Machine learning the Born-Oppenheimer potential energy surface: from...

30
Machine learning the Born-Oppenheimer potential energy surface: from molecules to materials Gábor Csányi Engineering Laboratory

Transcript of Machine learning the Born-Oppenheimer potential energy surface: from...

Page 1: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

Machine learning the Born-Oppenheimer potential energy surface:

from molecules to materialsGábor Csányi

Engineering Laboratory

Page 2: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

Interatomic potentials for molecular dynamics

Transferability biomolecular force fields

(biochemistry)

Reactive solid state materials

(physics & materials)

Accuracy small molecules

in gas phase (quantum chemistry)

AMBER CHARMM AMOEBA

GROMACSOPLS

...

Tersoff Brenner

EAM BOP

...

Bowman Szalewicz

Paesani ...

Page 3: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

Ingredients

• Representation of atomic neighbourhood

• Interpolation of functions

• Databaseof configurations

smoothness, faithfulness, continuity

flexible but smooth functional form, few sensible parameters

predictive power non-domain specific

Page 4: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

Many-body (cluster) expansion

= + + + +

+ + + +

higher multi-body terms...+

+ analytic long range termsE =X

i

"(q(i)1 , q2,(i) . . . , q(i)M )

qi are descriptors of local atomic neighbourhood

Wea

kSt

rong

Interpolating the solution of an eigenproblem

�i~@ @t

= H Hel =1

2

X

i

r2ri +

X

ij

Zj(�1)

|Rj � ri| +X

ij

1

|ri � rj |Lowest eigenstate: E0 ⌘ Vel(R1, R2, . . .) has spatial locality

+ analytic long range terms

Page 5: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

Parametrisation of the H2O dimer

• Standard representation: 6 atoms ⇒ 15 interatomic distances : x = {rij}

• Symmetrize kernel function: S: symmetry group of molecules

• Use analytic forces if available:

K̃(x, x0) =X

p2S

K(p(x), x0)

K

0(x, x0) =@

@x

K(x, x0)

Page 6: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

H2O dimer corrections

Roo

Page 7: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

Water hexamers - relative energies - no ZPC

CCSD(T) BLYP DMC Bowman BLYP+GAP

0.00 0.00 0.00 0.00 0.00

0.24 -0.59 0.33 0.46 0.15

0.70 -2.18 0.56 2.39 0.52

1.69 -2.44 1.53 4.78 1.77

[kcal / mol]

GAP error < 0.03 kcal/mol / H2O(B3LYP optimised geometries from

Tschumper)

Page 8: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

Ice polymorphs

[meV / H2O] Expt DMC±5 PBE0+vdWTS BLYP+GAP±3

Ih 0 0 0 0

II 1 -4 6 -5

IX 4 3 -3

VIII 33 30 76 30

Relative energies

error < 0.15 kcal/mol / H2O

Page 9: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

Ice polymorphs

[meV / H2O] Expt DMC ±5

PBE0+vdWTS BLYP+GAP ±3

Ih 610 605 672 667

II 609 609 666 672

IX

VIII 577 575 596 637

Absolute binding energies

BLYP+GAP overbinds uniformly by ~ 60 meV ⇒ 3-body terms!

Page 10: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

Many-body (cluster) expansion

= + + + +

+ + + +

higher multi-body terms...+

+ analytic long range termsE =X

i

"(q(i)1 , q2,(i) . . . , q(i)M )

qi are descriptors of local atomic neighbourhood

Wea

kSt

rong

Interpolating the solution of an eigenproblem

�i~@ @t

= H Hel =1

2

X

i

r2ri +

X

ij

Zj(�1)

|Rj � ri| +X

ij

1

|ri � rj |Lowest eigenstate: E0 ⌘ Vel(R1, R2, . . .) has spatial locality

+ analytic long range terms

Page 11: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

Quantum mechanics is many-body

-1

0

1

2

3

4

5

6

7

12 14 16 18 20 22

Ener

gy [e

V / a

tom

]

Volume [A3 / atom]

Tungsten, Finnis-Sinclairbccfccsc

bccfccsc

DFT

Tungsten: DFT, Embedded Atom ModelCarbon: tight binding

Page 12: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

Quantum mechanics has some locality

force F

r

neighbourhood

far field

Force errors around Si self interstitial

Force errors around O in water with QM/MM

r

L̂i = qi + pi ·⇥i + . . .Vel

(R1

, R2

, . . .) ⇡atomsX

i

"(R1

�Ri, R2

�Ri, . . .) +1

2

X

ij

L̂iL̂j1

Rij+

�ij

|Rij |6

Finite range atomic energy function

Is there a finite range atomic energy function that gives the correct total energy and forces?

Page 13: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

Traditional ideas for functional forms

• Pair potentials: Lennard-Jones, RDF-derived, etc.

• Three-body terms: Stillinger-Weber, MEAM, etc.

• Embedded Atom (no angular dependence)

• Bond Order Potential (BOP) Tight-binding-derived attractive term with pair-potential repulsion

• ReaxFF: kitchen-sink + hundreds of parameters

These are NOT THE CORRECT functions. Limited accuracy, not systematic

"i =1

2

X

j

V2(|rij |)

"i = ��P

j ⇢(|rij |)�

given byGOAL: potentials based on quantum mechanics

Representation is implicit

Page 14: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

Representing the atomic neighbourhood in strongly bound materials

• What are the arguments of the atomic energy ε ? Need a representation, i.e. a coordinate transformation

- Exact symmetries: • Global Translation

• Global Rotation

• Reflection

• Permutation of atoms

- Faithful: different configurations correspond to different representations

- Continuous, differentiable, and smooth (i.e. slowly changing with atomic position) (“Lipschitz diffeomorphic”)

• Rotational invariance by itself is easy: q ≡ Rij = ri ⋅ rj (Weyl)

- Complete, but not invariant permutationally

- Not continuous with changing number of neighbours

r1

r2

r3

r4

Page 15: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

Matrix of interatomic distances

• Equivalent to Weyl matrix

• Rotationally invariant: no alignment needed

• Permutation problem: Weyl matrix is not permutation invariant

2

6664

r1 · r1 r1 · r2 · · · r1 · rNr2 · r1 r2 · r2 · · · r2 · rN

......

. . ....

rN · r1 rN · r2 · · · rN · rN

3

7775

Page 16: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

Drop atom ordering ?

• Permutation: too costly for ~ 20 neighbours

• Unordered list of distances? Distance histograms?

Not unique!

Page 17: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

Atomic neighbour density function

• Translation ✓

• Permutation ✓

• Need rotationally invariant features of ρ(r)

⇥i(r) = s�(r) +�

j

�(r� rij)fcut(|rij |)

"(r1 � ri, r2 � ri, . . .) ⌘ "[⇢i(r)]

⇥(r, �,⇤) =⇥�

n=1

⇥�

l=0

l�

m=�l

cml,ngn(r)Y m

l (�, ⇤)

Page 18: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

Rotational Invariance

Transformation of coefficients:

• Wigner matrices are unitary:

• Construct invariants:

• Equivalent to Steinhardt bond order Q2 , Q4 , Q6 … parameters

• Higher order invariants possible, (generalisation of Steinhardt W)

D�1 = D†

Page 19: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

First few terms of power spectrum for 3 atoms

• Polynomials of Weyl invariants

• Highly oscillatory for large l : not smooth

• Different l channels uncoupledf1 = Y22 + Y2−2 + Y33 + Y3−3

f2 = Y21 + Y2−1 + Y32 + Y3−2

Page 20: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

Uniqueness: environment reconstruction tests

Number of neighbours

Error in distinguishing

1. Select target configuration

2. Randomise neighbours

3. Try to reconstruct target by matching descriptors

RM

SD

Page 21: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

Construct smooth similarity kernel directly

• Overlap integral

k(⇢i, ⇢i0) =X

n,n0,l

p(i)nn0lp(i0)nn0l

• After LOTS of algebra: SOAP kernel pnl = c†nlcnl

pnn0l = c†nlcn0l

S(⇢i, ⇢i0) =

Z⇢i(r)⇢i0(r)dr,

k(⇢i, ⇢i0) =

Z ���S(⇢i, R̂⇢i0)���2dR̂ =

ZdR̂

����Z

⇢i(r)⇢i0(R̂r)dr

����2

cutoff: compact support• Integrate over all 3D rotations:

Page 22: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

4 6 8 10 12 14 16 18 20

10−2

10−1

100

101

n

Average

dREF

SOAPlmax= 2

l max= 4

l max= 6

Smooth Overlap of Atomic Positions (SOAP)

Number of neighbours

Erro

r in

dis

tingu

ishi

ng

RM

SD

Page 23: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

Stability of fit: elastic constants of Si

Order of angular momentum expansion

Page 24: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

How to generate databases?

• Target applications: large systems

• Capability of full quantum mechanics (QM): small systems

QM MD on “representative” small systems:

sheared primitive cell ➝ elasticitylarge unit cell ➝ phononssurface unit cells ➝ surface energygamma surfaces ➝ screw dislocationvacancy in small cell ➝ vacancy vacancy @ gamma surface ➝ vacancy near dislocation

Iterative refinement

1. QM MD ➝ Initial database2. Model MD3. QM ➝ Revised database

What is the acceptable validation protocol? How far can the domain of validity be extended?

Page 25: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

Existing potentials for tungsten

DFT reference

Error

0

15%

C11 C12 C44

50%

Elastic const.

Vacancy

energy Surface energy

(100) (110) (111) (112)

BOPMEAM

FS

GAP

Page 26: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

Building up databases for tungsten (W)

Page 27: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

Improvement for tungsten (W)

Page 28: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

Peierls barrier for screw dislocation glide

Page 29: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

Vacancy-dislocation binding energy

(~100,000 atoms in 3D simulation box)

Page 30: Machine learning the Born-Oppenheimer potential energy surface: from …helper.ipam.ucla.edu/publications/ml2015/ml2015_12550.pdf · 2015-02-25 · Machine learning the Born-Oppenheimer

Outstanding problems

• Accuracy on database accuracy in properties?

• Database contents region of validity ?

• Alloys - permutational complexity? Chemical variability?

• Systematic treatment of long range effects

• Electronic temperature