Domain in Bulk 3He-A", Europhys. Lett, v. 21, p. 837 (1993)

Yu.M.Bunkov, G.E.Volovik, " Homogeneously Precessing Domains in 3He-B", JETP, v.76, p. 794, (1993).

Possible new coherent states

V.V.Dmitriev et all. States with fractional magnetization

V.V.Dmitriev et all. Analog state in Fermi liquid at non-hydrodinamic regime

Page 16: Magnetic Superfluidity (from HPD to Q – ball)

s

s

s

R(n)

L

SH

R(n) L

H

S

Ed

Ed

Yu.M.Bunkov, G.E.Volovik, Homogeneously Precessing Domains in 3He-B, JETP, v.76, p. 794, (1993).

0

0

1 1

SzLz

Page 17: Magnetic Superfluidity (from HPD to Q – ball)

+ surface energy

L

SS

L

L

S

H

Nonwetting. conditions for coherent quantum precession

Yu.M.Bunkov, O.D.Timofeevskaya, G.E.Volovik Phys. Rev. Lett., v. 73. p. 1817, (1994)

0

0,2

0,4

0,6

0,8

1

0 1 2 3 4 5 6 7 8

nz

x/

SD HPD

H

x0

L

S

X0

z

L

S

HPD

SD

S

F

LS

Page 18: Magnetic Superfluidity (from HPD to Q – ball)

s

s

s

R(n)

L

SH

R(n) L

H

S

Ed

Ed

0

0

1 1

SzLz SzLz

Page 19: Magnetic Superfluidity (from HPD to Q – ball)

0

20

40

60

80

100

120

0 10 20 30 40 50

Page 20: Magnetic Superfluidity (from HPD to Q – ball)

S

L0

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 500

20

40

60

80

100

120

0 10 20 30 40 50

Surface Instability of Coherent Precession

Yu.M. Bunkov, V.L. Golo, O.D. Timofeevskaya, Czechoslovak Journal of Phys. V. 46, S1, p. 213 (1996).

Position, 0.1 mm

Ang

les

of d

efle

ctio

n, d

egre

e

Page 21: Magnetic Superfluidity (from HPD to Q – ball)

0

20

40

60

80

100

120

0 10 20 30 40 50

Position, 0.1 mm

Ang

les

of d

efle

ctio

n, d

egre

e

Page 22: Magnetic Superfluidity (from HPD to Q – ball)

2. Coherenent State, which radiates the Persistent signal

Moscow resultsYu.M.Bunkov, S.N.Fisher, A.M.Guenault, G.R.Pickett, S.R.Zakazov, Physica B, v. 194, p. 827, (1994).

Discovery, Lancaster, 1992Yu.M.Bunkov, S.N.Fisher, A.M.Guenault, G.R.Pickett, Phys, Rev, Letters, v.69, p3092, (1992).

``Coherent Spin Precession and Texture in 3He-B.''Yu.M. Bunkov, LT-21, Czechoslovak Journal of Phys. V. 46, S1, p. 231 (1996).

Lancaster experimental conformationYu.M. Bunkov, D.J. Cousins, M.P.Enrico, S.N.Fisher, G.R.Pickett, N.S.Shaw, W.Tych, LT-21, Czechoslovak Journal of Phys. V. 46, S1, p. 233 (1996).

Moscow

Lancaster

Page 23: Magnetic Superfluidity (from HPD to Q – ball)

Q-ball - Spherically symmetric non-topological soliton with conserved global charge Q

Proposed by S.Coleman (1985) in frame of relativistic field theory as a semi-classical model of elementary particles formation

Current interest due to Q-balls dark matter model

E(mQ)< E(Q)m

In relativistic field theory

(r t) exp(- it)(r)

Q = d3x[i(dtdt]

E d3x[ I I2 II2 U(II)]

Q (r) = S - Sz(r)

dEddSz

= = Hdd(S,L)

S+ (r) = S (r) e it

In 3He-B

Page 24: Magnetic Superfluidity (from HPD to Q – ball)

Lz

Sz

0

10

1

1

Q (r) = S - Sz(r)

dEddSz

= = Hdd(S,L)

S+ (r) = S (r) e it

In 3He-B

Ed

Page 25: Magnetic Superfluidity (from HPD to Q – ball)

x

90°

S

L

S

x

90°

L

Page 26: Magnetic Superfluidity (from HPD to Q – ball)

x

90°

S

L

Page 27: Magnetic Superfluidity (from HPD to Q – ball)

HL

S

Follow Voislav Golo algorithm(15 equations)

Spatial case

Yu.M.Bunkov, V.L.Golo, J Low Temp Phys, to be published

+ E grad + E surf

Page 28: Magnetic Superfluidity (from HPD to Q – ball)

0

20

40

60

80

100

0 10 20 30 40 50

Position, 0.1 mm

Ang

les

of d

efle

ctio

n, d

egre

e

Page 29: Magnetic Superfluidity (from HPD to Q – ball)

0

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 500

20

40

60

80

100

0 10 20 30 40 50

Position, 0.1 mm

Ang

les

of d

efle

ctio

n, d

egre

e

Page 30: Magnetic Superfluidity (from HPD to Q – ball)

0

20

40

60

80

100

0 10 20 30 40 50

Position, 0.1 mm

Ang

les

of d

efle

ctio

n, d

egre

e

Page 31: Magnetic Superfluidity (from HPD to Q – ball)

0

0,5

1

1,5

2

2,5

0 50 100 150 200 250

Time, (arb.units)

Larmore freq.

Max NMR shift

Page 32: Magnetic Superfluidity (from HPD to Q – ball)

HL

S

3D Q-ball

Page 33: Magnetic Superfluidity (from HPD to Q – ball)

HL

S

Q ball on topological defect

Page 34: Magnetic Superfluidity (from HPD to Q – ball)

0

20

40

60

80

100

0 10 20 30 40 50Position in the cell

S

L H H

Computer simulationGrenoble 2004

H

Lz

LH

z

Calculations of a spatial deflection of spin and orbit on basis of Poisson brackets and Takagi relaxation

Follow Voislav Golo algorithm

Page 35: Magnetic Superfluidity (from HPD to Q – ball)

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

N9500RM.BH

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

N9400RM.BH

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

N9300RM.BH

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

N9200RM.BH

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

Grenoble, 2004

Ang

les

of d

efle

ctio

n, d

egre

e

Position, 0.1 mm

Page 36: Magnetic Superfluidity (from HPD to Q – ball)

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

Grenoble, 2004

Ang

les

of d

efle

ctio

n, d

egre

e

Position, 0.1 mm

Page 37: Magnetic Superfluidity (from HPD to Q – ball)

1% HPD

Page 38: Magnetic Superfluidity (from HPD to Q – ball)

HL

S

Page 39: Magnetic Superfluidity (from HPD to Q – ball)

Non-linear Stationary Spin Waves in Flared out texture

NMR of Rotated superfluid 3He-B O.T.Ikkala, G.E.Volovik, P.Y.Hakonen,

Yu.M.Bunkov, S.T.Islander, G.A.Haradze, JETP Letters v.35, p.416 (1982).

L

First observation of Spin Waves in Orbital Texture

D.D.Osheroff, Physica B, 90, 20 (1977).

An

gle

L-H

Before rotation During rotation After rotation

H

Page 40: Magnetic Superfluidity (from HPD to Q – ball)

Grenoble experiments with Non-linear Stationary Spin Waves

0.25 Tc

A.-S. Chen, Yu.M. Bunkov, H. Godfrin, R. Schanen, F. Scheffer. J. Low Temp. Phys, 110, p. 51, (1998).

Page 41: Magnetic Superfluidity (from HPD to Q – ball)
Page 42: Magnetic Superfluidity (from HPD to Q – ball)

Following Landau and Lifchitz we consider an anharmonic oscillator with a third order of nonlinearity

Non-linear Stationary Spin-waves – or Q ball, if you like!

A.S. Chen,Yu. M. Bunkov, H. Godfrin, R. Schanen and F. Scheffler J. of Low Temp. Phys. 113, 693 (1998).

Page 43: Magnetic Superfluidity (from HPD to Q – ball)

H H

H

=H+ Hz

Quantum billiard

Anne-Sophie CHEN, Ph D Thesis, Grenoble, (1999)

Page 44: Magnetic Superfluidity (from HPD to Q – ball)

Grenoble, 1999Off-resonante NMR excitation

D.J.Cousins, S.N.Fisher, A.I.Gregory, G.R.Pickett, N.S.Shaw, Phys. Rev. Lett, 82, 4484, (1999)

Anne-Sophie CHEN, Ph D Thesis, Grenoble, (1999)

s

pd

rf

rf

Qb

dd

Page 45: Magnetic Superfluidity (from HPD to Q – ball)

Identity of Non-linear SSW and Persistent Signals

Grenoble, 1997. A.-S. Chen, Yu.M. Bunkov, H. Godfrin, R. Schanen, F. Scheffer. J. Low Temp. Phys, 110, p. 51, (1998).

Page 46: Magnetic Superfluidity (from HPD to Q – ball)

Conclusions

5. Many interesting results by Lancaster Group Spatial Manipulation of the Persistent Precessing Spin Domain in Superfluid 3He-B By: D. I. Bradley; D. O. Clubb; S. N. Fisher; A. M. Guénault; C. J. Matthews; G. R.Pickett;P.Skyba J. Low Temp.Phys, 134, 351, (2004 ) and references there

6. Off-resonance excitation, original properties of Q - ball type soliton solutions

4. PS radiates by SSW mode condensed in the minima of texture potential At low temperatures Orbital momentum participate in Magnetization precession

3. Q ball - like structures forms and can be found experimentally in superfluid 3He as a localized modes of SSW. They can be attracted by topological defects. 3He is a very good experimental system for studying Q -balls.

1. First Excited Coherent Quantum State of 3He, discovered in 1984, has very reach magnetic extension of superfluid properties: The Spin supercurrent, Josephson phenomena, phase slippage, spin vortices, magnetis coherent states etc. was found

2. The catastrophic relaxation is now completely explained

Page 47: Magnetic Superfluidity (from HPD to Q – ball)

Order parameter in superfluid 3He-B

R(n)L

S

HHL

S

Min. d-d energy Vd = 104°

R(n)

k

d

L=1, Lk = 0S=1, Sd = 0

Page 48: Magnetic Superfluidity (from HPD to Q – ball)

96

98

100

102

104

106

108

110

112

0 10 20 30 40 50

Oscillations

Position in the cell, mm

S

L

n

L=R(n) S