Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae Jeffrey Ahern 1, Daniel...

24
Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae Jeffrey Ahern 1 , Daniel Anstett 2 , Marc Johnson 2 , Juha-Pekka Salminen 1 1 University of Turku, Finland 2 University of Toronto Mississauga, Canada

Transcript of Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae Jeffrey Ahern 1, Daniel...

Page 1: Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae Jeffrey Ahern 1, Daniel Anstett 2, Marc Johnson 2, Juha-Pekka Salminen 1 1 University.

Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae

Jeffrey Ahern1, Daniel Anstett2, Marc Johnson2, Juha-Pekka Salminen1

1 University of Turku, Finland2 University of Toronto Mississauga, Canada

Page 2: Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae Jeffrey Ahern 1, Daniel Anstett 2, Marc Johnson 2, Juha-Pekka Salminen 1 1 University.

Variation in plant defenses

Page 3: Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae Jeffrey Ahern 1, Daniel Anstett 2, Marc Johnson 2, Juha-Pekka Salminen 1 1 University.

Variation in plant defenses

Tradeoffs

Defensive Syndromes (Agrawal, 2011)

Page 4: Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae Jeffrey Ahern 1, Daniel Anstett 2, Marc Johnson 2, Juha-Pekka Salminen 1 1 University.

Oenothera (Onagraceae)

• Evening Primroses

• 147 species in genus

• New World genus:S. America – Boreal Canada

• Herbaceous

• Annual - Perennial

Page 5: Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae Jeffrey Ahern 1, Daniel Anstett 2, Marc Johnson 2, Juha-Pekka Salminen 1 1 University.

Plant Samples

Used 26 species of Oenothera

Grew in growth chambers

Performed Excised-leaf bioassays to examine resistance

Collected leaf material for secondary metabolite analysis

O. elata – SEX iO. grandiflora – SEX iO. biennis – PTH iO. rhombipetala – SEX i/iiO. clelandii – PTH iiO. longituba – SEX iO. versicolor – SEX iiiO. sandiana – PTH iiiO. affinis – SEX iiiO. villaricae – PTH iiiO. laciniata – PTH iiiO. humifusa – PTH iiiO. drummondii – SEX iiiO. grandis – SEX iiiO. heterophylla – SEX iiO. berlandieri – SEX iiiO. serrulata – PTH iiO. acutissima – SEX i/iiO. acaulis – PTH iiO. gaura – PTH iO. suffulta – SEX iiO. triangulata – PTH iiO. perennis – PTH iiiO. fruticosa – SEX iiiO. rosea – PTH iiiO. speciosa – SEX ii

Oeno.specOeno.roseOeno.frut

Oeno.pereGaur.tria

Gaur.suffGaur.bien

Oeno.acauOeno.acut

Caly.serr

Caly.berlOeno.hete

Oeno.graDOeno.drumOeno.humi

Oeno.laciOeno.vill

Oeno.affiOeno.rubi

Oeno.versOeno.lonT

Oeno.clelOeno.rhom

Oeno.bien

Oeno.graFOeno.elat

0.04 0.03 0.02 0.01 0

Oeno.specOeno.roseOeno.frut

Oeno.pereGaur.tria

Gaur.suffGaur.bien

Oeno.acauOeno.acut

Caly.serr

Caly.berlOeno.hete

Oeno.graDOeno.drumOeno.humi

Oeno.laciOeno.vill

Oeno.affiOeno.rubi

Oeno.versOeno.lonT

Oeno.clelOeno.rhom

Oeno.bien

Oeno.graFOeno.elat

0.04 0.03 0.02 0.01 0

0 0.01 0.02 0.03 0.04

Phylogenetic covariance

*

*

*

*85

51

53

**

*

85

*

*

61 *

*

** *

*

O. elata – SEX iO. grandiflora – SEX iO. biennis – PTH iO. rhombipetala – SEX i/iiO. clelandii – PTH iiO. longituba – SEX iO. versicolor – SEX iiiO. sandiana – PTH iiiO. affinis – SEX iiiO. villaricae – PTH iiiO. laciniata – PTH iiiO. humifusa – PTH iiiO. drummondii – SEX iiiO. grandis – SEX iiiO. heterophylla – SEX iiO. berlandieri – SEX iiiO. serrulata – PTH iiO. acutissima – SEX i/iiO. acaulis – PTH iiO. gaura – PTH iO. suffulta – SEX iiO. triangulata – PTH iiO. perennis – PTH iiiO. fruticosa – SEX iiiO. rosea – PTH iiiO. speciosa – SEX ii

Oeno.specOeno.roseOeno.frut

Oeno.pereGaur.tria

Gaur.suffGaur.bien

Oeno.acauOeno.acut

Caly.serr

Caly.berlOeno.hete

Oeno.graDOeno.drumOeno.humi

Oeno.laciOeno.vill

Oeno.affiOeno.rubi

Oeno.versOeno.lonT

Oeno.clelOeno.rhom

Oeno.bien

Oeno.graFOeno.elat

0.04 0.03 0.02 0.01 0

Oeno.specOeno.roseOeno.frut

Oeno.pereGaur.tria

Gaur.suffGaur.bien

Oeno.acauOeno.acut

Caly.serr

Caly.berlOeno.hete

Oeno.graDOeno.drumOeno.humi

Oeno.laciOeno.vill

Oeno.affiOeno.rubi

Oeno.versOeno.lonT

Oeno.clelOeno.rhom

Oeno.bien

Oeno.graFOeno.elat

0.04 0.03 0.02 0.01 0

0 0.01 0.02 0.03 0.04

Phylogenetic covariance

*

*

*

*85

51

53

**

*

85

*

*

61 *

*

** *

*

Page 6: Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae Jeffrey Ahern 1, Daniel Anstett 2, Marc Johnson 2, Juha-Pekka Salminen 1 1 University.

Chemical Analysis

• Measured water soluble phenolics with UPLC-UV-MS

• Identified via UV and MS spectra• Quantified with UV

Flavonoid glycosidesKaempferol

Kaempferolglycosides

Photosynthesis(Calvin cycle)

GlycolysisOxidative pentose

phosphate pathway

Acetate/malonatepathway

Shikimate pathway

Hydrolyzable tannin pathway

Ellagitannins

Phenylpropanoid pathway

Flavonoid pathway

Caffeic acid derivatesQuercetin

Quercetinglycosides

Myricetinglycosides

Myricetin

3 Ellagitannins• Oenothein B• Oenothein A• Oxidised Oenothein A

Flavonoid Glycosides(20 different compounds)

Caffeic Acid Derivatives• Caffeoyl tartaric acid• Feruloyl tartaric acid

Page 7: Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae Jeffrey Ahern 1, Daniel Anstett 2, Marc Johnson 2, Juha-Pekka Salminen 1 1 University.

• Is the composition and concentrations of plant phenolics evolutionarily conserved?

• Do traits covary with one another– Negative covariation – tradeoffs in defense strategies– Positive covariation – defensive syndromes hypothesis

• Do individual traits or suites of traits predict resistance to herbivores?

Page 8: Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae Jeffrey Ahern 1, Daniel Anstett 2, Marc Johnson 2, Juha-Pekka Salminen 1 1 University.

Is the composition and concentrations of plant phenolics evolutionarily conserved?

O. elata – SEXO. grandiflora – SEXO. Biennis - PTHO. rhombipetala – SEXO. clelandii - PTHO. longituba – SEXO. versicolor – SEXO. sandiana - PTHO. affinis – SEXO. villaricae - PTHO. laciniata - PTHO. humifusa - PTHO. drummondii – SEXO. grandis – SEXO. heterophylla – SEXO. berlandieri – SEXO. serrulata - PTHO. acutissima – SEXO. acaulis - PTHO. gaura - PTHO. suffulta – SEXO. triangulata - PTHO. perennis - PTHO. fruticosa – SEXO. rosea - PTHO. speciosa – SEX

Oeno.specOeno.roseOeno.frut

Oeno.pereGaur.tria

Gaur.suffGaur.bien

Oeno.acauOeno.acut

Caly.serr

Caly.berlOeno.hete

Oeno.graDOeno.drumOeno.humi

Oeno.laciOeno.vill

Oeno.affiOeno.rubi

Oeno.versOeno.lonT

Oeno.clelOeno.rhom

Oeno.bien

Oeno.graFOeno.elat

0.04 0.03 0.02 0.01 0

Oeno.spec

Oeno.rose

Oeno.frut

Oeno.pere

Gaur.tria

Gaur.suff

Gaur.bien

Oeno.acau

Oeno.acut

Caly.serr

Caly.berl

Oeno.hete

Oeno.graD

Oeno.drum

Oeno.humi

Oeno.laci

Oeno.vill

Oeno.affi

Oeno.rubi

Oeno.vers

Oeno.lonT

Oeno.clel

Oeno.rhom

Oeno.bien

Oeno.graF

Oeno.elat

0.04 0.03 0.02 0.01 0

0 0.01 0.02 0.03 0.04

Phylogenetic covariance

Page 9: Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae Jeffrey Ahern 1, Daniel Anstett 2, Marc Johnson 2, Juha-Pekka Salminen 1 1 University.

Is the composition and concentrations of plant phenolics evolutionarily conserved?

Trait Blomberg's K

No. of peaks at 280 nm 0.35

No. of peaks at 349 nm 0.45

Oenothein B 0.22

Oenothein A 0.74

Oxidised Oenothein A 0.39

Total ellagitannins 0.53

Total caffeic acid derivatives 0.34

Quercetin Glycoside mw 464 0.50

Total kaempferol glycosides 0.53

Total quercetin glycosides 0.34

Totel other flavonoids 0.47

Total flavonoid glycosides 0.37PC1 0.49

PC2 0.36

O. elata – SEXO. grandiflora – SEXO. Biennis - PTHO. rhombipetala – SEXO. clelandii - PTHO. longituba – SEXO. versicolor – SEXO. sandiana - PTHO. affinis – SEXO. villaricae - PTHO. laciniata - PTHO. humifusa - PTHO. drummondii – SEXO. grandis – SEXO. heterophylla – SEXO. berlandieri – SEXO. serrulata - PTHO. acutissima – SEXO. acaulis - PTHO. gaura - PTHO. suffulta – SEXO. triangulata - PTHO. perennis - PTHO. fruticosa – SEXO. rosea - PTHO. speciosa – SEX

Oeno.specOeno.roseOeno.frut

Oeno.pereGaur.tria

Gaur.suffGaur.bien

Oeno.acauOeno.acut

Caly.serr

Caly.berlOeno.hete

Oeno.graDOeno.drumOeno.humi

Oeno.laciOeno.vill

Oeno.affiOeno.rubi

Oeno.versOeno.lonT

Oeno.clelOeno.rhom

Oeno.bien

Oeno.graFOeno.elat

0.04 0.03 0.02 0.01 0

Oeno.spec

Oeno.rose

Oeno.frut

Oeno.pere

Gaur.tria

Gaur.suff

Gaur.bien

Oeno.acau

Oeno.acut

Caly.serr

Caly.berl

Oeno.hete

Oeno.graD

Oeno.drum

Oeno.humi

Oeno.laci

Oeno.vill

Oeno.affi

Oeno.rubi

Oeno.vers

Oeno.lonT

Oeno.clel

Oeno.rhom

Oeno.bien

Oeno.graF

Oeno.elat

0.04 0.03 0.02 0.01 0

0 0.01 0.02 0.03 0.04

Phylogenetic covariance

Page 10: Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae Jeffrey Ahern 1, Daniel Anstett 2, Marc Johnson 2, Juha-Pekka Salminen 1 1 University.

To series of traits positively or negatively covary?

peaks 349 oeno B oeno A ox-oeno

A total ET total CA FG 4-querc

total querc

total kaemp other FG total FG toughnes

s % H20 SLA PPC trichomes

peaks 280 0.39 -0.19 -0.08 -0.56 -0.54 -0.17 0.04 -0.07 -0.01 0.24 0.31 0.03 0.45 0.19 -0.45 -0.27

peaks 349 -0.21 0.18 -0.22 -0.25 -0.43 -0.14 -0.12 -0.02 0.36 0.6 -0.06 -0.17 -0.18 -0.17 -0.16

oeno B -0.13 0.01 0.54 0.25 0.3 0.16 -0.05 -0.29 -0.34 -0.17 0.08 0.15 0.29 0.23

oeno A 0.06 0.17 -0.11 0.05 -0.13 0.12 0.08 -0.17 0.59 -0.62 -0.63 0.58 -0.06ox-oeno

A 0.53 0.04 -0.21 -0.16 0.05 -0.2 -0.5 0.45 -0.41 -0.24 0.53 -0.09

total ET -0.03 -0.03 -0.23 0.02 -0.4 -0.62 0.29 -0.29 -0.18 0.88 0.05

total CA 0.26 0.42 -0.3 -0.08 -0.25 -0.38 -0.04 0.5 0.12 0.27

FG 4-querc 0.86 -0.33 -0.19 0.09 -0.19 0.43 0.22 -0.06 0.16

total querc -0.39 -0.13 0.28 -0.33 0.39 0.35 -0.23 0.42

total kaemp -0.24 0.22 0.3 -0.19 -0.38 -0.11 -0.01

other FG 0.34 -0.11 -0.3 -0.11 -0.17 -0.05

total FG -0.31 0.07 -0.08 -0.65 0.2toughnes

s -0.32 -0.66 0.44 -0.18

% H20 0.63 -0.6 -0.05

SLA -0.36 -0.1

PPC 0.03

A

B

C

r=-0.54(-0.84,-0.17)

r=0.60(0.25,0.83)

r=-0.62(0.25,0.83)

0 50 100 150

75808590

Total ellagitannins (mg/g)

No. peaks at 280nm

0 5 10 15

10

15

20

Total flavonoids (mg/g)

No. peaks at 349nm

0 50 100 150

05

10

15

Total ellagitannins (mg/g)

Total flavonoids (m

g/g)

0 50 100 150

75808590

Total ellagitannins (mg/g)

No. peaks at 280nm

0 5 10 15

10

15

20

Total flavonoids (mg/g)

No. peaks at 349nm

0 50 100 150

05

10

15

Total ellagitannins (mg/g)

Total flavonoids (m

g/g)

0 50 100 150

75808590

Total ellagitannins (mg/g)

No. peaks at 280nm

0 5 10 15

101520

Total flavonoids (mg/g)

No. peaks at 349nm

0 50 100 150

05

1015

Total ellagitannins (mg/g)

Total flavonoids (m

g/g)

A

B

C

r=-0.54(-0.84,-0.17)

r=0.60(0.25,0.83)

r=-0.62(0.25,0.83)

0 50 100 150

75808590

Total ellagitannins (mg/g)

No. peaks at 280nm

0 5 10 15

10

15

20

Total flavonoids (mg/g)

No. peaks at 349nm

0 50 100 150

05

10

15

Total ellagitannins (mg/g)

Total flavonoids (m

g/g)

0 50 100 150

75808590

Total ellagitannins (mg/g)

No. peaks at 280nm

0 5 10 15

10

15

20

Total flavonoids (mg/g)

No. peaks at 349nm

0 50 100 150

05

10

15

Total ellagitannins (mg/g)

Total flavonoids (m

g/g)

0 50 100 150

75808590

Total ellagitannins (mg/g)

No. peaks at 280nm

0 5 10 15

101520

Total flavonoids (mg/g)

No. peaks at 349nm

0 50 100 150

05

1015

Total ellagitannins (mg/g)

Total flavonoids (m

g/g)

A

B

C

r=-0.54(-0.84,-0.17)

r=0.60(0.25,0.83)

r=-0.62(0.25,0.83)

0 50 100 150

75808590

Total ellagitannins (mg/g)

No. peaks at 280nm

0 5 10 15

10

15

20

Total flavonoids (mg/g)

No. peaks at 349nm

0 50 100 150

05

10

15

Total ellagitannins (mg/g)

Total flavonoids (m

g/g)

0 50 100 150

75808590

Total ellagitannins (mg/g)

No. peaks at 280nm

0 5 10 15

10

15

20

Total flavonoids (mg/g)

No. peaks at 349nm

0 50 100 150

05

10

15

Total ellagitannins (mg/g)

Total flavonoids (m

g/g)

0 50 100 150

75808590

Total ellagitannins (mg/g)

No. peaks at 280nm

0 5 10 15

101520

Total flavonoids (mg/g)

No. peaks at 349nm

0 50 100 150

05

1015

Total ellagitannins (mg/g)

Total flavonoids (m

g/g)

Page 11: Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae Jeffrey Ahern 1, Daniel Anstett 2, Marc Johnson 2, Juha-Pekka Salminen 1 1 University.

To series of traits positively or negatively covary?

• Hierarchical cluster analysis

• Identified associations between groups of metabolites

Page 12: Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae Jeffrey Ahern 1, Daniel Anstett 2, Marc Johnson 2, Juha-Pekka Salminen 1 1 University.
Page 13: Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae Jeffrey Ahern 1, Daniel Anstett 2, Marc Johnson 2, Juha-Pekka Salminen 1 1 University.
Page 14: Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae Jeffrey Ahern 1, Daniel Anstett 2, Marc Johnson 2, Juha-Pekka Salminen 1 1 University.
Page 15: Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae Jeffrey Ahern 1, Daniel Anstett 2, Marc Johnson 2, Juha-Pekka Salminen 1 1 University.

Do individual traits or suites of traits predict resistance to herbivores?

Total ellagitannins (mg/g)

Cate

rpill

ar su

rviva

lBe

etle

her

bivo

ry(c

m2 )

Total kaempferol (mg/g)

No. flavonoid compounds

Mite

surv

ival

A

B

C

slopeOU = -0.003, P = 0.039, R2 = 0.17

slopeOU = 0.024, P = 0.005, R2 = 0.28

slopeOU = 0.021, P = 0.028, R2 = 0.25

0 20 40 60 80 100 120 140

0.00.20.40.60.81.0

Total ellagitannins (mg/g)

Caterpillar survival

10 15 20

0.20

.40

.60

.81

.0

No. flavonoid compounds

Mite survival

0 1 2 3 4

0.000.100.200.30

Total kaempferol (mg/g)

Beetle herbivory (cm

^2)

0 20 40 60 80 100 120 140

0.00

.20

.40

.60

.81

.0

Total ellagitannins (mg/g)

Caterpillar survival

10 15 20

0.20

.40.60.81

.0

No. flavonoid compounds

Mite survival

0 1 2 3 4

0.000

.100

.200

.30

Total kaempferol (mg/g)

Beetle herbivory (cm

^2)

0 20 40 60 80 100 120 140

0.00.20.40.60.81.0

Total ellagitannins (mg/g)

Caterpillar survival

10 15 20

0.20

.40

.60

.81

.0

No. flavonoid compounds

Mite survival

0 1 2 3 4

0.000.100.200.30

Total kaempferol (mg/g)

Beetle herbivory (cm

^2)

Total ellagitannins (mg/g)

Cate

rpill

ar su

rviva

lBe

etle

her

bivo

ry(c

m2 )

Total kaempferol (mg/g)

No. flavonoid compounds

Mite

surv

ival

A

B

C

slopeOU = -0.003, P = 0.039, R2 = 0.17

slopeOU = 0.024, P = 0.005, R2 = 0.28

slopeOU = 0.021, P = 0.028, R2 = 0.25

0 20 40 60 80 100 120 140

0.00.20.40.60.81.0

Total ellagitannins (mg/g)

Caterpillar survival

10 15 20

0.20

.40

.60

.81

.0

No. flavonoid compounds

Mite survival

0 1 2 3 4

0.000.100.200.30

Total kaempferol (mg/g)

Beetle herbivory (cm

^2)

0 20 40 60 80 100 120 140

0.00

.20

.40

.60

.81

.0

Total ellagitannins (mg/g)

Caterpillar survival

10 15 20

0.20

.40.60.81

.0

No. flavonoid compounds

Mite survival

0 1 2 3 4

0.000

.100

.200

.30

Total kaempferol (mg/g)

Beetle herbivory (cm

^2)

0 20 40 60 80 100 120 140

0.00.20.40.60.81.0

Total ellagitannins (mg/g)

Caterpillar survival

10 15 20

0.20

.40

.60

.81

.0

No. flavonoid compounds

Mite survival

0 1 2 3 4

0.000.100.200.30

Total kaempferol (mg/g)

Beetle herbivory (cm

^2)

Total ellagitannins (mg/g)

Cate

rpill

ar su

rviva

lBe

etle

her

bivo

ry(c

m2 )

Total kaempferol (mg/g)

No. flavonoid compounds

Mite

surv

ival

A

B

C

slopeOU = -0.003, P = 0.039, R2 = 0.17

slopeOU = 0.024, P = 0.005, R2 = 0.28

slopeOU = 0.021, P = 0.028, R2 = 0.25

0 20 40 60 80 100 120 140

0.00.20.40.60.81.0

Total ellagitannins (mg/g)

Caterpillar survival

10 15 20

0.20

.40

.60

.81

.0

No. flavonoid compoundsM

ite survival

0 1 2 3 4

0.000.100.200.30

Total kaempferol (mg/g)

Beetle herbivory (cm

^2)

0 20 40 60 80 100 120 140

0.00

.20

.40

.60

.81

.0

Total ellagitannins (mg/g)

Caterpillar survival

10 15 20

0.20

.40.60.81

.0

No. flavonoid compounds

Mite survival

0 1 2 3 4

0.000

.100

.200

.30

Total kaempferol (mg/g)

Beetle herbivory (cm

^2)

0 20 40 60 80 100 120 140

0.00.20.40.60.81.0

Total ellagitannins (mg/g)

Caterpillar survival

10 15 20

0.20

.40

.60

.81

.0

No. flavonoid compounds

Mite survival

0 1 2 3 4

0.000.100.200.30

Total kaempferol (mg/g)

Beetle herbivory (cm

^2)

Beet armywormSpodoptera exigua

Two spotted spidermiteTetranychus urticae

“Specialist” flea beetleAltica foliacea

Page 16: Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae Jeffrey Ahern 1, Daniel Anstett 2, Marc Johnson 2, Juha-Pekka Salminen 1 1 University.

Summary So Far

• Plant phenolics are not highly evolutionary conserved, suggesting they are evolutionary labile

• Individual traits predict resistance to herbivores, but not really apparent with suites

Page 17: Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae Jeffrey Ahern 1, Daniel Anstett 2, Marc Johnson 2, Juha-Pekka Salminen 1 1 University.

Summary So Far

• Is the composition and concentrations of plant phenolics evolutionarily conserved?

• Do traits covary with one another– Negative covariation – tradeoffs in defense strategies– Positive covariation – defensive syndromes hypothesis

• Do individual traits or suites of traits predict resistance to herbivores?

Page 18: Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae Jeffrey Ahern 1, Daniel Anstett 2, Marc Johnson 2, Juha-Pekka Salminen 1 1 University.

76 Oenothera species, plus additional in Onagraceae

Examining leaf, flower, and fruit tissues independently.

Page 19: Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae Jeffrey Ahern 1, Daniel Anstett 2, Marc Johnson 2, Juha-Pekka Salminen 1 1 University.

Analytic Approach

• Prelim Analysis• Identification of target

metabolites• Development and

selection of MRM methods

Page 20: Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae Jeffrey Ahern 1, Daniel Anstett 2, Marc Johnson 2, Juha-Pekka Salminen 1 1 University.

Detection by DAD

Dimer-specific MRM

Heptamer-specific MRM

Pentamer-specific MRM

Trimer-specific MRM

Tetramer-specific MRM

Page 21: Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae Jeffrey Ahern 1, Daniel Anstett 2, Marc Johnson 2, Juha-Pekka Salminen 1 1 University.

OOH

O

OO

O

O

O

O

HO

HO

HO

HO

OH

O

OH

OH

OH

OH

OH

O

O

HOOH

OH

HO

OO

O

O

O

O

O

HO

HO OH

O

O

OH

OH

OH

OH

HO

HO

Oenothein B

OOH

O

OO

O

O

O

O

HO

HO

HO

HO

O

O

OH

OH

OH

OH

OH

O

O

HOOH

OH

HO

OO

O

O

O

O

O

HO

HO OH

O

O

OH

OH

OH

OH

HO

HO

Oenothein A

OH

OH

OH

OH

OH

OH

OHO

OO

O

O

O

O

O

HO

HO OH

O

HO

HO

OH

Time-0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00

AU

0.0

2.0e-1

4.0e-1

6.0e-1

8.0e-1

1.0

1.2

1.4

1.6

1.8

130521 Oenothera 183 16: Diode Array 280

Range: 2.1282.67254.3

3.21227.3

2.88222.3

2.96222.3

4.31265.3

3.59224.3

3.53222.3

3.66222.3 3.98

222.33.85222.3

DimerOenothein B

TrimerOenothein A Oxidized Trimer

Time-0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00

AU

0.0

2.0e-1

4.0e-1

6.0e-1

8.0e-1

1.0

1.2

1.4

1.6

1.8

130516 Oenothera 140 16: Diode Array 280

Range: 2.1363.21258.3

2.94222.32.35

251.33.01222.3

3.58224.3

3.53223.3

3.32223.3

3.63223.3

3.98255.33.85

223.3

4.31265.3

4.50266.3

Time-0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00

AU

0.0

2.0e-1

4.0e-1

6.0e-1

8.0e-1

1.0

1.2

130521 Oenothera 240 16: Diode Array 280

Range: 1.4642.88234.3

4.46224.3

3.98255.3

2.95222.3

3.48224.3

3.14223.3

3.21223.3

3.89225.3

4.13224.3

OOH

O

OO

O

O

O

O

HO

HO

HO

HO

O

O

OH

OH

OH

OH

OH

O

O

HOOH

OH

HO

OO

O

O

O

O

O

HO

HO OH

O

O

OH

OH

OH

OH

HO

HO

Oenothein A

OH

OH

OH

OH

OH

OH

OHO

OO

O

O

O

O

O

HO

HO OH

O

HO

HO

OH

Page 22: Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae Jeffrey Ahern 1, Daniel Anstett 2, Marc Johnson 2, Juha-Pekka Salminen 1 1 University.

Trait λ pTotal Ellagitannins (mg/g) 0.63 0.06Proportion Dimer (Oenothein B) 0.48 0.15Proportion Trimer (Oenothein A) 0.61 <0.01Proportion Oxidized Trimer 0.72 <0.01Caffeoyl tartaric acid 0.55 0.04Total Phenolics (Folin-Ciocalteu) 0.32 0.61Pro-Oxidant Phenolics (pH 10) 0.54 0.25Protein Precipitation Capacity (RDA) 0.38 0.23

Page 23: Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae Jeffrey Ahern 1, Daniel Anstett 2, Marc Johnson 2, Juha-Pekka Salminen 1 1 University.

Acknowledgements and Funding

• Juha-Pekka Salminen• Daniel Ansettt• Marc Johnson• Anthony R. Ives• Anne Koivuniemi

• Funding• Academy of Finland• NSERC Canada• Canadian Foundation for

Innovation• University of Toronto

Page 24: Macroevolutionary patterns of plant phenolic metabolites in the Onagraceae Jeffrey Ahern 1, Daniel Anstett 2, Marc Johnson 2, Juha-Pekka Salminen 1 1 University.

Questions?