Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic...

40
Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin February, 2005

Transcript of Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic...

Page 1: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

Magnetic Confinement Fusion ScienceStatus and Challenges

S. PragerUniversity of Wisconsin

February, 2005

Page 2: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

Two approaches to fusion

Inertial confinementextremely dense, short-lived

Magnetic confinementrelatively dilute, long-lived

Page 3: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin
Page 4: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

The tokamak

Page 5: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin
Page 6: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

Fusion energy requires

• Heating the plasmato 100 million degrees

• Confining the plasmaenergy replacement time ~ 1 secondfor density ~ 1015 cm-3

• Extracting energy from the plasmaco-existence of hot plasma and material surface

Page 7: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

progress in confinement is measured by

fusion triple product =(density)(temperature)(energy replacement time)(1021m-3) (108K) (1 second)

Page 8: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

Progress of fusion triple product

triples every 1.8 years

ITER

Page 9: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

Huge advance in plasma parameters

year

fusion power

Page 10: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

• Progress accomplished through research infundamental plasma physics and technology

• Challenges and opportunities remain

Page 11: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

Scientific issues for fusion(not exhaustive)

• Maximize the plasma pressure

• Control plasma turbulence and energy transport

•Control plasma disruptions

•Develop new magnetic configurations

•Control the plasma-wall interaction

•Develop new materials

•Produce a burning plasma

Page 12: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

Pressure-driven instability

Rayleigh-Taylor instability in fluid,driven by gravity

heavyfluid

lightfluid

gravity

plasma instability,

driven by centrifugal force ofparticles moving alongcurved magnetic field

plasma

magneticfield

Centrifugal force

Page 13: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

Centrifugal force in a torus

centrifugalforce

magneticfield

Page 14: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

Stability theory is highly developed

• Stability depends uponmagnetic curvature, twist, shearplasma rotationlocation of conducting boundaries

• All plasmas disassemble above a pressure limit

• Feedback techniques have been developed to attainhigh pressure(plasma pressure ~ 10% of magnetic pressure)

Page 15: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

Maximizing pressure through feedback

plasmapressure

with feedback

without feedback

plasmainstability(magnetic fielddisturbance)

1.0 1.5 2.0 2.5time (seconds)

Page 16: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

Turbulence and transport

free energy sourcese.g., nonuniform Te, Ti, n, j….

turbulencefluctuating electric and magnetic fields

forces on charged particles loss of particles and energy

Page 17: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

fusion power gain depends strongly on confinement

Q = fusion powerheating power

energy confinement time0 1

Page 18: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

Plasma turbulence no longer consideredunavoidable “force of nature”

• Fundamental understanding evolving

• Control techniques evolving

• Recent insight: sheared plasma flow canreduce turbulence

Page 19: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

Most Dangerous Eddies:Transport long distances

+Sheared Flows

Sheared EddiesLess effective Eventually break up

=

Sheared Flows can Reduce or Suppress Turbulence

ωE×B ≡ ∇vE×B ~ γ

Page 20: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

Computation of plasma turbulence

Without sheared flow

With sheared flow

Page 21: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

Ion transport barrier forms

Sheared flow and ion transport barrier formsspontaneously

Next frontiers: electron turbulence, magneticturbulence

Page 22: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

Disruptions

• localized heat flux (tens of GW/m2 for 1 ms in ITER)• Induced currents in structures (hundreds of tons)• runaway electrons (tens of MA )

plasma current (MegAmps)

plasma temperature (K)

0 0.5 1.0time (seconds)

107

2

disruption

Page 23: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

Disruptions arise from sudden rearrangement ofmagnetic field

physics similarities tosolar flares

magnetic reconnection

Page 24: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

A practical method for disruption control

Permit disruption to occur,

Control its behavior by rapid injection of jet ofneutral gas

Causes energy to be radiated isotropically,

No localized heat deposition

Page 25: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

temperature(107K)

radiatedpower(GW)

Time after gas injection (ms)

radiates nearly 100% of power in 200 microseconds,

power radiated isotropically - no local damage

Page 26: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

Plasma confinement is an optimization problem withmany physics and engineering variables

Physics variables• Magnetic field curvature, twist, shear, symmetry• Plasma flow• Spatial structure of electron temperature, ion

temperature, current density…..

Optimizing the magnetic configuration requiresfundamental physics and invention

Page 27: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

Configuration optimization is an essentialpartner to tokamak research

• For fundamental plasma physics andfusion energy science

• To evolve an improved fusion energyconcept

• To contribute to scientific problems yetconfronting the tokamak

Page 28: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

The spectrum of magnetic configurations

magnetic field strongweak

self-organized

externallycontrolled

emerging highlydeveloped

examples:compact reversed field spherical stellaratortorus pinch tokamak

Page 29: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

Tokamak stellarator

simple coils

symmetric around axis

current carrying

Complex coils

Helical symmetry withinplasma

No need for plasma current

Steady-state, no disruptions

Page 30: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

Reduce aspect ratio of tokamak

Page 31: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

tokamak spherical tokamak

Instability from centrifugalforce yields mediumpressure

Centrifugal forceMagnetic fieldline

Effect of centrifugalforce weakened, yieldinghigher pressure

Page 32: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

tokamak reversed field pinch

strong toroidal magnetic field weak toroidal field

simplifies engineering

but weakens confinement

Page 33: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

Spherical tokamak compact torus

Small hole in center No hole in center of torus

Very compact

Stability under study

Page 34: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

How to interface a 100 million degreeplasma to a room temperature wall?

• Need to control the edge plasma

• Need new wall materials

Page 35: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

A temperature pedestal forms at the plasma edge

radius

107

radius

Temperature (k)

~3 cm

Page 36: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

The temperature at the heightof the pedestal is important

Page 37: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

Structures developed to withstand aheat flux of 25 MW/m2

Page 38: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

Liquid walls for fusion

Page 39: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

Scientific issues for fusion

• Maximize the plasma pressure

• Control plasma turbulence and energy transort

• Control plasma disruptions

• Develop new magnetic configurations

• Control the plasma-wall interaction

• Develop new materials

Page 40: Magnetic Confinement Fusion Science - The FIRE Placefire.pppl.gov/aaas05_prager_mfe.pdf · Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin

Conclusions

• Many scientific challenges remain

• Fusion energy science is highly advanced

We are ready to build a burning plasmaexperiment - a new frontier is fusion energy andplasma physics