Luminescent lanthanide-doped...

106
Department of Inorganic and Physical Chemistry Research group f-element coordination chemistry Luminescent lanthanide-doped nanomaterials Thesis submitted to obtain the degree of Master of Science in Chemistry by Linde MIERMANS Academic year 2011 - 2012 Promoter: prof. dr. Rik Van Deun Supervisor: Anna Kaczmarek

Transcript of Luminescent lanthanide-doped...

Page 1: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

Department of Inorganic and Physical Chemistry

Research group f-element coordination chemistry

Luminescent lanthanide-doped nanomaterials

Thesis submitted to obtain

the degree of Master of Science in Chemistry by

Linde MIERMANS

Academic year 2011 - 2012

Promoter: prof. dr. Rik Van Deun

Supervisor: Anna Kaczmarek

Page 2: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden
Page 3: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden
Page 4: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden
Page 5: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

Department of Inorganic and Physical Chemistry

Research group f-element coordination chemistry

Luminescent lanthanide-doped nanomaterials

Thesis submitted to obtain

the degree of Master of Science in Chemistry by

Linde MIERMANS

Academic year 2011 - 2012

Promoter: prof. dr. Rik Van Deun

Supervisor: Anna Kaczmarek

Page 6: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden
Page 7: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

Acknowledgements

I would like to thank Prof. Dr. Rik Van Deun for giving me the opportunity to do my thesis in

his research group, for introducing me to the world of lanthanide chemistry and the recently

obtained luminescence set-up.

Special thanks for my supervisor Anna Kaczmarek. I was able to learn a great deal from her.

She was always available whenever I had a question. Not only did she help me scientifically,

but my knowledge of the English language also improved strongly thanks to her. I want to

thank her for correcting and proof reading my thesis, for passing long afternoons at the TEM

with me, but also for the fun moments we had together. I truly think she did a great job as

my supervisor.

I also want to thank Roel Decadt for his extra help with luminescence measurements.

Funding from the Hercules Foundation (project AUGE/09/024 “Advanced Luminescence

Setup”), the Research Foundation Flanders (FWO-Vlaanderen; project G.0081.10N) and

Ghent University (UGent; project BOF 01N01010) is gratefully acknowledged

For the always quickly performed XRD and elemental analysis measurements I would like to

thank Tom Planckaert. I would also like to thank him for answering my technical questions.

I would like to thank my fellow thesis-student Stefanie Smeets for all the fun moments in the

lab, helping out now and then and for keeping me company during long measurements or

when I worked late in the evening. Also the fun times aside school cannot be forgotten. For

support, distraction and help with all kinds of stuff I would also like to thank my classmates of

the University of Hasselt: Geert-Jan Graulus, Frank Driessen and Bart Verbraeken. We had 5

great years.

Finally I want to thank my dad for giving me the chance to go to university and for the

support during those 5 years.

Page 8: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden
Page 9: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

LUMINESCENTE LANTHANIDE-GEDOTEERDE NANOMATERIALEN

L. Miermansa, A. Kaczmarek

a, R. Van Deun

a

a Departement Anorganische en Fysische Chemie, Universiteit Gent, Gent, België

De synthese van lanthaancarbonaat nanopartikels in afwezigheid van

een ligand onder hydrothermale omstandigheden werd onderzocht.

Verschillende lanthaan- en carbonaatbronnen werden gebruikt.

Geselecteerde stalen werden gedoteerd met Tb3+

en Eu3+

. Een

luminescentielevensduur van 1,6 ms voor Tb3+

en 620 μs voor Eu3+

opgenomen in vaste toestand werd gemeten. Er werd geprobeerd

core/shell nanopartikels te synthetiseren met lanthaancarbonaat als

anorganische kern en een organisch ligand als schil. Verschillende

liganden werden hiervoor geselecteerd, maar de pogingen bleken niet

succesvol. Glucose bleek wel een interessant effect te hebben op de

morfologie van de partikels. Core/shell nanopartikels werden verkregen

met een fluoride kern.

Inleiding

Nanopartikels zijn partikels die minstens in één dimensie kleiner zijn dan 100 nm. Door deze

kleine dimensies kunnen de eigenschappen van het materiaal sterk verschillen van deze van

het bulk materiaal. Dit is het gevolg van kwantum-effecten die op deze grootte domineren.

Eigenschappen zoals fluorescentie of elektrische geleidbaarheid kunnen bijvoorbeeld

veranderen. Tegenwoordig wordt er veel onderzoek gedaan naar zulke materialen en vaak

wordt nanotechnologie reeds in hedendaagse commerciële producten gebruikt zoals in

zonnecrèmes, katalysatoren, elektronische apparaten,… [1]

Lanthaniden zijn een speciale groep van elementen in de periodieke tabel. Binnen deze serie

wordt de 4f schil gevuld en deze elementen zijn vooral gekend omwille van hun luminescentie

eigenschappen. Er zijn 3 mogelijke elektronische transities: een ladingstransfer transitie

(LMCT of MLCT), 4f-5d transities en de f-f transities. Het is vooral deze laatste transitie die

de interesse opwekt omwille van zijn unieke aard. De 4f elektronen worden van hun omgeving

afgeschermd door de gevulde 5s en 5p orbitalen. Hierdoor interageren de 4f elektronen slechts

zwak met hun omgeving en wordt de structuur van de energieniveaus van het vrije ion

behouden in vrijwel elke chemische matrix. Hierdoor zijn de signalen in optische spectra

scherp en makkelijk herkenbaar. [2, 3] Ongelukkigerwijze zijn deze 4f-transities verboden

door de Laporte selectieregel. Lage molaire absorptiecoëfficiënten en een lange

luminescentielevensduur zijn hier het gevolg van. Deze langlevende geëxciteerde toestand kan

gemakkelijk gequenched worden door hoge energie vibraties van organische functionele

groepen zoals OH-groepen. Dit reduceert mogelijke toepassingen in een organische omgeving.

[2, 4] De molaire absorptiecoëfficiënt kan verhoogd worden door gebruik te maken van het

antenne-effect. Het ligand gebonden aan het Ln3+

-ion wordt geëxciteerd en zal zijn energie

doorgeven aan het Ln3+

-ion waardoor dit op zijn beurt geëxciteerd wordt. Vervolgens kan het

Ln3+

-ion relaxeren via luminescentie. [2, 3]

Er zijn reeds verschillende publicaties over lanthanide nanopartikels verschenen [5-12], maar

slechts enkele over lanthanidecarbonaat nanopartikels. Dysprosiumcarbonaat nanopartikels

Page 10: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

werden gesynthetiseerd via sonochemische synthese. Deze partikels dienden als precursor

voor de synthese van dysprosiumoxide nanopartikels. [13] Gadoliniumcarbonaat partikels

gedoteerd met Eu3+

werden gesynthetiseerd met behulp van ureum. De invloed van de

reactietijd werd onderzocht. Na calcinatie werden Gd2O3 nanopartikels verkegen. [14]

Lanthaancarbonaat nanodraden werden verkregen via een synthese gebruik makend van een

‘geïnverteerd micellen systeem. Verschillende reactieparameters zoals pH, reactietijd en

reactietemperatuur werden onderzocht. [15] Lanthaancarbonaat nanopartikels werden

verkregen via sonochemische synthese. Deze partikels werden gebruikt als precursor voor de

synthese van lanthaanhydroxide en lanthaanoxide nanopartikels. [16]

Core/shell nanopartikels zijn nanostructuren bestaande uit een kern en een schil gemaakt van

twee verschillende materialen. Hun dimensies liggen meestal tussen de 20 en 200 nm. Door de

juiste schil te kiezen kunnen de eigenschappen van de core/shell nanopartikels verbeterd

worden ten op zichtte van de ‘gewone’ nanopartikels. Verbetering in monodispersiteit,

oplosbaarheid, stabiliteit (thermisch of chemisch),... is mogelijk. Er zijn verschillende

mogelijkheden in het kiezen van de core/shell structuur maar in deze thesis zal er gewerkt

worden met een anorganische kern en een organische schil. [17] Luminescerende Ln3+

-ionen

kunnen dan gedoteerd worden in het anorganische deel van de partikels waardoor ze

beschermd worden tegen de (organische) omgeving. Afhankelijk van het gekozen ligand

gebruikt voor de organische schil zijn de partikels oplosbaar in organische solventen of water.

[4, 18] Water gebaseerde systemen hebben verschillende voordelen: deze systemen zijn

milieuvriendelijker, de synthese is eenvoudig, veilig en er zijn geen speciale atmosferische

condities nodig, verder is er ook een groter potentieel voor bulk productie. [19] Een van de

meest gebruikte liganden voor water oplosbare core/shell nanopartikels is citroenzuur. [3, 19-

25] Lanthanidefluoride materialen voor de kern zijn erg populair. Deze materialen hebben een

lage vibrationele energie waardoor de quenching van de Ln3+

-ionen minimaal is. [26] Van

Veggel et al. heeft al veel onderzoek verricht in het gebied van water oplosbare core/shell

lanthanide nanopartikels. Als kernmateriaal wordt meestal LaF3 gebruikt. De organische schil

is vaak citroenzuur, [3, 20, 23, 24] maar ook andere liganden worden gebruikt. [23, 24, 27]

LaF3 als kernmateriaal werd ook door andere onderzoeksgroepen gekozen. Als schil werden

verschillende liganden gebruikt. [26, 28-31] Yb3+

-Er3+

gedoteerde LaF3 nanokristallen gecoat

met glucose werden gesynthetiseerd door Shan et al. De partikels hadden een rechthoekige

vorm en een grootte tussen 15-20 nm. De invloed van de pH werd onderzocht en upconversion

spectra werden opgenomen. [30] Ook andere (fluoride gebaseerde) anorganische materialen

werden reeds gebruikt als kern. [19, 21-25, 32-38] LnVO4 (Ln= Y, Dy, Er, Ce, Gd) werden

gesynthetiseerd door gebruikt te maken van natriumcitraat, natriumtartraat, natriummalaat. De

morfologie van de partikels bleek afhankelijk van het gebruikte ligand. [38] 2-aminoethyl

fosfaat (AEP) werd gebruikt om verschillende LnF3 materialen te coaten, zowel gedoteerd als

niet gedoteerd. [23, 24, 28] Zelfs liganduitwisseling met 6-carboxy-5’-methyl-2,2’-bipyridine

bleek mogelijk te zijn waardoor de luminescentie verbeterd werd ten op zichtte van de AEP-

gestabiliseerde partikels. [28] Ook bioconjugatie bleek mogelijk te zijn uitgaande van

nanopartikels gecoat met AEP. [39]

Waarschijnlijk een van de meest belangrijke toepassingen voor dit soort core/shell

nanopartikels is het labelen van biomoleculen met een luminescerend label. Conventionele

fluorescente labels hebben hun voordelen zoals kleine grootte, erg water oplosbaar,

gemakkelijk te gebruiken en bestaande standaardprocedures voor hun bioconjugatie. Toch

hebben deze ook nadelen zoals een breed spectrum en lage fotochemische stabiliteit. Ln3+

-

Page 11: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

gedoteerde water oplosbare core/shell nanopartikels zijn een veelbelovende oplossing. Indien

juist gekozen, kan het organische ligand bioconjugatie vergemakkelijken. Bovendien is het

emissiespectrum van zo’n partikel gekarakteriseerd door smalle pieken. De optische

eigenschappen worden bepaald door de Ln3+

-ionen gebruikt om te doteren. De partikels zijn

fotochemisch stabiel, hebben een grote Stokes shift en een lange luminescentie levensduur. Er

zijn al verschillende voorbeelden gekend waarbij bioconjugatie mogelijk bleek te zijn. [18, 31,

39-41]

Het doel van dit project was om lanthaancarbonaat core/shell nanopartikels te synthetiseren.

Als ligand werd glucose, appelzuur en 2-aminoethyl fosfaat gekozen. Ook ongecoate

lanthaancarbonaat nanopartikels werden gesynthetiseerd. Deze werden ook gedoteerd met

Eu3+

en Tb3+

, welke beide emitteren in het zichtbare gebied. De syntheses waren water

gebaseerd.

Materialen en methodes

De gebruikte chemicaliën zijn: lanthaannitraat (La(NO3)3•6 H2O) 99,99% gekocht bij Roth,

ureum (CH4N2O) pro analyse, rokend zoutzuur 37% voor analyse (HCl) verkregen via Merck,

watervrij α-D-glucose (C6H12O6), appelzuur (C4H6O5) 99%, 2-aminoethyl fosfaat (AEP),

natriumfluoride (NaF) 99%, lanthaanacetaat (La(OAc)3•6 H2O) 99,99%, yttriumnitraat

(Y(NO3)3·6 H2O) 99,99% en ammoniakoplossing (NH3(aq)) 30% gekocht bij Sigma Aldrich.

Watervrij natriumcarbonaat (Na2CO3) werd verkregen via UCB. Methanol (MeOH) en ethanol

(EtOH) AnalaR NORMAPUR werden gekocht bij VWR. Natriumhydroxide 98% (NaOH)

verkregen via Chemlab. Alle chemicaliën werden gebruikt zonder verdere zuivering.

Infrarood metingen werden gedaan met behulp van een Thermo Scientific FT-IR spectrometer

(type Nicolet 6700) uitgerust met een DRIFTS-cel. KBr werd gebruikt als achtergrond. Het

spectrum wordt opgenomen van 700 cm-1

tot 4000 cm-1

met een resolutie van 4 cm-1

Voor TEM metingen werd een JOEL JEM2200FS transmissie elektronen microscoop gebruikt

met een versnellingsvoltage van 200 kV. De beelden werden verkregen op een Gatan CCD

camera. Als staalvoorbereiding werden de stalen opgelost in water en werd een druppel van

deze oplossing geplaatst op een koperen grid (200 mesh, bedekt met een koolstoffilm) zodat

het solvent kon verdampen.

Poeder-XRD werd uitgevoerd op een Thermo Scientific ARL X’TRA diffractometer uitgerust

met een Cu Kα (λ = 1.5405 Å) bron, een goniometer en een Peltier gekoelde Si(Li) solid state

detector. De stalen werden fijngemalen voor de meting.

Element analyse werd gedaan via verbrandingsanalyse (CHN-analyse). Een Thermo

Scientific* FLASH 2000 Series CHNS/O Analyzer werd gebruikt. Detectie gebeurde via

thermische geleidbaarheid.

Luminescentie spectra werden opgenomen met een Double Edinburgh Instruments FLSP920 /

FSP920 spectrometer setup. Enkel systeem 1, een UV-vis-NIR spectrometer werd gebruikt.

Een 450W xenon lamp als steady state excitatie bron, werd gebruikt. Emissiespectra en

levensduur werd gemeten zowel in suspensie (0,01 g poeder in 2 ml water) als in poeder vorm.

De Tb3+

emissiespectra werden opgenomen bij een excitatie golflengte van 351 nm van 450

nm tot 650 nm. De stapgrootte was 0,5 nm, de dwell time 0,5 s. Voor de suspensies werd de

scan slit op 0,5 nm en de fixed slit op 5 nm ingesteld. Voor de vaste stalen was de scan slit 0,5

nm en de fixed slit 0,2 nm.

De Eu3+

emissiespectra werden opgenomen bij een excitatie golflengte van 395 nm van 550

nm tot 750 nm. Andere parameters werden gelijk gehouden. Voor de suspensies was de scan

Page 12: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

slit ingesteld op 0,3 nm en de fixed slit op 5 nm. Voor de vaste stalen was de scan slit 0,3 nm

en de fixed slit 0,7 nm.

Synthese

Lanthaancarbonaat nanopartikels

Een hydrothermale synthese met variërende condities werd uitgevoerd. Zowel Na2CO3 als

ureum werden als carbonaatbron gebruikt. Als lanthaanbron werd La(NO3)3 of La(OAc)3

gebruikt. Als reactietemperatuur werd 120 of 140 °C gekozen. De reactietijd bedroeg 12 of 24

uur. De exacte reactieparameters van geselecteerde reacties zijn samengevat in tabel 1. Na de

reactie werd een wit poeder verkregen wat gewassen werd met MeOH of EtOH en gedroogd

in de oven (60 °C). De partikels verkregen via synthesecondities ZL 18 werden gedoteerd met

variërende percentages (2%-20%) Tb3+

en Eu3+

.

TABEL I.

Staal Hoeveelheid

La(NO3)3 (mmol)

Hoeveelheid

La(OAc)3 (mmol)

Hoeveelheid

ureum (mmol)

Hoeveelheid

water (ml)

Tijd

(u)

Reactie

temperatuur

(°C)

ZL

18

1,5 - 15 20 24 120

ZL

19

- 1,5 15 20 24 120

ZL

28

1,5 - 15 50 12 140

Lanthaancarbonaat nanopartikels in de aanwezigheid van een ligand

Verschillende liganden werden geselecteerd om core/shell nanopartikels te synthetiseren. Alle

reacties waren fles-reacties. De algemene reactieparameters zijn samengevat in tabel 2. Alle

componenten werden apart opgelost. De oplossing die het ligand bevatte werd geneutraliseerd

indien nodig met een waterige NH3-oplossing. Aan deze oplossing werd de lanthanide-

oplossing toegevoegd. Als laatste werd de carbonaatbron toegevoegd. In het geval van AEP en

appelzuur werden de producten geprecipiteerd en gewassen met MeOH of EtOH alvorens te

drogen. In het geval van glucose werden de partikels gezuiverd door verschillende cycli van

precipiteren met behulp van een NaOH-oplossing en heroplossen met behulp van een HCl-

oplossing uit te voeren.

Page 13: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

TABEL II.

Ligand Hoeveelheid

La(NO3)3 (mmol)

Hoeveelheid

ligand (mmol)

Hoeveelheid

ureum/Na2CO3

(mmol)

Hoeveelheid

water (ml)

Tijd

(u)

Reactie

temperatuur

(°C)

AEP 1,5 4 15/1,5 30 2/3 85

Appelzuur 1,5 4/8 15/- 50 3 80

Glucose 1,5 4/8/12 15/- 50 3 85

Fluoride core/shell nanopartikels

De synthese volgens Shan et al.[30] werd gemodificeerd. 2 g glucose werd opgelost in 20 ml

water en 0,156 g NaF werd toegevoegd terwijl de oplossing geroerd werd. Het reactiemengsel

werd verwarmd tot 60 °C waarna 0,65720 g La(NO3)3 opgelost in 3 ml water werd

toegevoegd. De reactietijd bedroeg 1,5 uur (Gluc 6) of 3 uur (Gluc 17). Na de reactie werd een

heldere suspensie verkregen. De partikels werden geprecipiteerd met behulp van een NaOH-

oplossing en heropgelost met behulp van een HCl-oplossing. Dit werd verschillende keren

herhaald om zo het product te zuiveren. De verkregen producten werden gedroogd in de oven

(60 °C). Reactie Gluc 6 werd ook herhaald met Y(NO3)3 (Gluc 15) als lanthanide bron. Een

Witte suspensie werd verkregen. Deze werd gewassen met EtOH of MeOH alvorens te

drogen.

Resultaten en bespreking

Lanthaancarbonaat nanopartikels

De verkregen poeders werden getest voor hun oplosbaarheid in water. Geen van de verkregen

poeders was oplosbaar in water. Onstabiele suspensies werden verkregen.

XRD metingen toonden aan dat voornamelijk LaOHCO3 in de hexagonale fase gevormd werd.

In sommige gevallen werd een mengsel van de hexagonale en orthorhombische fase gevormd

(ZL 28). Dit leek willekeurig en geen precieze verklaring werd hiervoor gevonden. Voor

zowel ZL 18 als ZL 19 werd de hexagonale fase gevormd (figuur 1). Elementanalyse toont aan

dat er bijna geen N wordt ingebouwd wat eventueel afkomstig kan zijn van het gebruikte

ureum.

Page 14: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

Figuur 1. XRD spectra van de hydrothermaal gesynthetiseerde partikels

De grootte en morfologie van de verkregen partikels werd bestuurd met behulp van TEM-

metingen. Wanneer La(NO3)3 als lanthaanbron gebruikt word tezamen met Na2CO3 als

carbonaatbron zijn de partikels zeer groot en geaggregeerd. Er wordt geschat dat de partikels

tussen de 400 en 1000 nm zijn. Ureum als carbonaatbron geeft betere resultaten, maar noch

verdunning, temperatuur of tijd lijken een specifieke invloed te hebben. De beste resultaten

werden verkregen voor ZL 18 (figuur 2). De partikels zijn nog steeds redelijk groot (minstens

100 nm), maar minder geaggregeerd dan het geval was met Na2CO3 als carbonaatbron.

Opvallend betere resultaten worden verkregen wanneer La(OAc)3 wordt gebruikt als

lanthaanbron (figuur 2). Zowel met ureum als Na2CO3 als carbonaatbron zijn de verkregen

partikels klein, maar hebben ze een brede grootteverdeling (20-60 nm). In het geval van

Na2CO3 zijn de partikels wel sterk geaggregeerd.

Figuur 2. TEM afbeeldingen van ZL 18 (La(NO3)3 en ureum ) en ZL 19 (La(OAc)3 en ureum)

De partikels verkregen met behulp van synthese ZL 18 werden gedoteerd met Tb3+

en Eu3+

.

Doteren met Tb3+

bleek de gevormde fase te veranderen. Een duidelijke piek kon gezien

worden op 20 graden en enkele additionele pieken tussen 30 en 40 graden konden

onderscheiden worden. Het XRD spectrum kwam sterk overeen met de XRD spectra van de

partikels in gemengde fase. Mogelijk heeft Tb3+

op een of andere manier invloed heeft op de

gevormde fase. (zie figuur 1, ZL 51) In het geval van doteren met Eu3+

werden geen

veranderingen in fase vastgesteld (zie figuur 1, ZL 59).

Page 15: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

De emissiespectra werden zowel in suspensie als in vaste vorm opgenomen en waren zeer

vergelijkbaar. Het emissiespectrum van de partikels in vaste fase gedoteerd met 10% Tb3+

(ZL

51) is weergeven in figuur 3. De 5D4→

7F6 transitie is te zien bij 490 nm, de

5D4→

7F5,

5D4→

7F4 and

5D4→

7F3 transities vinden plaats bij 540 nm, 580 nm en 620 nm respectievelijk.

De intensiteiten van de emissiespectra stijgen tot een dotteringspercentage van 10% waarna ze

afnemen. Dit is waarschijnlijk ten gevolge van zelf-quenching. De levensduur was iets hoger

in vaste fase (1,7 ms) dan in suspensie (1,6 ms). Er werd slechts een lichte daling verwacht

aangezien de luminescerende Ln3+

-ionen ingebed zitten in de anorganische matrix en

afgeschermd zouden moeten zijn van de waterige omgeving, welke een sterk quenchend effect

heeft. Enkel de Ln3+

- ionen aan het oppervlak worden gequenched. De lichte stijging wat

betreft levensduur in de vaste fase is het gevolg van de Ln3+

-ionen aan het oppervlak die nu

niet meer gequenched worden.

Het emissiespectrum van de partikels in vaste fase gedoteerd met 15% Eu3+

(ZL 59) is

weergeven in figuur 3. Bij 580 nm kan de 5D0→

7F0 transitie waargenomen worden en bij 590

nm is de 5D0→

7F1 transitie zichtbaar. Drie pieken kunnen onderscheiden worden. Deze grote

opsplitsing is het gevolg de lage symmetrie van de verbinding. Bij 617 nm is de 5D0→

7F2

transitie te zien. Deze piek is vrij intens wat opnieuw een indicatie is voor lage symmetrie. De 5D0→

7F3 en

5D0→

7F4 transities zijn te zien bij 652 nm en 690 nm. Een levensduur van 620-

650 μs werd verkregen in vaste toestand, in suspensie lag deze iets lager (600 μs).

Figuur 3. Emissie spectra in de vaste fase van ZL 51 (Tb3+) en ZL 59 (Eu3+)

Lanthaancarbonaat nanopartikels in de aanwezigheid van een ligand

Verschillende liganden werden gebruikt met het oog op de synthese van core/shell

nanopartikels. In geen van de gevallen werden core/shell nanopartikels gevormd.

In het geval van AEP werd na synthese een heldere oplossing verkregen. XRD toonde echter

aan dat de gevormde producten amorf waren. De verkregen producten waren water-oplosbaar,

maar het Tyndall effect kon niet geobserveerd worden. Er werden geen partikels gezien bij

TEM metingen. DRIFT metingen noch elementanalyse kon uitsluitsel geven over de precieze

Page 16: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

aard van het gevormde product. Vermoedelijk wordt er een water-oplosbaar complex

gevormd. Waarschijnlijk is AEP als ligand te sterk waardoor de carbonaationen niet kunnen

concurreren met AEP en bijgevolg ook niet binden aan het lanthanide-ion. De reactie werd

ook uitgevoerd in afwezigheid van carbonaatbron. Elementanalyse toonde aan dat er geen

significant verschil is in de hoeveelheid koolstof aanwezig in het product. In afwezigheid van

carbonaatbron werd echter geen water-oplosbaar product verkregen en ook XRD en DRIFT

metingen geven aan dat het gevormde product mogelijk verschilt.

Voor appelzuur werden water-oplosbare producten verkregen bij het gebruik van 8 mmol

appelzuur (zie ook tabel 2). Ook in dit geval was het Tyndall effect niet te zien. In alle andere

gevallen vormde de verkregen poeders een suspensie waarvan de stabiliteit vergelijkbaar was

met de eerder verkregen LaOHCO3 nanopartikels. XRD metingen gaven opnieuw aan dat alle

verkregen poeders amorf zijn. De reacties waarbij 8 mmol appelzuur en 4 mmol appelzuur

werden gebruikt werden herhaald zonder carbonaatbron. Elementanalyse toont aan dat er

amper extra koolstof wordt ingebouwd bij het gebruik van een carbonaatbron wanneer 8 mmol

appelzuur gebruikt wordt. Er werden geen partikels gevisualiseerd bij TEM-metingen.

Waarschijnlijk is ook in dit geval het ligand te sterk en wordt er een water-oplosbaar complex

gevormd. Indien slechts 4 mmol appelzuur gebruikt wordt toont elementanalyse wel aan dat er

een kleine hoeveelheid extra koolstof wordt ingebouwd indien een carbonaatbron gebruikt

wordt. TEM metingen tonen aan dat partikels gevormd worden, maar deze zijn erg groot en

geaggregeerd. Er is nu minder ligand aanwezig waardoor er minder competitie is tussen de

carbonaat-ionen en het ligand. Dit zou als gevolg kunnen hebben dat er kleine hoeveelheden

(amorf) lanthaancarbonaat gevormd worden. Appelzuur lijkt echter te klein als ligand om de

grootte of morfologie van de partikels te beïnvloeden.

In het geval van glucose (zie ook tabel 2) werden water-oplosbare producten verkregen indien

12 mmol glucose gebruikt werd en alvorens de producten te drogen. Het Tyndall effect was

niet zichtbaar. Indien de poeders gedroogd werden, waren deze niet meer water-oplosbaar.

TEM metingen van de producten voor de droogfase tonen aan dat er partikels aanwezig zijn,

maar deze zijn niet uniform in grootte. De partikels zijn een mengsel van staafvormige en

kubusvormige partikels. De XRD van het poeder vertoonde enkele scherpe pieken, maar deze

konden niet geïdentificeerd worden. Er moet wel rekening mee gehouden worden dat de XRD

werd opgenomen na drogen en er mogelijk decompositie kon optreden. Ook DRIFTS

metingen konden geen uitsluitsel geven over de precieze samenstelling van de partikels.

Vermoedelijk worden de partikels enkel als bijproduct gevormd, in kleine hoeveelheden. Dit

kan mogelijk het waarnemen van het Tyndall effect verstoren. Wanneer er slechts 4 of 8 mmol

glucose gebruikt worden veranderen de resultaten significant. De verkregen poeders zijn niet

langer water-oplosbaar maar vormen onstabiele suspensies. XRD toont aan dat

La2O(CO3)2·1,4 H2O gevormd wordt. TEM metingen tonen aan dat er lange staafvormige

partikels van ongeveer 200 nm in diameter gevormd worden (figuur 4). Hoe hoger de

gebruikte hoeveelheid glucose, hoe sterker de partikels aggregeren.

Page 17: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

Figuur 4. TEM beeld van de gevormde La2O(CO3)2·1,4 H2O partikels

Fluoride core/shell nanopartikels

De poeders verkregen via Gluc 6 en Gluc 17 waren resuspendeerbaar in water. Het Tyndall

effect was te zien. XRD metingen toonde aan dat LaF3 was gevormd. In beide gevallen

werden kleine, geaggregeerde partikels (± 10 nm) gevisualiseerd onder de TEM (figuur 5).

Wanneer La(NO3)3 vervangen werd door Y(NO3)3 als lanthanide bron werd YF3 gevormd.

Een witte, maar vrij stabiele suspensies werd verkregen wanneer het poeder geresuspendeerd

werd in water. Staafvorminge partikels bestaande uit individuele draden werden gevormd

(figuur 5)

Figuur 5. TEM beeld van Gluc 17 (links) en Gluc 15 (rechts)

Conclusie

Het initiële doel van het project, de synthese van core/shell nanopartikels met

lanthaancarbonaat als anorganische kern, werd niet gehaald. Verschillende liganden werden

getest, maar het bleek niet mogelijk core/shell nanopartikels te synthetiseren. Men kan

concluderen dat lanthaancarbonaat waarschijnlijk niet geschikt is als kernmateriaal. Wel werd

geobserveerd hoe glucose de morfologie en vorm van de lanthaancarbonaat partikels kan

beïnvloeden.

Bevredigende resultaten werden verkregen in de synthese van ongecoatte lanthaancarbonaat

nanopartikels. Kleine partikels werden verkregen met La(OAc)3 als lanthaanbron. De synthese

condities van ZL 18 werden geselecteerd om Eu3+

en Tb3+

gedoteerde nanopartikels te maken.

Een luminescentelevensduur van 1,6 ms voor Tb3+

en 600 μs voor Eu3+

in vaste toestand

werden verkregen.

Core/shell partikels werden verkregen wanneer er gewerkt werd met een fluoride kern.

Veranderen van lanthanidebron leverde interessante morfologische veranderingen op.

Page 18: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

Dankwoord

Ik zou graag prof. Dr. Rik Van Deun bedanken om mij de kans te geven om een thesis in zijn

onderzoeksgroep te doen. Mijn begeleidster Anna Kaczmarek wil ik bedanken voor alle hulp

gedurende het hele jaar, voor het verbeteren van mijn thesis en voor alle TEM metingen. Tom

Plankaert zou ik graag bedanken voor het uitvoeren van XRD metingen en element analyses. Financiële steun van de Hercules stichting (project AUGE/09/024 “Advanced Luminescence

Setup”), het FWO-Vlaanderen (project G.0081.10N) en de Universiteit Gent (BOF-project

01N01010) is in dank aanvaard.

Referenties 1. www.nano.gov and www.nanowerk.com. 2. Bünzli, J.-C.G., et al., New Opportunities for Lanthanide Luminescence. Journal of Rare Earths,

2007. 25(3): p. 257-274. 3. Cross, A.M., et al., Dipicolinate Sensitization of Europium Luminescence in Dispersible

5%Eu:LaF3 Nanoparticles. The Journal of Physical Chemistry C, 2010. 114(35): p. 14740-14747.

4. Stouwdam, J.W. and F.C.J.M. van Veggel, Near-infrared Emission of Redispersible Er3+, Nd3+, and Ho3+ Doped LaF3 Nanoparticles. Nano Letters, 2002. 2(7): p. 733-737.

5. Nelson, J.A., L.H. Bennett, and M.J. Wagner, Solution Synthesis of Gadolinium Nanoparticles. Journal of the American Chemical Society, 2002. 124(12): p. 2979-2983.

6. Jia, G., et al., Preparation and luminescence properties of lutetium oxide hollow spheres by a template-directed route. Journal of Alloys and Compounds, 2011. 509(22): p. 6418-6422.

7. Sun, Y., et al., Photoluminescent properties of Y2O3:Eu3+ phosphors prepared via urea precipitation in non-aqueous solution. Journal of Luminescence, 2004. 109(2): p. 85-91.

8. Chen, X.B. and et al., Synthesis of erbium oxide nanosheets and up-conversion properties. Nanotechnology, 2011. 22(29): p. 295708.

9. Yu, C., et al., Facile sonochemical synthesis and photoluminescent properties of lanthanide orthophosphate nanoparticles. Journal of Solid State Chemistry, 2009. 182(2): p. 339-347.

10. Fan, W., et al., A simple method to synthesize single-crystalline lanthanide orthovanadate nanorods. Journal of Solid State Chemistry, 2004. 177(12): p. 4399-4403.

11. Li, P., H. Li, and W. Jie, Preparation of lanthanum sulfide nanoparticles by thermal decomposition of lanthanum complex. Journal of Rare Earths, 2011. 29(4): p. 317-320.

12. Wang, J. and et al., One-step synthesis of highly water-soluble LaF 3 :Ln 3+ nanocrystals in methanol without using any ligands. Nanotechnology, 2007. 18(46): p. 465606.

13. Salavati-Niasari, M., J. Javidi, and F. Davar, Sonochemical synthesis of Dy2(CO3)3 nanoparticles, Dy(OH)3 nanotubes and their conversion to Dy2O3 nanoparticles. Ultrasonics Sonochemistry, 2010. 17(5): p. 870-877.

14. Lechevallier, S.v., et al., Gadolinium−Europium Carbonate Particles: Controlled Precipitation for Luminescent Biolabeling. Chemistry of Materials, 2010. 22(22): p. 6153-6161.

15. Guo, G., et al., Synthesis and characterization of La2(CO3)3 nanostructures in the Triton X-100/cyclohexane/water reverse micelles. Journal of Crystal Growth, 2005. 277(1-4): p. 631-635.

16. Salavati-Niasari, M., G. Hosseinzadeh, and F. Davar, Synthesis of lanthanum carbonate nanoparticles via sonochemical method for preparation of lanthanum hydroxide and lanthanum oxide nanoparticles. Journal of Alloys and Compounds, 2011. 509(1): p. 134-140.

Page 19: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

17. Sounderya, N. and Z. Yong, Use of core/shell structured nanoparticles for biomedical applications. Recent Patents on Biomedical Engineering, 2008. 1(1): p. 37-4545.

18. Wang, F. and et al., Luminescent nanomaterials for biological labelling. Nanotechnology, 2006. 17(1): p. R1.

19. Li, C., et al., Controlled Synthesis of Ln3+ (Ln = Tb, Eu, Dy) and V5+ Ion-Doped YPO4 Nano-/Microstructures with Tunable Luminescent Colors. Chemistry of Materials, 2009. 21(19): p. 4598-4607.

20. Sudarsan, V., et al., Surface Eu3+ ions are different than "bulk" Eu3+ ions in crystalline doped LaF3 nanoparticles. Journal of Materials Chemistry, 2005. 15(13): p. 1332-1342.

21. Safronikhin, A., et al., Preparation and colloidal behaviour of surface-modified EuF3. Applied Surface Science, 2009. 255(18): p. 7990-7994.

22. Li, C., et al., Hydrothermal Synthesis of Lanthanide Fluorides LnF3 (Ln = La to Lu) Nano-/Microcrystals with Multiform Structures and Morphologies. Chemistry of Materials, 2008. 20(13): p. 4317-4326.

23. Evanics, F., et al., Water-Soluble GdF3 and GdF3/LaF3 NanoparticlesPhysical Characterization and NMR Relaxation Properties. Chemistry of Materials, 2006. 18(10): p. 2499-2505.

24. Dong, C., M. Raudsepp, and F.C.J.M. van Veggel, Kinetically Determined Crystal Structures of Undoped and La3+-Doped LnF3. The Journal of Physical Chemistry C, 2008. 113(1): p. 472-478.

25. Huignard, A., et al., Synthesis and Characterizations of YVO4:Eu Colloids. Chemistry of Materials, 2002. 14(5): p. 2264-2269.

26. Wei, Y., et al., Polyol-mediated synthesis of water-soluble LaF3:Yb,Er upconversion fluorescent nanocrystals. Materials Letters, 2007. 61(6): p. 1337-1340.

27. Diamente, P. and F. Veggel, Water-Soluble Ln+3-Doped LaF3 Nanoparticles: Retention of Strong Luminescence and Potential as Biolabels. Journal of Fluorescence, 2005. 15(4): p. 543-551.

28. Charbonniere, L.J., et al., Highly luminescent water-soluble lanthanide nanoparticles through surface coating sensitization. New Journal of Chemistry, 2008. 32(6): p. 1055-1059.

29. Liu, Y., et al., X-ray luminescence of LaF[sub 3]:Tb[sup 3+] and LaF[sub 3]:Ce[sup 3+],Tb[sup 3+] water-soluble nanoparticles. Journal of Applied Physics, 2008. 103(6): p. 063105.

30. Shan, G., et al., A simple, low-temperature route to synthesize aqueous-dispersible Yb3+–Er3+ co-doped hexagonal LaF3 nano-crystals for up-conversion fluorescence. Materials Letters, 2008. 62(26): p. 4187-4190.

31. Wang F, Z.Y., Fan XP, Wang MQ, One-pot synthesis of chitosan/LaF3/Eu+3 nanocrystals for bioapplications. Nanotechnology, 2006. 17: p. 1527-1532.

32. Wang, L., Y. Zhang, and Y. Zhu, One-pot synthesis and strong near-infrared upconversion luminescence of poly(acrylic acid)-functionalized YF<sub>3</sub>:Yb<sup>3+</sup>/Er<sup>3+</sup> nanocrystals. Nano Research, 2010. 3(5): p. 317-325.

33. Wang, M., et al., One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence. Journal of Alloys and Compounds, 2009. 485(1–2): p. L24-L27.

34. Chen, H., et al., Water-soluble Yb3+, Tm3+ codoped NaYF4 nanoparticles: Synthesis, characteristics and bioimaging. Journal of Alloys and Compounds, 2012. 511(1): p. 70-73.

35. Wang, F. and X. Liu, Upconversion Multicolor Fine-Tuning: Visible to Near-Infrared Emission from Lanthanide-Doped NaYF4 Nanoparticles. Journal of the American Chemical Society, 2008. 130(17): p. 5642-5643.

Page 20: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

36. Wang, F., X. Xue, and X. Liu, Multicolor Tuning of (Ln, P)-Doped YVO4 Nanoparticles by Single-Wavelength Excitation. Angewandte Chemie International Edition, 2008. 47(5): p. 906-909.

37. Huignard, A., T. Gacoin, and J.-P. Boilot, Synthesis and Luminescence Properties of Colloidal YVO4:Eu Phosphors. Chemistry of Materials, 2000. 12(4): p. 1090-1094.

38. Qian, L., et al., Self-Assembled Heavy Lanthanide Orthovanadate Architecture with Controlled Dimensionality and Morphology. Chemistry – A European Journal, 2009. 15(5): p. 1233-1240.

39. Diamente, P.R., R.D. Burke, and F.C.J.M. van Veggel, Bioconjugation of Ln3+-Doped LaF3 Nanoparticles to Avidin. Langmuir, 2005. 22(4): p. 1782-1788.

40. Feng, J., et al., Functionalized Europium Oxide Nanoparticles Used as a Fluorescent Label in an Immunoassay for Atrazine. Analytical Chemistry, 2003. 75(19): p. 5282-5286.

41. Meiser, F., C. Cortez, and F. Caruso, Biofunctionalization of Fluorescent Rare-Earth-Doped Lanthanum Phosphate Colloidal Nanoparticles. Angewandte Chemie International Edition, 2004. 43(44): p. 5954-5957.

Page 21: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden
Page 22: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

17

Contents

CONTENTS ........................................................................................................................................ 17

1 INTRODUCTION ........................................................................................................................... 19

2 LANTHANIDES AND CORE/SHELL NANOPARTICLES ....................................................................... 21

2.1 LANTHANIDE NANOPARTICLES.......................................................................................................... 22

2.2 CORE/SHELL NANOPARTICLES .......................................................................................................... 27

2.3 POSSIBLE APPLICATION OF WATER SOLUBLE CORE/SHELL NANOPARTICLES ................................................... 32

3 EQUIPMENT AND USED CHEMICALS ............................................................................................ 35

3.1 DIFFUSE REFLECTANCE INFRARED FOURIER TRANSFORM SPECTROSCOPY (DRIFTS) ....................................... 35

3.2 TRANSMISSION ELECTRON MICROSCOPY (TEM) ................................................................................... 36

3.3 SCANNING ELECTRON MICROSCOPY (SEM) ......................................................................................... 36

3.4 X-RAY DIFFRACTION (XRD) ............................................................................................................. 37

3.5 ELEMENTAL ANALYSIS (EA) ............................................................................................................. 37

3.6 ADVANCED LUMINESCENCE SET-UP ................................................................................................... 38

4 UNCOATED LANTHANUM CARBONATE PARTICLES ....................................................................... 40

5 SYNTHESIS OF LANTHANUM CARBONATE PARTICLES IN PRESENCE OF 2-AMINOETHYL

PHOSPHATE (AEP)............................................................................................................................. 56

6 SYNTHESIS OF LANTHANUM CARBONATE PARTICLES IN PRESENCE OF MALIC ACID (MA) .............. 61

7 SYNTHESIS OF LANTHANUM CARBONATE PARTICLES IN PRESENCE OF GLUCOSE (GLUC) ............... 65

8 LNF3/GLUCOSE CORE/SHELL NANOPARTICLES .............................................................................. 70

9 GENERAL CONCLUSION ............................................................................................................... 75

Page 23: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

18

10 REFERENCES ............................................................................................................................. 76

11 APPENDIX ................................................................................................................................. 80

11.1 SYNTHESIS METHODS .................................................................................................................. 80

11.1.1 SYNTHESIS OF LANTHANUM CARBONATE NANOPARTICLES ......................................................................... 80

11.1.2 GLUCOSE COATED FLUORIDE NANOPARTICLES ......................................................................................... 85

11.2 LUMINESCENCE SPECTRA .............................................................................................................. 87

Page 24: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

19

1 Introduction

Particles that have at least one dimension less than 100 nm are called nanoparticles.

Properties of a material at such a small size change significantly compared to those larger in

size. This is due to the fact that quantum-effects take over. Quite often properties are size-

dependent and characteristics such as melting point, fluorescence, electrical conductivity,

magnetic permeability, and chemical reactivity can change as a function of the size. A well-

known example is nanoparticles of gold. Normally gold is known by the yellow color, but at

nanoscale it appears red or purple. This can be explained by the fact that at nanoscale the

movement of the gold’s electrons are limited and the nanoparticles react different with light

compared to larger particles. This size-dependence gives rise to the concept of fine-tuning.

By changing the size of the particles one can change the property of interest (for example

changing fluorescence color). Nanoscale materials also have a high surface to volume ratio.

This gives better mass transfer and heat transfer properties as well as higher reactivity.

Materials that have one dimension in the nanoscale (but are larger in the other two

dimensions) are called layers. Thin films and surface coatings are examples of such layers.

Sometimes they are also referred to as nanoplates because they have a thickness at the

nanoscale, but their other two dimensions can be larger. Nanowires and nanotubes have two

dimensions at nanoscale. A nanowire’s/nanotube’s length can be several hundred

nanometers (or longer), but their diameter is within the nanoscale. A nanotube is

comparable with a nanowire, but it is hollow. Nanoparticles are bits of material which have

all three dimensions in the nanoscale.

Nowadays nanotechnology is used in many commercial products and processes. It is used to

manufacture lightweight, strong materials for different applications like boat hulls, sporting

equipment and automotive parts. Furthermore they are used in cosmetics like sunscreens

(nanosized titanium dioxide and zinc oxide). Nanostructured catalysts are known and make

chemical manufacturing processes more efficient by saving energy and reducing waste. There

are examples of nanomaterials used in healthcare. Some nanoceramics are used in specific

dental implants or to fill holes in diseased bones, because their mechanical and chemical

properties can be ‘tuned’ to attract bone cells from the surrounding tissue to make new

Page 25: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

20

bone. Almost all high-performance electronic devices manufactured in the past decade are

based on some nanomaterials. [1]

The aim of this project was to synthesize and characterize Ln3+ doped lanthanum carbonate

nanoparticles of the core/shell type where the shell is an organic ligand. The chosen ligands

were glucose, malic acid and 2-aminoethyl phosphate. The synthesis was carried out in a

water-based environment. Using environmentally friendly synthesis has gained importance in

the last years. It offers several advantages such as easier purification of the products, more

convenient bioconjugation with DNA, enzymes etc. and others. Uncoated lanthanum

carbonate particles were synthesized too. To date, no reports of core/shell nanoparticles

with lanthanum carbonate as an inorganic core have been published and only a few reports

about lanthanum carbonate nanoparticles are known. The uncoated particles were doped

with highly luminescent Eu3+ or Tb3+. Both ions emit in the visible region. Eu3+ emits in the red

region (570-720 nm) and Tb3+ emits in the green region (480-680 nm).

Page 26: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

21

2 Lanthanides and core/shell nanoparticles

Lanthanides are a special group of elements within the periodic table. In the lanthanide

series the 4f orbitals are being filled. Usually these elements exist as trivalent cations with an

electronic configuration of 4fn, with n varying from 1 (Ce3+) to 14 (Lu3+). There are three types

of electronic transitions possible. The first type is a charge transfer transition. This can be a

ligand to metal (LMCT) as well as a metal to ligand (MLCT) transition. These rather broad

transitions are allowed by Laporte’s selection rule, and they usually appear in the UV region.

Secondly there are the 4f-5d transitions. A 4f electron gets promoted into the 5d sub-shell.

These transitions are allowed, but their energy depends on the metal environment due to

the fact that the 5d orbitals are directly in contact with ligand orbitals or other surroundings.

[2] Finally there are the f-f transitions. In this case the 4f electrons rearrange. These

transitions have a unique nature because the 4f electrons are shielded from the environment

by the filled 5s and 5p orbitals so the 4f electrons only interact weakly with the chemical

environment. The free ion energy-level structure of Ln3+-ions is therefore largely preserved in

any chemical matrix and the Crystal Field theory for example can be considered as a

perturbation. The optical spectra are dominated by sharp-line structures and quite easily

recognizable. [2, 3] Unfortunately these 4f-transitions are forbidden by Laporte’s selection

rule and low molar absorption coefficients (< 10 M-1 cm-1 or even < 1 M-1 cm-1) as well as long

luminescence lifetimes are the consequence. Most Ln3+-ions are luminescent. Only La3+ and

Lu3+ have no f-f transitions and do not show luminesce. The emission of the ions covers the

entire spectrum from UV until NIR. [2, 4] Yet the long-living excited state can be quenched

quite easily by the high-energy vibrations of organic solvents, polymers or ligands. This

reduces application possibilities in an organic environment. [4] The low molar absorption

coefficients can be circumvented by using a sensitizer. Usually one uses ligands bonded to

the Ln3+-ion. One must take care that the ligand absorbs strongly the used excitation

wavelength. Due to this the ligand gets excited. The ligand should transfer its energy to the

lanthanide ion. This is the ‘antenna-effect’ and it increases the molar extinction coefficient.

[2, 3] Another interesting property of several lanthanide ions is upconversion (UC). This is a

process in which two NIR photons are converted into one visible photon. Ho3+, Pr3+, Nd3+,

Page 27: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

22

Yb3+ are some examples of ions that can be used for upconverting processes.

Downconversion (DC) or quantum-cutting (QC) implies splitting one energetic photon (UV or

visible) into two lower energy photons. The process requires a pair of ions. Ions usable for DC

are for example Eu3+, Tb3+, Er3+, Gd3+. Concerning photoluminescence the overall efficiency is

an important parameter and can be approximated by the following equitation:

with the overall quantum yield and the molar absorptivity at the excitation

wavelength. Using sensitization through the ligand levels the overall quantum yield can be

described by

is the intrinsic quantum yield, represents the efficiency with which electromagnetic

energy is transferred from the surroundings onto the metal ion, is the experimental

lifetime of the metal excited state (measured upon direct excitation) and stands for the

radiative lifetime. depends on the energy gap between the lowest excited (emissive)

state and the highest level of its ground multiplet. The smaller this gap, the easier non-

radiative deactivation processes occur. [2]

2.1 Lanthanide nanoparticles

There are several reports on lanthanide nanoparticles. Gadolinium nanoparticles were

synthesized by alkalide reduction. The nanoparticles ignited spontaneously upon exposure to

air allowing Gd2O3 to form. [5] Nanoparticles consisting of lanthanide oxides have also been

reported. Hollow spheres of lutetium oxide were synthesized by a template-directed route.

Carbon spheres were used as a template. The wall thickness was about 40 nm. The hollow

spheres were doped with Eu3+ and Er3+. [6] Y2O3:Eu3+ nanoparticles were prepared using urea

in a non-aqueous solution. The particles were spherical but quite large and with a broad size

distribution, however the photoluminescence was enhanced. [7] Erbium oxide nanosheets

with width of 10-15 nm and lengths of 200 nm were synthesized via a simple hydrothermal

Page 28: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

23

method. The obtained nanosheets consisted of many nanometer-sized crystallites. The

nanosheets exhibit a strong blue emission and a weak red emission, while bulk Er2O3 has

almost no blue emission. [8] Lanthanide orthophosphate nanoparticles were synthesized via

sonochemical synthesis. The hexagonal LnPO4 (Ln= La, Ce, Pr, Nd, Sm, Eu, Gd) particles had a

nanorod-bundle morphology. They had a diameter of 100 nm and where about 500 nm long.

The tetragonal LnPO4 (Ln= Tb, Dy, Ho) particles had a sphere like morphology. The particles

were rather large. [9] Orthovanadate nanorods have also been reported. They were

synthesized via a hydrothermal route. The average diameters were 20 nm and lengths were

up to 100 nm. [10] Lanthanum sulfide nanoparticles were obtained via thermal

decomposition at lower temperature of a lanthanum complex (La(Et2S2CN)3·phen). The

diameters of the particles were between 10-30 nm. [11] LaF3:Ln3+ nanoparticles were

synthesized in methanol without using any ligands. The particles turned out to be highly

water-soluble. The diameter was about 12 nm. [12] Many other examples can be found in

literature.

To date, not many articles about lanthanide carbonate nanoparticles have been published.

The synthesis of Dy2(CO3)3 nanoparticles has been reported via sonochemical synthesis. The

nanoparticles were prepared by the reaction of Dy(OAc)3 with NaHCO3 in water and

irradiated with ultrasounds for 30 minutes. The Dy2(CO3)3 particles served as a precursor for

the synthesis of Dy2O3 nanoparticles. In the same article the authors also report the synthesis

of Dy(OH)3 nanotubes, but this synthesis was not based on Dy2(CO3)3 nanoparticles. After

washing and drying the Dy2(CO3)3 nanoparticles were calcinated in air at different

temperatures for 2 h. When the calcination temperatures were below 750 °C quasi-spherical

nanoparticles were obtained. From 800 °C the particles began to agglomerate. Following

decomposition pattern for the Dy2(CO3)3 nanoparticles was proposed:

Dy2(CO3)3·1,7 H2O Dy2(CO3)3

Dy2O2CO3

Dy2O3

Page 29: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

24

XRD analysis confirmed that Dy2(CO3)3 had been synthesized. After calcinating the Dy2(CO3)3

samples at 500 °C two crystalline phases formed: dysprosium oxide and dysprosium oxide

carbonate. The samples calcinated at 650 °C formed pure Dy2O3 with cubic bixbyite phase,

also known as the C-rare-earth sesquioxide structure. TEM-images of Dy2(CO3)3 and Dy2O3 are

given in Figure 1. The Dy2O3 nanoparticles are spherical and their size varies between 15-20

nm. Photoluminescence spectra of the Dy2O3 nanoparticles were taken. There were two

emission peaks. One at about 17540 cm-1 (yellow emission) corresponding to an electron

transition of 4F9/2→6H13/2 and another at about 20700 cm-1 (blue emission) resulting of an

electron transition of 4F9/2→6H15/2. [13]

Europium doped gadolinium carbonate particles were synthesized using urea in a flask

reaction at 85 °C. The particles were spherical and monodisperse until reaction times of 240

minutes. The average diameter changed depending of the reaction time from 164 nm for 120

minutes to 240 nm for 240 minutes. At longer times platelet-shaped particles began to form

and eventually the spherical particles disappeared. At a reaction time of 420 minutes only

Figure 1: TEM images of (a) Dy2(CO3)3 (b) Dy2O3 [13]

Figure 2: TEM image of Gd(CO3)3:Eu at different reaction times (t6=120 min, t10=180 min, t12=240 min, t13=270 min, t14=300 min, t16=420 min) and a TEM image and the electronic diffraction pattern of a t6-annealed sample [14]

Page 30: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

25

platelet-like particles existed. Figure 2 (t6-t16) shows TEM images of the particles at different

reaction times. The platelet-shaped particles appeared to be crystalline Gd(CO3)3·(2-3)H2O.

The substance was analyzed with WAXS (wide angle X-ray scattering), TGA (thermo

gravimetric analysis), FTIR (Fourier transform infrared spectroscopy) and PL

(photoluminescence). At a reaction time of 120 minutes amorphous Gd2(OH)(CO3)2 was

formed while at reaction times between 120 minutes and 420 minutes mixtures of

amorphous and crystalline particles were obtained. In the samples containing amorphous

phases the emission lines of Eu3+ were broad in comparison with the crystalline sample. The

amorphous sample (reaction time 120 minutes) was annealed at 850 °C for 4 h. Spherical,

uniform, non-agglomerated and crystalline Gd2O3 nanoparticles were obtained. The size is

about 10-50 nm as can be seen from the TEM shown in Figure 2 (t6-annealed). The Eu3+

emission spectrum has well defined lines as expected for a crystalline powder. [14]

La2(CO3)3 nanowires have been synthesized using a reversed micelles system consisting of

Triton X-100/cyclohexane/water. Triton X-100 is a nonionic surfactant. Using XRD and SAED

patterns the nanostructures proved to be of the orthorhombic type. However the diffraction

peaks were broad. This could be due to the fact that the nanowires were made up of some

disordered small-size nanocrystals near the axis with some ordered large ones around the

surface. Some reaction parameters were investigated. La2(CO3)3 nanowires could be obtained

at pH 2-5. When the pH exceeded 7 no nanowires were obtained. Also morphological

changes of the products due to the aging time and the influence of the aging temperature

were investigated. With an increase in aging time the length of the nanowires increased, this

can be seen in Figure 3. All nanowires in Figure 3 were prepared at aging temperature of 303

Figure 3: TEM image of the La2(CO3)3 nanowires at different aging times (a) 6h (b) 3h (c) 48h; aging temperature 303 K [15]

Page 31: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

26

K. In Figure 4 the aging temperatures were held at 293 K and 313 K. When the aging

temperature was lower than 303 K nanobelts or flakelike nanowire bundles were formed.

When the aging temperature was increased the nanostructures became shorter and the

diameter became larger. [15]

La2(CO3)3 nanoparticles were also obtained via a sonochemical method. Different irradiation

times were used, but an irradiation time of 30 min was found to give best results. These

La2(CO3)3 nanoparticles were used to synthesize La(OH)3 nanoparticles and La2O3

nanoparticles. To prepare the La(OH)3 nanoparticles a water-based solution of La2(CO3)3

particles and N2H4 was hydrothermally treated for 24 h at 110 °C. To obtain La2O3

nanoparticles the La2(CO3)3 nanoparticles were calcinated at 600 °C for 2 h. The proposed

decomposition pattern was supported by a TGA analysis:

La2(CO3)3·1,7H2O La2(CO3)3

La2O2CO3

La2CO3

The XRD pattern showed that the La2(CO3)3 nanoparticles were of the orthorhombic type.

TEM images of the La2(CO3)3, La(OH)3 and La2O3 nanoparticles are given in Figure 5. The

La2(CO3)3 particles were spherical with sizes between 25 to 35 nm and showed a tendency to

agglomerate. The sizes of La(OH)3 particles were about 16-20 nm. The La2O3 particles were

30 nm in size with spherical shape. Further evidence for the composition of the particles was

provided by XPS (X-ray Photoelectron Spectroscopy), FTIR and EDS (Energy Dispersive

Spectrometry). The effect of the calcination temperature was investigated for the synthesis

of La2O3 particles. The results revealed that the mean particle size increased with increasing

temperature. Spherical nanoparticles were obtained when the calcination temperature was

Figure 4: TEM image of La2(CO3)3 nanostructures at aging temperature (a) 293 k (b) 313 K; reaction time 48h [15]

Page 32: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

27

below 700 °C, but when the temperatures were higher the particles started to agglomerate.

[16]

2.2 Core/shell nanoparticles

Core/shell nanoparticles are gaining a lot of attention. These nanostructures consist of a core

and a shell made of two different materials. They usually have dimensions in the range of 20-

200 nm and the core/shell structure improves their properties. Choosing an appropriate

ligand can prevent agglomeration of the particles and thus improve monodispersity as well as

thermal or chemical stability and solubility. The shell can make the particles less cytotoxic

and can make it possible to conjugate other (bio)molecules to the particles. Also oxidation of

the core material can be prevented due to the shell. There are several possibilities in

choosing a core/shell structure. The core or the shell or both can be made of inorganic

materials. One can use metals, semiconductors or lanthanides. A widely used core/shell

nanostructure is a gold core with a silica shell. These core/shell nanoparticles find

applications in optical sensing. The optical properties of these gold nanoparticles can be

changed by changing the thickness of the silica shell. The silica shell also ensures that the

particles are biocompatible. Another well-known example is quantum dots (QD). These

contain semi-conducting materials and are usually an alloy of group 3 and group 5 metals or

group 2 and group 6 metals. CdSe/CdS, CdSe/ZnS, ZnSe/ZnS, CdTe/CdS core/shell

nanoparticles can be used for bio-imaging. The emission range of the particles is determined

by the shell thickness. Examples of lanthanide particles include YF3/silica or TiO2:Eu

nanoparticles. Aside from using inorganic materials also organic materials or even polymers

can be used. The organic material can form either the core or the shell of the particle. [17]

Figure 5: TEM image of (a) La2(CO3)3 (b) La(OH)3 (c) La2O3 [16]

Page 33: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

28

Usually an inorganic core with an organic ligand is chosen. Often, for Ln3+ based core/shell

nanoparticles negatively charged ligands are used. Assuming that the overall charge of the

nanoparticles is equal to zero, there must be a larger excess then 1:3 of the Ln3+-ion relative

to fluoride in the case of synthesizing LnF3 nanoparticles. [18] At present the bonding

between the inorganic core and the organic shell is not fully understood. More research is

still needed, but core/shell nanoparticles like this are interesting. One can dope lanthanide

ions into the inorganic part of the particles (the core). Thanks to this the Ln3+ ions are

protected from the (organic) environment which reduces quenching. To enhance

dispersibility an organic shell is used. Depending on the chosen ligand the particles will be

dispersible in organic solvents or in water. One can also use the shell to facilitate

biofunctionalization. The luminescence properties of the lanthanide ions in nanoparticles are

very similar to those of bulk materials. [4, 19] The most used ligands for preparing Ln3+-doped

nanoparticles dispersible in organic media are oleic acid [20-24] and ammonium di-(n)-

octadecylditiophophate. [4, 25-27] Oleic acid stabilized nanoparticles can be made water

soluble by oxidizing the oleic acid and so generating free carboxylic acid groups at the

surface. [23] Ligand-exchange can also be used to convert hydrophobic core/shell

nanoparticles into hydrophilic ones. [24, 28, 29] There are also examples of other ligands

used in the synthesis of core/shell nanoparticles dispersible in organic solvents. [30, 31]

Although particles coated with such ligands are very interesting, water-based systems have

several advantages to organic solvent-based systems. A water-based system could be

considered as a ‘green chemistry’ alternative for producing nanoparticles. One does not need

to work with a toxic organic solvent and usually the synthesis is quite simple, safe and does

not require special atmospheric conditions. Further there will be a larger potential for large-

scale production. [32] Probably the most used ligand for water soluble nanoparticles is

citrate. [3, 22, 32-37] In addition to the use of organic ligands, there are also examples where

polymers are used as coating material. Used hydrophilic polymers include PVP

(polyvinylpyrrolidone), PAA (polyacrylic acid), PEG (polyethylene glycol) and PEI

(polyethylenimine). [38-42] In many cases it has been reported that the used ligand also

influences the morphology and size. In general the particles are smaller and more uniform

Page 34: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

29

then the ones synthesized in absence of an organic ligand. [20, 32-34, 43-47] Lanthanide

fluoride materials as core within core/shell nanoparticles are popular because these

materials have a low phonon energy (low vibrational energy). This is caused by the high

ionicity of the Ln-F bond and as a consequence quenching of the luminescent Ln3+-ions is

minimal. [45] Van Veggel et al. has done a lot of work in the area of water soluble core/shell

lanthanide nanoparticles. The synthesized inorganic core, which is mostly LaF3, is doped with

luminescence Ln3+ ions. Different ligands are used for the organic shell. Citrate is most

commonly used [3, 22, 35, 36], but other ligands for example 2-aminoethyl phosphate (AEP)

are also used. [35, 36, 48] The synthesis of silica-coated LaF3:Ln3+ nanoparticles starting from

LaF3:Ln3+ citrate stabilized nanoparticles was demonstrated. Bioconjugation to avidin (a

biotin-binding protein) was possible. [49] In that same year bioconjugation to avidin was

demonstrated starting from AEP-stabilized nanoparticles. [50] LaF3 as core material was also

chosen by other groups for synthesizing water-soluble core/shell nanoparticles. Different

ligands were used. [45, 51, 52] There are also reports of the use of biomolecules like D-

glucose or chitosan using a LaF3 core. [53, 54] Other fluoride based materials as core like

GdF3 [35, 36], YF3, [40] EuF3, [33] NaYF4 [38, 39, 41] and LnF3, [34] were also reported. Besides

fluoride materials other inorganic cores such as YPO4, [32] YVO4 [37, 42, 55] and LnVO4 [43]

were used with a variety of ligands.

Yb3+–Er3+ co-doped LaF3 nanocrystals coated with glucose were synthesized in a flask reaction

at 60 °C for about 5 days in water as solvent. However, after about 90 minutes, dissolvable

Yb3+-Er3+ co-doped LaF3 particles were obtained in a clear solution. TEM images of the

hexagonal nano-crystals are shown in Figure 6. The particles adopt more or less rectangular

shapes. Their average size is about 15–20 nm and the surfaces of the particles are relatively

smooth. The influence of the pH was investigated. If the pH was higher than 10, the particles

could be completely precipitated. This was used to separate the particles. However if the pH

was lower than 7 the particles were dispersible. According to the authors a possible

explanation is the equilibrium between the two structural forms of glucose (cyclic and

acyclic). The cyclic form is predominant when the pH value is more than 7. Upconversion

fluorescent spectra of the nanoparticles were measured and the particles excited at 980 nm

Page 35: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

30

showed red and green luminescence. Coating of the particles with silica was possible without

altering the shape. These particles were found to have potential as up-conversion fluorescent

labeling materials. [53]

Lanthanide orthovanadates (LnVO4, Ln=Y, Dy, Er, Ce, Gd) were synthesized using sodium

citrate (Na3cit), sodium tartrate (Na2tar) and sodium malate (Na2mal) as ligands. The

synthesis was a hydrothermal process at 140 °C mostly carried out for 24 h with varying

amounts of the complexing agent. Depending of the synthesis conditions different

morphologies were obtained. For example YVO4 nanopersimmons were obtained with 2:1

molar ratio of cit3-/Y3+ at 140 °C for 24 h. A SEM image is shown in Figure 7 a. The particles

are uniform and have a concave dip in their center. The individual YVO4 architectures are

composed of many smaller nanoplates (Figure 7 b and Figure 7 c). The influence of the

reaction time, the amount of ligand and different complexing agents were investigated. It

was found that nanocubes instead of nanopersimmons were obtained when Na2tar was used

as a ligand under similar reaction conditions. This can be seen in Figure 7 d. The obtained

products also have a uniform morphology and are composed of numerous nanoplates. There

is a shallow concave dip in the each face of the nanocubes (Figure 7 f). Using Na2mal as the

complexing agent, under similar reaction conditions, yielded irregular nanoparticles (Figure

8). Therefore it has been found that the complexing agent has great effect on the

morphology of the product. The optical properties of YVO4 nanopersimmons of various sizes

were studied. [43]

Figure 6: TEM images of the LaF3/glucose nanoparticles [53]

Page 36: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

31

Coating nanoparticles with AEP gives them a positively charged surface at physiological pH.

Highly water-soluble GdF3 or GdF3/LaF3 nanoparticles stabilized with AEP were synthesized in

a flask reaction at 75 °C for 3-4 h. AFM measurements show that the particles had a broad

size distribution (shown in Figure 9). The typical cross-sectional diameter was 51,5 nm as

determined by DLS. The particles are promising as relaxation agents in NMR studies. [35]

Undoped and La3+-doped LnF3 nanoparticles stabilized with AEP were prepared using a

similar method as described above. The sizes varied between 3-10 nm. [36] Using AEP as a

ligand, biotin moieties could be attached on the surface of Ln3+-doped LaF3 nanoparticles.

Due to this binding to avidin was made possible. Avidin is a biotin-binding protein that can be

found in the egg white of birds, reptiles and amphibians. The interaction of biotin and avidin

is the strongest known non-covalent interaction between a protein and ligand. In this case it

Figure 8: TEM image of YVO4 nanoparticles obtained when

using Na2mal as capping ligand [43]

Figure 7 a) Low-magnification SEM image of monodisperse YVO4 nanopersimmons obtained with Na3cit; b) enlarged SEM image of YVO4 nanopersimmons; c) SEM image of an individual YVO4

nanopersimmon; d) Low-magnification SEM images of monodisperse YVO4 nanocubes obtained with Na2tar; e) enlarged SEM image of YVO4 nanocubes; f) SEM image of an individual YVO4 nanocube [43]

Page 37: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

32

is used to test the ability of the biotinylated particles to be bound to a biological system. [50]

Water-soluble LaF3:Eu/AEP nanoparticles were synthesized in a low temperature flask

reaction. The reaction was performed at 37 °C for 72 h. The XRD pattern showed broad peaks

which indicate a low crystalline sample. DLS revealed an average radius of 232 nm, but a

large polydispersity. These nanoparticles were shown to react with 6-carboxy-5’-methyl-2,2’-

bipyridine (bipyCOO-) in water. Analysis pointed to a partial displacement of AEP molecules

at the surface, but the overall morphology of the nanoparticles was maintained. TEM images

of the AEP-stabilized and of the 6-carboxy-5’-methyl-2,2’-bipyridine stabilized nanoparticles

are shown in Figure 10. The Eu3+ luminescence was improved up to two orders of magnitude

due to the very efficient light harvesting of the surface-bonded 6-carboxy-5’-methyl-2,2’-

bipyridine. [51]

2.3 Possible application of water soluble core/shell nanoparticles

Luminescence labeling of biomolecules has been recognized as a valuable tool in biological

studies. The more commonly used types of fluorescent labels are being replaced by newer

types like inorganic nanoparticles or fluorescent latex/silica nanobeads. Conventional

Figure 10: TEM image of LaF3:Eu stabilized with AEP (left) and LaF3:Eu stabilized with bipyCOO- (right) [51]

Figure 9: AFM image consisting of nanoparticles of an 80/20 mixture of

GdF3 and LaF3 stabilized with AEP [35]

Page 38: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

33

fluorescent labels like organic dyes, fluorescent proteins and lanthanide chelates have their

advantages like small sizes, high water solubility, easy usage and existing standard protocols

for their bioconjugation. However they have several limitations. Usually they have a broad

spectrum; they are sensitive to photobleaching and have a low photochemical stability.

Organic fluorophore-tagged fluorescent latex nanobeads can solve these problems. A

nanobead consists of a polymer shell which encapsulates thousands of fluorophores. Thanks

to this the fluorophores are protected from the environment and more stable against

photobleaching. Also more light is emitted due to the large number of fluorophores.

Unfortunately polymer coated nanoparticles also face some problems such as larger particle

size, swelling, agglomeration and leaking of the fluorophore through surface defects. A

newer and more popular encapsulating material is silica. It can encapsulate organic and

inorganic dyes as well as lanthanide chelates. Silica enhances water solubility, improves

stability and protects from photobleaching. Silanol groups on the surface of the nanobeads

allow conjugation of biomolecules. [19]

In the class of inorganic nanoparticles semiconductor quantum dots and lanthanide doped

compounds have received most attention. Quantum dots (QD) as mentioned previously are

generally composed of group 3 and group 5 metals or of group 2 and group 6 metals. Usually

they have dimensions between 1 and 5 nm. This size is in the same order of magnitude as the

De Broglie wavelength of electrons and holes at room temperature. Due to this fact the

states of the free charge carriers in quantum dots are quantized and their movement is

determined by quantum mechanics. This leads to unique optical and electronic properties

that are dependent on the particle size. Because uncapped quantum dots were unstable and

their emission was rather weak research shifted to core/shell quantum dots with a higher

quantum yield and a better stability. The University of Ghent has some expertise in core/shell

quantum dots dispersible in organic media provided by Prof. Dr. Zeger Hens. [56-59] The

insolubility of quantum dots in aqueous media limits their potential applications in biological

systems. If possible, ligand exchange could be an outcome. Alivisatos and Nie demonstrated

that quantum dots could be made water soluble and bioconjugated. [60, 61] Thus,

applications were extended to the biological field. Using quantum dots in biological fields

Page 39: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

34

have some advantages. They have a greater sensitivity and stability then conventional

organic fluorophores. The wavelength of emission can be tuned varying size and composition

of the quantum dots. Their excitation is quite easy and their emission of light is slow enough

to eliminate most autofluorescence in the background. However, they do have some

limitations. They exhibit optical blinking which makes application in quantitative assays

difficult. The quantum dots themselves are not biocompatible and they have to be surface

modified. [19] Lanthanide doped compounds are another promising class of luminescent

nanoparticles for biological applications. Water soluble lanthanide nanoparticles can be

obtained by directly synthesizing core/shell particles or by modifying the surface of already

synthesized nanoparticles. They usually have a quite good quantum yield. Using the right

organic ligand facilitates bioconjugation. The luminescence of such particles is characterized

by narrow emission bandwidths. The emission bands are determined by the lanthanide ions

used. The emission and absorption lines from each lanthanide ion in the nanoparticles do not

overlap, neither are they influenced by the particle size. This offers multiplexing capabilities.

Optical properties can be tuned depending on the doped ions. These particles possess a high

photochemical stability, they are strongly fluorescent and have long fluorescence lifetimes.

Further, low toxicity, large effective Stokes shifts and sharp emission band widths (10-20 nm)

are advantageous. [19, 50] There are several examples of bioconjugation or biological

applications of lanthanide doped nanoparticles, however more research is needed. [19, 50,

54, 62, 63]

Page 40: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

35

3 Equipment and used chemicals

The chemicals used were lanthanum nitrate (La(NO3)3·6 H2O) 99,99% purchased from Roth,

urea (CH4N2O) pro analysis, hydrochloric acid fuming 37% for analysis (HCl) purchased at

Merck, anhydrous α-D-glucose (Gluc, C6H12O6), malic acid (MA, C4H6O5) 99%, 2-aminoethyl

phosphate (AEP, C2H8NO3P), sodium fluoride (NaF) 99%, lanthanum acetate (La(OAc)3·1,5

H2O) 99,99%, gadolinium nitrate (Gd(NO3)3·6 H2O) 99,99%, yttrium nitrate (Y(NO3)3·6 H2O)

99,99% and aqueous ammonia solution (NH3(aq)) 30% purchased via Sigma Aldrich.

Anhydrous sodium carbonate (Na2CO3) was acquired via UCB. Methanol (MeOH) and ethanol

(EtOH) AnalaR NORMAPUR were purchased from VWR. Sodium hydroxide 98% (NaOH) was

obtained via Chemlab. All chemicals were used without further purification.

3.1 Diffuse Reflectance infrared Fourier transform spectroscopy

(DRIFTS)

Fourier transform spectroscopy (FTIR) is a well-known technique. Atoms in molecules and

solids vibrate. This vibrational motion is quantized and at room temperature most of the

molecules are in their lowest vibrational state. The absorption of infrared light can excite

these molecules to a higher vibrational level. This absorption of infrared light in function of

wavelength gives rise to an infrared spectrum. The vibrations can be divided according to the

type of movement of the atoms in a molecule. Stretching vibrations (bond

lengthening/shortening) and bending vibrations (change in bond angle) are known.

Directing infrared radiation onto the surface of a solid sample gives rise to two types of

reflected energy. Specular reflectance is the radiation which reflects directly off the sample

surface. Diffuse reflectance is the radiation which penetrates into the sample and then

emerges. A diffuse reflectance accessory is designed so the diffuse reflected energy is

optimized. KBr acts as a non-absorbing matrix.

DRIFTS spectra were recorded with a Thermo Scientific FT-IR spectrometer (type Nicolet

6700) equipped with a DRIFTS-cell. Prior to the measurements a background measurement

using KBr is performed. KBr is further used as background by mixing it with the sample. The

Page 41: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

36

sample is ground to reduce the particle size to less than 5 mm in diameter, otherwise, large

particles scatter the infrared beam. The Kubelka-Munk theory is used and for each sample a

spectrum from 700 cm-1 to 4000 cm-1 with a resolution from 4 cm-1 is recorded.

3.2 Transmission electron microscopy (TEM)

A beam of accelerated electrons is directed at a very thin sample and the transmitted

electrons are detected. Two modes can be used: the image mode and the diffraction mode.

In the case of the image mode an image of the material is formed. The formation of the

image is based on the same principle as an optical microscope, but this technique provides a

higher resolution. In the diffraction mode the diffraction pattern is visualized. Also chemical

analysis can be performed using TEM. Characteristic X-rays are formed due to the interaction

between the electrons and the sample which can be detected. Electron energy loss

spectroscopy (EELS) can be performed. Usually TEM is used for imaging purposes.

The TEM used was a JOEL JEM2200FS transmission electron microscope with an accelerating

voltage of 200 kV. Images were obtained digitally on a Gatan CCD camera. The samples for

TEM were prepared on copper grids (size 200 mesh) coated with a carbon support film. The

samples were prepared by placing a drop of aqueous solution of the product on a grid and

allowing the solvent to evaporate.

3.3 Scanning electron microscopy (SEM)

A beam of accelerated electrons is scanned across the sample. In SEM measurements the

energy of the electrons is in typically lower than in the case of TEM measurements. The

sample is also thicker. Different signals can be detected: secondary electrons, backscattered

electrons and X-rays. Detecting secondary electrons results in an image with a large depth of

field. The image seems to be in 3D. Topographic images are obtained. Using backscattered

electrons inhomogeneities can be detected since the yield of the backscattered electrons is

dependent of the atomic number. Due to the interactions of the sample with the electrons X-

rays can be produced, which can be used for chemical analysis.

Page 42: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

37

SEM measurements were performed with a FEI Quanta 200 F SEM and a FEI Nova 600

Nanolab Dual-Beam focused ion beam in secondary electron mode.

3.4 X-ray diffraction (XRD)

XRD is a non-destructive technique that reveals information about the chemical composition

and crystallographic structure of materials. It is based on the constructive interference of

monochromatic X-rays and a crystalline sample. When a monochromatic X-ray beam with a

certain wavelength is projected onto a crystalline material at an angle theta, diffraction at

the lattice of the crystal occurs. Constructive interference of these diffracted X-rays occurs

only when the conditions satisfy Bragg's Law (nλ=2d sin θ). These diffracted X-rays are then

detected, processed and counted. By scanning the sample through a range of 2θ angles, all

possible diffraction directions of the lattice should be achieved due to the random

orientation of the powdered material. By plotting the angular positions and intensities of the

resultant diffracted peaks a pattern is produced. This pattern is characteristic for the sample.

Analysis of the diffraction pattern can allow the identification of phases within a given

sample.

In this thesis only powder XRD is performed. Sample preparation is limited. The powder is

ground and placed into a sample holder. Care must be taken to create a flat upper surface.

XRD patterns were recorded by a Thermo Scientific ARL X’TRA diffractometer equipped with

a Cu Kα (λ = 1.5405 Å) source, a goniometer and a Peltier cooled Si(Li) solid state detector.

3.5 Elemental analysis (EA)

Elemental analysis is a process where a sample is analyzed for its elemental composition. A

very familiar technique is CHN analysis, which is a combustion analysis. The amount of

carbon, hydrogen and nitrogen in the sample is determined. The sample is first fully

combusted in an oxygen rich environment. The carbon, hydrogen and nitrogen present

oxidize and form CO2, H2O, N2 and NOx. All nitrogen containing products are finally reduced

to N2. These combustion products are analyzed.

Page 43: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

38

For the analysis a Thermo Scientific* FLASH 2000 Series CHNS/O Analyzer is used. The

combustion reactor reaches 1800°C and a thermal conductivity detector is used.

3.6 Advanced luminescence set-up

Lanthanides are most known for their luminescence properties. The energy levels of the

lanthanides correspond closely to the free-ion levels. As a consequence the luminescence

spectra are characterized by sharp transitions. Energy levels of the lanthanide ions are

known. Using the luminescent set-up one can record emission spectra and excitation spectra.

Lifetimes can be determined.

For recording an emission spectrum one excites the product at the wavelength of maximum

absorption and one measures the luminescence. For lanthanides this is mostly in the visible

range or in the near-infrared. For life time measurements one measures how long the excited

states lives, so how long the ion is luminescent. This is highly dependent on the environment.

For the measurements a Double Edinburgh Instruments FLSP920 / FSP920 spectrometer

setup is used. It contains two systems. System 1 is a UV-VIS-NIR spectrometer. The system is

capable of measuring steady state and time-resolved emission in the wavelength range 200-

1700 nm (80 ps – several seconds), containing a Hamamatsu R928P PMT for the 200-900 nm

range and a Hamamatsu R5509-72 NIR PMT for the 300-1700 nm range. System 2 is a NIR-

MIR spectrometer, but this will not be used.

A 450W xenon lamp as the steady state excitation source is used. Emission and Lifetime

measurements were performed both in suspension and in powder. For preparing the

suspension 0,01 g of the product was dissolved in 2 ml water.

The Tb3+ emission spectra were recorded at an excitation wavelength of 351 nm from 450 nm

to 650 nm. The step size was 0,5 nm, the dwell time 0,5 s. For the suspensions the scan slit

was set to 0,5 nm and the fixed slit was set to 5 nm. For the solid samples the scan slit was

0,5 nm and the fixed slit 0,2 nm.

Page 44: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

39

The Eu3+ emission spectra were recorded at an excitation wavelength of 395 nm from 550 nm

to 750 nm. The step size was 0,5 nm, the dwell time 0,5 s. For the suspensions the scan slit

was set to 0,3 nm and the fixed slit was set to 5 nm. For the solid samples the scan slit was

0,3 nm and the fixed slit 0,7 nm.

Page 45: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

40

4 Uncoated lanthanum carbonate particles

All lanthanum carbonate nanoparticles were synthesized hydrothermally. Different reaction

times, reaction temperatures and different dilutions were employed. As carbonate source

urea and Na2CO3 were used. La(NO3)3 and La(OAc)3 were used as lanthanum source. The

reaction conditions of ZL 18 and ZL 28 were chosen to synthesize lanthanum carbonate

nanoparticles doped with Eu3+ and Tb3+.

After drying, white powders were obtained which were tested for their solubility in water. All

powders gave poorly stable white suspensions. The differences in stability were negligible.

XRD was used to determine the phase. After comparison with literature all hydrothermal

particles seemed to be LaCO3OH, which has two polymorphs. The first possible polymorph is

the hexagonal phase. The second polymorph is the orthorhombic phase. [64-67] The XRD’s

shown in Figure 11 match hexagonal LaCO3OH, no impurities could be detected. In the case

of the particles in Figure 12 it is possible that a mixture of the hexagonal phase and the

orthorombic phase has formed. In all cases we can see an additional peak at 20 degrees,

which is typical for LaCO3OH in the ortorhombic phase. In the case of ZL 24 and ZL 33 we can

notice an additional peak a little over 15 degrees. There are also some additional peaks

between 30 and 40 degrees which can be assigned to the ortorhombic phase. Several peaks

characteristic for the ortohombic phase overlap with the characteristic peaks for the

hexagonal phase.

Page 46: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

41

Figure 11: XRD spectra of the uncoated particles, hexagonal phase

Figure 12: XRD spectra of the uncoated particles, mixed phases

There seems to be no clear pattern or explanation as for which polymorph forms. Neither the

lanthanum source nor the carbonate source seems to promote the formation of the

Page 47: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

42

hexagonal or orthorhombic phase. Elemental analysis (Table 1) shows that only negligible

amounts of nitrogen are still present in the particles, so no nitrogen from urea or nitrates

builds in. The percentage of carbon and hydrogen in LaCO3OH is calculated. Values of 5,56 %

for carbon and 0,47 % for hydrogen are predicted. These results are in close agreement with

the results of the elemental analysis.

Table 1: elemental analysis of the uncoated lanthanum carbonate particles

DRIFTS spectra of different samples were taken. The samples were carefully chosen in order

to have every combination of lanthanum and carbonate source. The spectra are shown in

Figure 13

Figure 13:DRIFTS spectra of the selected LaCO3OH samples

As expected all the spectra were very similar. The peaks were assigned based on literature.

[16, 65, 67]. Absorption between 3400 and 3700 cm-1 is due to water or other OH-groups.

ZL 18 ZL 19 Predicted values

Nitrogen (%) 0,03 0,06 0

Carbon (%) 5,74 5,84 5,56

Hydrogen (%) 0,50 0,54 0,47

Page 48: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

43

The peak around 3400 cm-1 is the result of adsorbed water (stretching vibration), the peak

around 3600 cm-1 is assigned to the OH-group of LaCO3OH. The peak at 2500 cm-1 is most

likely due to gaseous CO2. In the region around 1430–1500 cm-1 one should be able to

distinguish the ν3 mode of the carbonate. The second peak seen at 1500 cm-1 is assigned to

the same mode. Around 1080 cm-1, 840 cm-1 and 750 cm-1 the peaks of the ν1, ν2 and ν4

modes of the carbonate ion appear. Important in the infrared spectrum is the peak at 3600

cm-1 which confirms the formation of LaCO3OH instead of La2(CO3)3 particles.

The size and morphology of the particles were determined using TEM. When using La(NO3)3

as lanthanum source and Na2CO3 as carbonate source no good results were obtained. The

particles were very big and aggregated. Because they were so aggregated it was difficult to

determine their individual size, but one can no longer speak of nanoparticles with sizes

varying between 400-1000 nm.

Using urea as carbonate source improves the results. The reaction conditions are

summarized in Table 2. By comparing ZL 18 with ZL 21 and ZL 26 with ZL 28 the influence of

the amount of used solvent can be estimated. In each case the particles are agglomerated. In

the case of ZL 26 and ZL 28 the particles are so agglomerated that it is impossible to

determine their individual sizes. It is a mixture of big aggregated particles and smaller

particles. In the case of ZL 18 and ZL 21 the particles are also very big (at least 100 nm), but

less agglomerated. Dilution seems to have little influence. The influence of time on the

particles shape and size can be investigated comparing ZL 28 and ZL 31. The particles

obtained from synthesis ZL 31 are also aggregated. Again the particles are too agglomerated

to determine their individual sizes. The smaller particles which were present in sample ZL 28

have disappeared. This can be due to Ostwald ripening since longer synthesis times are

Figure 14: TEM image of ZL 18 (left) and ZL 21 (right)

Page 49: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

44

applied in ZL 31. By comparing ZL 21 and ZL 31 one can see the influence of temperature. It

seems that lower temperatures improve the uniformity and agglomeration of the particles.

Overall there is little difference between the particles synthesized with urea and La(NO3)3.

One cannot pinpoint the influence of different reaction variables. The particles synthesized

using a water/ethanol mixture (ZL 24) were also very aggregated and big. Their individual

sizes could not be determined. Selected TEM pictures of the discussed particles are shown in

Figure 14.

The difference is striking when we replace La(NO3)3 with La(OAc)3. When using urea as

carbonate source good results were obtained. The particles from reaction ZL 19 (using urea

as a carbonate source) were a bit aggregated, but quite small. They had a rather broad size

distribution ranging from 20-60 nm. Repeating the same reaction for a shorter time (12 h

instead of 24 h) seemed to yield a little more aggregated, but still small particles (ZL 47).

Table 2: summarized reaction conditions of the selected samples

sample Amount of water (ml) Time (h) Reaction temperature (°C)

ZL 18 20 24 120

ZL 26 20 12 140

ZL 29 20 24 140

ZL 20 30 24 120

ZL 27 30 12 140

ZL 30 30 24 140

ZL 21 50 24 120

ZL 28 50 12 140

ZL31 50 24 140

Page 50: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

45

Using Na2CO3 as carbonate source gave small, but very aggregated particles. TEM pictures of

ZL 19 and ZL 47 are shown in Figure 15.

In general it can be said that the worst results were obtained when Na2CO3 was used as

carbonate source. The biggest difference was seen when the lanthanum source was changed.

Other parameters seemed to have little influence for our purpose.

By adopting the synthesis condition of ZL 28 doped particles were synthesized. XRD spectra

showed that in each case the same product was formed (Figure 16). Luminescence

measurements were performed on suspensions and solid samples. The suspensions were

prepared by dissolving 0,01 g of the powder in 2 ml of water. The emission spectrum of the

suspension with doping percentage 10 % (ZL 42) is shown in Figure 17. The main emitting

level of Tb3+ is 5D4. Four transitions can clearly be distinguished. At 490 nm the 5D4→7F6

transition is observed, followed by the 5D4→7F5, 5D4→

7F4 and 5D4→7F3 transition at 540 nm,

580 nm and 620 nm respectively. The remaining emission spectra can be found in the

appendix. In general one can state that with increasing doping percentage an increasing

intensity in the emission spectra is observed. ZL 40 only has a distinct peak at 540 nm. This

can be assigned to the 5D4→7F5 transition which is normally the most intense. Most likely this

unclear emission spectrum is the consequence of the low Tb3+ concentration. The fact that

the intensity keeps increasing suggests that even at doping percentages of 10 % no self-

quenching effects occur.

Figure 15: TEM image of ZL 19 (left) and ZL 47 (right)

Page 51: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

46

Figure 16: XRD spectra of the Tb3+-doped samples using the synthesis conditions of ZL 28

Figure 17: emission spectrum of ZL 42 (10% Tb3+) in suspension

Page 52: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

47

Lifetime measurements were performed (Table 3). ZL 40 clearly has a lower lifetime then the

other samples. Considering the low intensity and low lifetime 0,1 % is not an ideal doping

concentration. For other doping percentages a lifetime of 1,5 ms is obtained.

Table 3: measured lifetimes of the Tb3+ particles in suspension synthesized accoriding to ZL 28

Sample Lifetime

(ms)

ZL 40 / 0,1 % Tb3+ 1,3

ZL 41 / 1 % Tb3+ 1,5

ZL 36 / 2 % Tb3+ 1,5

ZL 35 / 5 % Tb3+ 1,5

ZL 42 / 10 % Tb3+ 1,5

The emission spectrum of sample ZL 42 in the solid phase is shown in Figure 18. The

remaining spectra can be found in the appendix. Also in this case the intensity increases with

an increasing doping percentage. Lifetime measurements (Table 4) were performed and on

average a lifetime of 1,6 ms was obtained. In general the solid samples show a bit higher

lifetimes, but the difference is very small as expected. The goal was to embed the lanthanide

ions in an inorganic matrix to reduce quenching effects. In suspension the Tb3+-ions at the

surface will be subjected to quenching from the surrounding water, but this effect disappears

in the solid phase which explains a slightly higher lifetime.

Table 4: measured lifetimes of the Tb3+ particles in the solid phase synthesized accoriding to ZL 28

Sample Lifetime

(ms)

ZL 40 / 0,1 % Tb3+ 1,4

ZL 41 / 1 % Tb3+ 1,6

ZL 36 / 2 % Tb3+ 1,6

ZL 35 / 5 % Tb3+ 1,6

ZL 42 / 10 % Tb3+ 1,6

Page 53: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

48

Doped nanoparticles were also synthesized using the synthesis conditions of ZL 18. The

nanoparticles were doped with Tb3+ and Eu3+. XRD spectra of the Tb3+-doped particles show

that the formed phase alters in this case (Figure 19). A peak at 20 degrees can be

distinguished as well as some additional peaks between 30 and 40 degrees. The XRD

spectrum now matches the XRD spectrum of ZL 28 more closely. Reaction ZL 18 was

repeated, but the XRD did not show the additional peaks. There are two plausible

explanations: doping the particles influences the formed phase in some way or since the

intensity of the peak at 20 degrees shows strong variations in intensity (Figure 12) it could be

that the peak was lost in the noise previously.

Figure 18: emission spectrum of ZL 42 in the solid phase (10% Tb3+)

Page 54: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

49

Figure 19: XRD spectra of the Tb3+-doped samples using the synthesis conditions of ZL 18

The recorded emission spectra are similar to the previous doped Tb3+ nanoparticles. The

emission spectra were recorded both in suspension (0,01 g in 2 ml) and solid phase. In the

case of the suspension the 5D4→7F6 transition occurs at 490 nm, the 5D4→

7F5, 5D4→7F4 and

5D4→7F3 transition are observed at 540 nm, 580 nm and 620 nm respectively. The intensities

increase until ZL 51 (10 % doping percentage) and after that they stagnate. The emission

spectrum of ZL 51 is shown in Figure 20. The remaining spectra can be found in the appendix.

Page 55: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

50

Figure 20: emission spectrum of ZL 51 (10% Tb3+) in suspension

Lifetime measurements were conducted and are summarized in Table 5. Lifetimes increase

until a maximum value of 1,6 ms (ZL 50, ZL 51, ZL 52) after which they decrease until 1,4 ms.

Table 5: measured lifetimes of theTb3+ particles in suspension synthesized accoriding to ZL 18

Sample Lifetime (ms)

ZL 49 / 2 % Tb3+ 1,5

ZL 50 / 5 % Tb3+ 1,6

ZL 51 / 10 % Tb3+ 1,6

ZL 52/ 12 % Tb3+ 1,6

ZL 53 / 15 % Tb3+ 1,5

ZL 54 / 20 % Tb3+ 1,4

The spectrum of sample ZL 51 measured in the solid phase is shown in Figure 21. The

spectrum is comparable with the spectrum measured in suspension.

Page 56: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

51

Figure 21: emission spectrum of ZL 51 in the solid phase (10% Tb3+)

Lifetime measurements were performed (Table 6). Again the lifetimes in the solid state are

somewhat higher than in suspension due to reduced quenching.

Table 6: measured lifetimes of the Tb3+ particles in the solid phase synthesized accoriding to ZL 18

Sample Lifetime

(ms)

ZL 49 / 2 % Tb3+ 1,5

ZL 50 / 5 % Tb3+ 1,6

ZL 51 / 10 % Tb3+ 1,7

ZL 52/ 12 % Tb3+ 1,7

ZL 53 / 15 % Tb3+ 1,7

ZL 54 / 20 % Tb3+ 1,6

From the results it can be concluded that doping percentages around 10% are preferable.

They provided good intensities and the longest lifetimes in this series.

On irradiation with UV-light green luminescence of the obtained powders and suspensions

could be visualized (Figure 22)

Page 57: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

52

Figure 22: a suspension of ZL 51 (left) and the powder of ZL 51 (right) under UV-radiation

The Eu3+ doped nanoparticles were also measured in suspension (0,01 g in 2 ml of water) and

in solid phase. The XRD spectra of the formed products are shown in Figure 23. In contrary to

the Tb3+-doped samples these XRD spectra match the XRD spectrum of ZL 18 closely. In some

of the spectra there are some additional peaks between 30 and 40 degrees, but these are

quite small.

Figure 23: XRD spectra of the Eu3+-doped samples using the synthesis conditions of ZL 18

Page 58: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

53

The emission spectrum of ZL 59 (15 % Eu3+) in suspension is shown in Figure 24. The

remaining spectra can be found in the appendix. 5D0 is the main emitting level of Eu3+. At 580

nm the 5D0→7F0 transition is observed, at 590 nm the 5D0→

7F1 transition is visible. 3 peaks

can be seen, the large splitting indicates low symmetry. Next at 617 nm the 5D0→7F2

transition is observed. The intensity of the peak is quite large which again is an indication of

low symmetry. The 5D0→7F3 and 5D0→

7F4 transitions can be seen at 652 nm and 690 nm

respectively.

Figure 24: emission spectrum of ZL 59 (15% Eu3+) in suspension

The obtained lifetimes are summarized in Table 7. On average a lifetime of about 600 μs is

obtained.

Page 59: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

54

Table 7: measured lifetimes of the Eu 3+ particles in suspension synthesized accoriding to ZL 18

Sample Lifetime

(μs)

ZL 55 / 2 % Eu3+ 620

ZL 56 / 5 % Eu3+ 620

ZL 57 / 10 % Eu3+ 580

ZL 58/ 12 % Eu3+ 610

ZL 59 / 15 % Eu3+ 580

ZL 60 / 20 % Eu3+ 540

In Figure 25 the emission spectrum of ZL 59 in solid phase is shown. It is very similar to the

previous one. Again the large splitting of the peaks indicates low symmetry.

Figure 25: emission spectrum of ZL 59in the solid phase (15% Eu3+)

As expected the lifetimes measured in the solid phase (Table 8) are a bit higher.

Page 60: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

55

Table 8: measured lifetimes of the Eu 3+ particles in the solid phase synthesized accoriding to ZL 18

sample Lifetime

(μs)

ZL 55 / 2 % Eu3+ 660

ZL 56 / 5 % Eu3+ 660

ZL 57 / 10 % Eu3+ 650

ZL 58/ 12 % Eu3+ 620

ZL 59 / 15 % Eu3+ 620

ZL 60 / 20 % Eu3+ 620

Also in this case luminescence of the obtained powders and suspensions could be visualized

under UV-radiation (Figure 26).

Figure 26: a suspension of ZL 59 (left) and the powder of ZL 59 (right) under UV-radiation

Page 61: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

56

5 Synthesis of lanthanum carbonate particles in presence of 2-

aminoethyl phosphate (AEP)

During the synthesis La(NO3)3 was used as lanthanum source

and Na2CO3 (AEP 11 and AEP 17) or urea (AEP 19) were used

as carbonate source. The AEP (Figure 27) solution was first

neutralized and a flask reaction for 2 or 3 hours was

performed. In each case clear solutions were obtained. When

the synthesis was repeated without carbonate source (AEP

20), a white suspension was obtained. The products were precipitated and washed with

ethanol or methanol and collected by centrifugation.

After the products were collected and dried, they were resuspended. AEP 11, AEP 17 and AEP

19 yielded clear solutions after resuspending them in water, but the Tyndall effect could not

be observed. AEP 20 yielded a white, unstable suspension.

The XRD spectra (Figure 28) of the obtained products are all quite similar except the one of

AEP 20. The spectra show that the samples are not very crystalline. AEP 20 seems to be a

little more crystalline, but the spectrum contains a lot of noise. Neither characteristic peaks

of lanthanum carbonate nor lanthanum hydroxycarbonate could be distinguished in any of

the spectra. Probably a complex between AEP and lanthanum is formed instead of core/shell

nanoparticles. TEM measurements confirmed the absence of nanoparticles in the solutions.

Figure 27: 2-aminoethyl phosphate (AEP)

Page 62: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

57

Figure 28: XRDs of AEP 11, AEP 17, AEP 19 and AEP 20

Elemental analysis was performed (Table 9) and from these results it can be concluded that

no additional carbon builds in when a carbonate source is used. This also suggest that no

carbonates were formed during the reaction of La(NO3)3 with Na2CO3/urea in the presence of

AEP. The nitrogen originates probably from the ligand, lanthanum source, urea or

ammonium (used to neutralize the AEP-solution). AEP 11 contains less nitrogen then AEP 19,

perhaps due to the difference in carbonate source. In the case of AEP 20 no carbonate source

is used, still this product contains a lot of nitrogen. This can be explained by the fact that

maybe more AEP-molecules can bind to the La-ion forming a complex (no carbonate ions are

present), but also NH3(aq) can play a significant role. It has been previously stated in literature

that NH4+ builds into the nanoparticles to provide charge balance. The nitrates from the

lanthanide source did not build in. [3]

Page 63: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

58

Table 9: elemental analysis of the obtained products synthesized in the presence of AEP

AEP 11 AEP 19 AEP 20

Nitrogen 5,90 8,67 10,06

Carbon 9,64 10,24 9,87

Hydrogen 3,32 3,69 3,19

A DRIFTS spectrum of AEP is recorded (Figure 29) and the peaks are assigned with help of

literature. [68]

Figure 29: DRIFTS spectrum of AEP

H2AEP has a zwitterion character. Bands that can be assigned to NH3+ vibrations can be found

between 3000-2800 cm-1 (broad band), 2800-2000 cm-1 (combination bands and overtones)

and between 1600 and 1500 cm-1 (δas and δs). The bands between 900 and 1000 cm-1 are the

symmetric stretching modes of the PO3 group and the bands between 1000 and 1200 cm-1

are the asymmetric stretching modes of the PO3 group. In complexes these bands can appear

over a narrower range of frequencies. The P=O stretching frequency can be found between

1350 cm-1 and 1175 cm-1. The rather broad band around 3000 cm-1 can be assigned to water.

The DRIFTS spectra of AEP 11 and AEP 19 (Figure 30) closely resemble each other, which

indicates that the carbonate source has little influence. The peaks of AEP 11 are broader, but

this can be due to sample preparation. Water contributes at the broad band around 3500

Page 64: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

59

cm-1. CO32- bands should be found between 1500-1410 cm-1 and between 1100-700 cm-1. In

this region a lot of peaks of AEP can be found, which makes it difficult to distinguish possible

carbonate peaks. Especially in the spectrum of AEP 19 characteristic AEP peaks are

recognized. The bands seem to appear in a narrower range, but this can be due to

complexation.

Figure 30: DRIFTS spectrum of AEP 11 and AEP 19

The DRIFTS spectrum of AEP 20 (Figure 31) does not differ a lot from AEP 19 and AEP 11. The

peaks of AEP are quite recognizable. The PO3 vibrations appear over a bit narrower range,

probably as the consequence of complexation. However based on elemental analysis it is not

possible to come up with any feasible formula of a La-AEP complex. The solubility of AEP 20

was tested in different solvents (water, ethanol, dichloromethane, chloroform and butanol),

but the product was not dissolvable in any of the tested solvents.

Page 65: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

60

Figure 31: DRIFTS spectrum of AEP 20

The exact composition of the formed products could not be determined. Most likely no

(core/shell) particles were formed. Although there are indications that AEP 20 is different

from all the other products, it was not possible to pinpoint the exact difference. It can be

established that no uncoated carbonate nanoparticles were formed during the reaction

either. A reasonable explanation is that AEP is a very strong ligand, therefore the carbonate

ions can hardly compete with the ligand to from a bond with the lanthanum ions. The

presence of the carbonate ions does influence the reaction as can be determined from the

results, but the precise influence could not be elucidated. It could be that in the case of AEP

20 only a more crystalline complex is formed.

Page 66: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

61

6 Synthesis of lanthanum carbonate particles in presence of malic

acid (MA)

La(NO3)3, urea and different amounts of MA (Figure 32)

were dissolved in water. The solution of MA was

neutralized with NH3(aq) and the reaction mixture was

stirred and heated for 3 h in a flask reaction. The products

were precipitated and washed with ethanol or methanol

before drying. Two reactions (MA 12 and MA 15) were

performed without using any carbonate source.

The dried products were tested for their dispersibility in water. The products were

dissolvable in water yielding a clear solution when a clear solution had been obtained at the

end of the reaction. The solution was stable and the Tyndall effect could not be observed.

The products yielded a white, unstable suspension if a white suspension was obtained after

Figure 33: XRD-spectra of MA 2 (4 mmol MA), MA 12 (8 mmol MA), MA 13 (8 mmol MA) and MA 14 (1 mmol MA)

Figure 32: malic acid (MA)

Page 67: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

62

the reaction was stopped. The stability of the suspension is more or less comparable with the

stability of uncoated nanoparticles in suspension. The recorded XRD-spectra (Figure 33)

indicate that all samples are amorphous. No peaks characteristic for lanthanum carbonate or

lanthanum hydroxycarbonate can be distinguished and all the spectra are very similar.

Elemental analysis (Table 10) shows that there is little difference between the amount of

carbon in MA 13 (8 mmol MA) and MA 12 (sample with no carbonate source added, 8 mmol

MA). This indicates that very little additional carbon is built in when using a carbonate

source. For MA 2 (4 mmol MA) and MA 15 (sample with no carbonate source added, 4 mmol

MA) we see that the amount of carbon is considerably lower, but this can be explained by the

fact that smaller amounts of malic acid were used. The nitrogen is assumed to originate from

the lanthanum source, the NH3(aq)- solution used to neutralize the malic acid solution or from

the decomposition products of urea. Like stated in the previous chapter the lanthanum

source probably does not have a lot of influence.

Table 10: elemental analysis of the obtained products synthesized in the presence of malic acid

MA 2 MA 12 MA 13 MA 15

Nitrogen (%) 0,45 3,70 8,77 0,40

Carbon (%) 18,73 23,42 24,26 17,55

Hydrogen (%) 3,27 4,32 5,31 2,77

In the case of MA 13 no core/shell nanoparticles were formed. Most likely a water soluble

complex between malic acid and lanthanum is formed. No particles were visualized taking a

TEM picture of MA 13. Also the Tyndall effect could not be observed, which would be a clear

indication for the formation of particles. The precise composition of the formed products

could not be determined. It could be that, alike to AEP, malic acid is too strong a ligand and

the carbonate ions cannot compete with it. A TEM picture of MA 2 (Figure 34) does show

that particles are formed although the XRD pattern does not give any indication for this.

Other examples of poorly corresponding XRD spectra can be found in literature. [3, 33, 69-

71] Comparing the elemental analysis of MA 2 and MA 15 (no carbonate source used) shows

Page 68: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

63

that additional carbon is built in when a carbonate source is used, but the difference is small.

It could be that carbonates are formed, but only in small amounts.

A DRIFTS spectrum of MA 2 is recorded (Figure 35), which matches the spectrum of ZL 18

quite closely. The strong peak at 3600 cm-1 is not visible which indicates that most likely no

hydroxy carbonates are formed. The peaks around 500 cm-1 are less obvious. No CO2 or

presence of malic acid are observed in the DRIFTS spectrum. MA could act as a capping

agent, but from the TEM picture one can see that malic acid does not influence the size nor

the shape of the particles in any significant way. The particles are very large (in the order of

μm) and aggregated. The fact that carbonate particles are formed in this case can be

explained by the fact that less malic acid is present so there is less competition for the

carbonate ions to bind to the lanthanum ion. It could be that the ligand is too small to

influence the shape of the carbonate particles. No improvement in solubility was obtained

for these particles. Most likely this is due to the size of the particles. The unclear XRDs can be

a consequence of amorphous lanthanum carbonate.

Figure 34: TEM picture of MA 2

Page 69: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

64

Figure 35: DRIFTS spectrum ZL 18 and MA 2

Page 70: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

65

7 Synthesis of lanthanum carbonate particles in presence of glucose

(Gluc)

La(NO3)3, varying amounts of glucose (Figure 36)

and urea were dissolved and mixed together. A

flask reaction was performed. In addition a

reaction without urea (Gluc 10) was carried out.

Depending on the reaction a clear or white

suspension was obtained. In the case of a white

suspension the product was washed with

methanol or ethanol. A white powder was

obtained. In the case of a clear suspension the

products were precipitated by increasing the pH and purified by redissolving and then

precipitating them again. The precipitates were dried under vacuum and a dark yellow-

brown powder was collected.

Figure 36: D-glucose (left) α-D-glucose (right)

Figure 37: XRD of Gluc 2

Page 71: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

66

The redispersibility of the white powders, Gluc 2 (4 mmol glucose) and Gluc 3 (8 mmol

glucose), is comparable with the solubility of the uncoated lanthanum carbonate

nanoparticles. No visual improvement of stability was observed. Gluc 12 (12 mmol glucose)

on the other hand was not soluble in water anymore after drying, while Gluc 10 was water

soluble after drying. Both powders gave the impression that the glucose present

decomposed during the drying process. Elemental analysis (Table 11) demonstrates that no

nitrogen has built into in the particles.

The XRD spectrum of Gluc 2 (Figure 37) shows that La2O(CO3)2·1,4 H2O has been formed. [72]

The XRD pattern of Gluc 3 was the same as Gluc 2. Elemental analysis results agree quite

close with the predicted values for the percentage of carbon, but there is more hydrogen

present than expected. This can also be a consequence of adsorbed water at the surface of

the particles. Infrared measurements (Figure 38) confirm that no hydroxyl carbonates are

formed. The spectra are similar with the LaOHCO3 spectra recorded for the uncoated

nanoparticles. Only the OH vibration around 3600 cm-1 originating from the OH group in

LaOHCO3 is absent. The peak slightly over 1000 cm-1 can be ascribed to the ν1 mode of the

carbonate ions. The peaks around 1500 cm-1 are assigned to the ν3 mode . Also water (3500

cm-1) and CO2 (2500 cm-1) is observed.

Figure 38: DRIFTS spectrum Gluc 2

Page 72: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

67

TEM and SEM images revealed a very interesting observation (Figure 39). One can see that

the presence of glucose drastically influences the shape of the particles. Rod-shaped particles

are formed. They are still quite large, about 200 nm in diameter and several 100 nm long.

Infrared measurements show no evidence that glucose is bound to the surface of the rods. It

might be that glucose only serves as a chelating agent during the synthesis and so influences

the shape and morphology of the particles. Increasing the amount of glucose also gave rod-

shaped particles, however more aggregated. The rods organize in oval-shaped chunks. Also

smaller particles, which seemed to have only started to grow could be observed.

Jeevanandam et al. obtained La2O(CO3)2·1,4 H2O particles with a similar morphology via

sonochemical synthesis without the presence of any stabilizing ligand. [72]

In the case of Gluc 12 a clear solution was obtained before precipitating the particles, but the

Tyndall effect was not observed. The particles could be precipitated and resuspended before

the drying process. Drying seems to have an adverse effect. Yet TEM analysis shows the

formation of particles in the case of Gluc 12. The TEM images were taken before drying the

products. So a drop of the clear solution obtained after purifying was placed on the grid and

the water was allowed to evaporate. One can see a mixture of rod-shaped particles and also

cube-shaped particles. Cube shaped particles were also described in the report of Shan et al

[53] where a fluoride core is used. The cube-shaped particles are very big. In general one can

see a mixture of bigger and smaller particles. There is however a very small amount of

particles present on the grid. Elemental analysis (Table 11) indicates that additional carbon is

built in when a carbonate source is used. Also XRD analysis shows the difference between

Gluc 10 (no carbonate source) and Gluc 12 (Figure 40). Gluc 10 is rather amorphous and no

Figure 39: TEM picture of single rods (left) and SEM picture of more aggregated rods (right)

Page 73: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

68

distinct peaks can be distinguished. In Gluc 12 a few distinct peaks can be seen, but

unfortunately these could not be assigned.

Table 11: elemental analysis of the obtained products synthesized in the presence of glucose

Also DIRFTS measurements were conducted, but these did not help determining the

composition of the formed products. Glucose has a lot of peaks in the region where the

characteristic peaks for carbonate ions appear. This makes it difficult to distinguish the

difference. The measurements did reveal that no hydroxycarbonates were formed since the

characteristic peak around 3600 cm-1 for the OH-group of LaCO3OH is absent.

Although there is a big difference in the amount of carbon between Gluc 10 and Gluc 12, no

clear evidence can be found that lanthanum carbonate has formed. In Gluc 12 particles were

observed under the TEM, but it was not possible to determine the exact composition of

these particles. There was only a very small amount of particles present. This could suggest

that the particles are only a byproduct and that mainly complexes are formed. The amount of

particles could be so small that the Tyndall effect is not observed. One should also take into

consideration that during the drying process decomposition of the products could have taken

place.

Gluc 2 Gluc 10 Gluc 12 Predicted values for La2O(CO3)2·1,4 H2O

Carbon (%) 5,87 5,08 10,29 5,47

Hydrogen (%) 1,29 4,33 3,60 0,64

Page 74: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

69

Figure 40: XRD of Gluc 10 and Gluc 12

Repeating reaction Gluc 2 with La(OAc)3 as lanthanum source yielded a clear solution. The

Tyndall effect could not be observed and the XRD was the same as the XRD of Gluc 12. In

contrary this product was water soluble after drying. Small particles were observed under the

TEM. These particles were not uniform and very aggregated.

Page 75: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

70

8 LnF3/glucose core/shell nanoparticles

A modified synthesis method of Shan et al. [53] was used. Glucose was dissolved in water

and while stirring NaF was added. The reaction mixture was heated to 60 °C and the

lanthanum source, La(NO3)3, was added. After 1,5 h (Gluc 6) or 3 h (Gluc 17) a clear solution

was obtained as a result of the reaction. The particles were precipitated by increasing the pH.

A procedure of precipitating and resuspending the particles was used to purify the products.

Finally the products were collected by centrifuge and dried. A pale yellow powder was

obtained. The exact synthesis as in the article was also carried out (Gluc 13).

After drying the powders were perfectly resuspendable in water. The Tyndall effect could be

observed. The formed phase was determined using XRD (Figure 41). The XRD pattern agrees

with the pattern of LaF3 presented in the article. In fact some of the peaks in the XRD

spectrum of Gluc 17 are more distinct then in the XRD published in the article. There is quite

some noise in the background, but this can be due to the coating of the particles with

glucose.

Figure 41: XRD of glucose coated LaF3 nanoparticles

Page 76: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

71

TEM images of the samples were taken. The particles obtained by repeating the synthesis

procedure used in the article (Gluc 13) were small, but quite agglomerated. The cubic form

was not observed. The particles obtained in reaction Gluc 17 (Figure 42) were small (about 10

nm) and less aggregated. They appear however to pack closely on the TEM grid. Also in the

case of Gluc 6 small particles could be seen. No cubic particles were observed in any of the

samples.

Elemental analysis (Table 12) indicates that only a negligible amount of nitrogen has built in.

Carbon and hydrogen are present in the sample, assumable originating from the glucose.

From the elemental analysis it is estimated that the sample consist of about 14,5 % glucose.

Infrared measurements were performed (Figure 43). In literature IR spectra of LaF3 can be

found, but only bands indicating the presence of water or the used ligand could be seen in

the spectra. [54, 73] In this case we expected to see bands that corresponded with the bands

of glucose. Clearly there are some matching bands. Gluc 17 however seems to have shaper

peaks and more fine structure. The additional peak around 1750 cm-1 in the spectrum of Gluc

17 can be due to νC=O from glucose in the acyclic form.

Table 12: elemental analysis of Gluc 17

Gluc 17

Nitrogen (%) 0,01

Carbon (%) 2,75

Hydrogen (%) 0,76

Figure 42: TEM image of Gluc 17

Page 77: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

72

It can be stated that glucose coated LaF3 core/shell nanoparticles were formed. When

repeating the reaction clear solutions were obtained and it was proven by XRD that LaF3 had

formed. Unfortunately TEM measurements were not as good as previously. One could still

see that small particles had formed, but they were imbedded in a film. Further research

should be carried out to investigate this subject.

Figure 43: DRIFTS spectrum of Gluc 17 and glucose

Replacing La(NO3)3 with Y(NO3)3 (Gluc 15), Gd(NO3)3 (Gluc 16) or La(OAc)3 (Gluc 24) yielded

white suspensions. The products were washed with EtOH or MeOH before drying.

XRD measurements (Figure 44) show that in the case of La(OAc)3 as lanthanum source LaF3

was formed. YF3 was formed when Y(NO3)3 was used [74]. The reaction where Gd(NO3)3 was

used yielded a rather amorphous product, so it is difficult to distinguish the GdF3 XRD-

pattern. [47]

Page 78: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

73

Figure 44: XRD patterns of Gluc 24 (LaF3), Gluc 15 (YF3) and Gluc 16 (GdF3)

In each case the products were resuspendable in water yielding a white suspension which

was rather stable. In the case of Gluc 24 a long sonification time (± 15 min) was needed

before the product resuspended. TEM measurements showed that no nanoparticles had

formed, likely only the bulk material. In the case of Gluc 15 and Gluc 16 rod-like fiber bundles

were formed (Figure 45). The rods are about 500 nm long. Altough the fibers aggregate into

rods, the rods themselves are not very aggregated. As with glucose and lanthanum carbonate

also in this case this morphology for YF3 particles was obtained previously via a sonochemical

reaction without the presence of any stabilizing ligand. [74]

Page 79: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

74

Figure 45: TEM picture (left) and SEM picture (right) of Gluc 15

Page 80: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

75

9 General conclusion

The ultimate aim of this project was to synthesize core/shell nanoparticles with an inorganic

core consisting of lanthanum carbonate. Several ligands have been selected, but up to date

no core/shell nanoparticles of this form have been synthesized. In the case of AEP no

particles were formed. Probably a water soluble complex was formed, but the exact

composition of the formed products could not be determined. In the case of malic acid

particles were formed when small amounts of the ligand were used. It is suspected that

these particles only form as a byproduct. Malic acid did not seem to influence the size or

morphology of the particles. When higher amounts of the ligand were used, no particles

were visualized. Most likely, as with AEP, a water soluble complex is formed. Glucose as a

chelating agent had an interesting effect on the morphology giving rod shaped particles. XRD

showed that La2O(CO3)2·1,4 H2O had formed. Increasing the amount of glucose had a

negative effect on the uniformity of the particles. Additionally they showed a higher

tendency to aggregate. It may be concluded that lanthanum carbonate is not suited as an

inorganic core for core/shell nanoparticles.

Satisfying results were obtained synthesizing lanthanum hydroxycarbonate nanoparticles.

Especially small particles were obtained with La(OAc)3 as lanthanum source, although the

dispersibility in water was poor. Selected samples of the lanthanum hydroxycarbonate

particles were chosen and doped with Eu3+ and Tb3+, which are highly luminescent. Lifetimes

of about 1,6 ms for Tb3+ and about 600 μs for Eu3+ in solid state were obtained.

Core/shell nanoparticles were obtained with a lanthanum fluoride core. The synthesis

method of Shan et al. [53] was modified. Unfortunately TEM measurements were not always

very good. Replacing the lanthanide source with Y(NO3)3 or Gd(NO3)3 gave interesting results

regarding the morphology of the particles.

Page 81: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

76

10 References

1. www.nano.gov and www.nanowerk.com. 2. Bünzli, J.-C.G., et al., New Opportunities for Lanthanide Luminescence. Journal of Rare Earths,

2007. 25(3): p. 257-274. 3. Cross, A.M., et al., Dipicolinate Sensitization of Europium Luminescence in Dispersible

5%Eu:LaF3 Nanoparticles. The Journal of Physical Chemistry C, 2010. 114(35): p. 14740-14747.

4. Stouwdam, J.W. and F.C.J.M. van Veggel, Near-infrared Emission of Redispersible Er3+, Nd3+, and Ho3+ Doped LaF3 Nanoparticles. Nano Letters, 2002. 2(7): p. 733-737.

5. Nelson, J.A., L.H. Bennett, and M.J. Wagner, Solution Synthesis of Gadolinium Nanoparticles. Journal of the American Chemical Society, 2002. 124(12): p. 2979-2983.

6. Jia, G., et al., Preparation and luminescence properties of lutetium oxide hollow spheres by a template-directed route. Journal of Alloys and Compounds, 2011. 509(22): p. 6418-6422.

7. Sun, Y., et al., Photoluminescent properties of Y2O3:Eu3+ phosphors prepared via urea precipitation in non-aqueous solution. Journal of Luminescence, 2004. 109(2): p. 85-91.

8. Chen, X.B. and et al., Synthesis of erbium oxide nanosheets and up-conversion properties. Nanotechnology, 2011. 22(29): p. 295708.

9. Yu, C., et al., Facile sonochemical synthesis and photoluminescent properties of lanthanide orthophosphate nanoparticles. Journal of Solid State Chemistry, 2009. 182(2): p. 339-347.

10. Fan, W., et al., A simple method to synthesize single-crystalline lanthanide orthovanadate nanorods. Journal of Solid State Chemistry, 2004. 177(12): p. 4399-4403.

11. Li, P., H. Li, and W. Jie, Preparation of lanthanum sulfide nanoparticles by thermal decomposition of lanthanum complex. Journal of Rare Earths, 2011. 29(4): p. 317-320.

12. Wang, J. and et al., One-step synthesis of highly water-soluble LaF 3 :Ln 3+ nanocrystals in methanol without using any ligands. Nanotechnology, 2007. 18(46): p. 465606.

13. Salavati-Niasari, M., J. Javidi, and F. Davar, Sonochemical synthesis of Dy2(CO3)3 nanoparticles, Dy(OH)3 nanotubes and their conversion to Dy2O3 nanoparticles. Ultrasonics Sonochemistry, 2010. 17(5): p. 870-877.

14. Lechevallier, S.v., et al., Gadolinium−Europium Carbonate Particles: Controlled Precipitation for Luminescent Biolabeling. Chemistry of Materials, 2010. 22(22): p. 6153-6161.

15. Guo, G., et al., Synthesis and characterization of La2(CO3)3 nanostructures in the Triton X-100/cyclohexane/water reverse micelles. Journal of Crystal Growth, 2005. 277(1-4): p. 631-635.

16. Salavati-Niasari, M., G. Hosseinzadeh, and F. Davar, Synthesis of lanthanum carbonate nanoparticles via sonochemical method for preparation of lanthanum hydroxide and lanthanum oxide nanoparticles. Journal of Alloys and Compounds, 2011. 509(1): p. 134-140.

17. Sounderya, N. and Z. Yong, Use of core/shell structured nanoparticles for biomedical applications. Recent Patents on Biomedical Engineering, 2008. 1(1): p. 37-4545.

18. Veggel, F.C.J.M.v., unpublished data. 19. Wang, F. and et al., Luminescent nanomaterials for biological labelling. Nanotechnology,

2006. 17(1): p. R1. 20. Niu, N., et al., LaPO4:Eu3+, LaPO4:Ce3+, and LaPO4:Ce3+,Tb3+ nanocrystals: Oleic acid

assisted solvothermal synthesis, characterization, and luminescent properties. Journal of Alloys and Compounds, 2011. 509(6): p. 3096-3102.

Page 82: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

77

21. Vetrone, F., et al., The Active-Core/Active-Shell Approach: A Strategy to Enhance the Upconversion Luminescence in Lanthanide-Doped Nanoparticles. Advanced Functional Materials, 2009. 19(18): p. 2924-2929.

22. Sudarsan, V., et al., Surface Eu3+ ions are different than "bulk" Eu3+ ions in crystalline doped LaF3 nanoparticles. Journal of Materials Chemistry, 2005. 15(13): p. 1332-1342.

23. Chen, Z., et al., Versatile Synthesis Strategy for Carboxylic Acid−functionalized Upconverting Nanophosphors as Biological Labels. Journal of the American Chemical Society, 2008. 130(10): p. 3023-3029.

24. Cui, S., H. Chen, and Y. Gu, Comparison of Two Strategies for the Synthesis of Upconverting Nanoparticles as Biological labels. Journal of Physics: Conference Series, 2011. 277(1): p. 012006.

25. Yi, G.-S. and G.-M. Chow, Colloidal LaF3:Yb,Er, LaF3:Yb,Ho and LaF3:Yb,Tm nanocrystals with multicolor upconversion fluorescence. Journal of Materials Chemistry, 2005. 15(41): p. 4460-4464.

26. Stouwdam, J.W., et al., Lanthanide-Doped Nanoparticles with Excellent Luminescent Properties in Organic Media. Chemistry of Materials, 2003. 15(24): p. 4604-4616.

27. Lo, A.Y.H., et al., Multinuclear Solid-State NMR Spectroscopy of Doped Lanthanum Fluoride Nanoparticles. Journal of the American Chemical Society, 2007. 129(15): p. 4687-4700.

28. Cao, T., et al., Water-soluble NaYF4:Yb/Er upconversion nanophosphors: Synthesis, characteristics and application in bioimaging. Inorganic Chemistry Communications, 2010. 13(3): p. 392-394.

29. Zhang, Q., et al., Hexanedioic acid mediated surface–ligand-exchange process for transferring NaYF4:Yb/Er (or Yb/Tm) up-converting nanoparticles from hydrophobic to hydrophilic. Journal of Colloid and Interface Science, 2009. 336(1): p. 171-175.

30. Stouwdam, J.W., M. Raudsepp, and F.C.J.M. van Veggel, Colloidal Nanoparticles of Ln3+-Doped LaVO4:  Energy Transfer to Visible- and Near-Infrared-Emitting Lanthanide Ions. Langmuir, 2005. 21(15): p. 7003-7008.

31. Stouwdam, J.W. and F.C.J.M. van Veggel, Improvement in the Luminescence Properties and Processability of LaF3/Ln and LaPO4/Ln Nanoparticles by Surface Modification. Langmuir, 2004. 20(26): p. 11763-11771.

32. Li, C., et al., Controlled Synthesis of Ln3+ (Ln = Tb, Eu, Dy) and V5+ Ion-Doped YPO4 Nano-/Microstructures with Tunable Luminescent Colors. Chemistry of Materials, 2009. 21(19): p. 4598-4607.

33. Safronikhin, A., et al., Preparation and colloidal behaviour of surface-modified EuF3. Applied Surface Science, 2009. 255(18): p. 7990-7994.

34. Li, C., et al., Hydrothermal Synthesis of Lanthanide Fluorides LnF3 (Ln = La to Lu) Nano-/Microcrystals with Multiform Structures and Morphologies. Chemistry of Materials, 2008. 20(13): p. 4317-4326.

35. Evanics, F., et al., Water-Soluble GdF3 and GdF3/LaF3 NanoparticlesPhysical Characterization and NMR Relaxation Properties. Chemistry of Materials, 2006. 18(10): p. 2499-2505.

36. Dong, C., M. Raudsepp, and F.C.J.M. van Veggel, Kinetically Determined Crystal Structures of Undoped and La3+-Doped LnF3. The Journal of Physical Chemistry C, 2008. 113(1): p. 472-478.

37. Huignard, A., et al., Synthesis and Characterizations of YVO4:Eu Colloids. Chemistry of Materials, 2002. 14(5): p. 2264-2269.

38. Wang, M., et al., One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence. Journal of Alloys and Compounds, 2009. 485(1–2): p. L24-L27.

Page 83: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

78

39. Chen, H., et al., Water-soluble Yb3+, Tm3+ codoped NaYF4 nanoparticles: Synthesis, characteristics and bioimaging. Journal of Alloys and Compounds, 2012. 511(1): p. 70-73.

40. Wang, L., Y. Zhang, and Y. Zhu, One-pot synthesis and strong near-infrared upconversion luminescence of poly(acrylic acid)-functionalized YF&lt;sub&gt;3&lt;/sub&gt;:Yb&lt;sup&gt;3+&lt;/sup&gt;/Er&lt;sup&gt;3+&lt;/sup&gt; nanocrystals. Nano Research, 2010. 3(5): p. 317-325.

41. Wang, F. and X. Liu, Upconversion Multicolor Fine-Tuning: Visible to Near-Infrared Emission from Lanthanide-Doped NaYF4 Nanoparticles. Journal of the American Chemical Society, 2008. 130(17): p. 5642-5643.

42. Wang, F., X. Xue, and X. Liu, Multicolor Tuning of (Ln, P)-Doped YVO4 Nanoparticles by Single-Wavelength Excitation. Angewandte Chemie International Edition, 2008. 47(5): p. 906-909.

43. Qian, L., et al., Self-Assembled Heavy Lanthanide Orthovanadate Architecture with Controlled Dimensionality and Morphology. Chemistry – A European Journal, 2009. 15(5): p. 1233-1240.

44. Tang, B., J. Ge, and L. Zhuo, The fabrication of La(OH) 3 nanospheres by a controllable-hydrothermal method with citric acid as a protective agent. Nanotechnology, 2004. 15(12): p. 1749.

45. Wei, Y., et al., Polyol-mediated synthesis of water-soluble LaF3:Yb,Er upconversion fluorescent nanocrystals. Materials Letters, 2007. 61(6): p. 1337-1340.

46. Sun, Y., et al., Controlled synthesis and morphology dependent upconversion luminescence of NaYF 4 :Yb, Er nanocrystals. Nanotechnology, 2007. 18(27): p. 275609.

47. Tian, Y., et al., Facile synthesis of ultrasmall GdF3 nanowires via an oriented attachment growth and their luminescence properties. Chemical Communications, 2011. 47(10): p. 2847-2849.

48. Diamente, P. and F. Veggel, Water-Soluble Ln+3-Doped LaF3 Nanoparticles: Retention of Strong Luminescence and Potential as Biolabels. Journal of Fluorescence, 2005. 15(4): p. 543-551.

49. Sivakumar, S., P.R. Diamente, and F.C.J.M. van Veggel, Silica-Coated Ln3+-Doped LaF3 Nanoparticles as Robust Down- and Upconverting Biolabels. Chemistry – A European Journal, 2006. 12(22): p. 5878-5884.

50. Diamente, P.R., R.D. Burke, and F.C.J.M. van Veggel, Bioconjugation of Ln3+-Doped LaF3 Nanoparticles to Avidin. Langmuir, 2005. 22(4): p. 1782-1788.

51. Charbonniere, L.J., et al., Highly luminescent water-soluble lanthanide nanoparticles through surface coating sensitization. New Journal of Chemistry, 2008. 32(6): p. 1055-1059.

52. Liu, Y., et al., X-ray luminescence of LaF[sub 3]:Tb[sup 3+] and LaF[sub 3]:Ce[sup 3+],Tb[sup 3+] water-soluble nanoparticles. Journal of Applied Physics, 2008. 103(6): p. 063105.

53. Shan, G., et al., A simple, low-temperature route to synthesize aqueous-dispersible Yb3+–Er3+ co-doped hexagonal LaF3 nano-crystals for up-conversion fluorescence. Materials Letters, 2008. 62(26): p. 4187-4190.

54. Wang F, Z.Y., Fan XP, Wang MQ, One-pot synthesis of chitosan/LaF3/Eu+3 nanocrystals for bioapplications. Nanotechnology, 2006. 17: p. 1527-1532.

55. Huignard, A., T. Gacoin, and J.-P. Boilot, Synthesis and Luminescence Properties of Colloidal YVO4:Eu Phosphors. Chemistry of Materials, 2000. 12(4): p. 1090-1094.

56. Moreels, I., et al., Size-Dependent Optical Properties of Colloidal PbS Quantum Dots. ACS Nano, 2009. 3(10): p. 3023-3030.

57. Moreels, I., et al., Surface Chemistry of Colloidal PbSe Nanocrystals. Journal of the American Chemical Society, 2008. 130(45): p. 15081-15086.

Page 84: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

79

58. Moreels, I., J.C. Martins, and Z. Hens, Ligand Adsorption/Desorption on Sterically Stabilized InP Colloidal Nanocrystals: Observation and Thermodynamic Analysis. ChemPhysChem, 2006. 7(5): p. 1028-1031.

59. Hens, Z., I. Moreels, and J.C. Martins, In Situ 1H NMR Study on the Trioctylphosphine Oxide Capping of Colloidal InP Nanocrystals. ChemPhysChem, 2005. 6(12): p. 2578-2584.

60. Chan, W.C.W. and S. Nie, Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science, 1998. 281(5385): p. 2016-2018.

61. Bruchez, M., et al., Semiconductor Nanocrystals as Fluorescent Biological Labels. Science, 1998. 281(5385): p. 2013-2016.

62. Feng, J., et al., Functionalized Europium Oxide Nanoparticles Used as a Fluorescent Label in an Immunoassay for Atrazine. Analytical Chemistry, 2003. 75(19): p. 5282-5286.

63. Meiser, F., C. Cortez, and F. Caruso, Biofunctionalization of Fluorescent Rare-Earth-Doped Lanthanum Phosphate Colloidal Nanoparticles. Angewandte Chemie International Edition, 2004. 43(44): p. 5954-5957.

64. Han, Z., Q. Yang, and G.Q. Lu, Crystalline lanthanum hydroxycarbonates with controlled phases and varied morphologies prepared on non-crystalline substrates. Journal of Solid State Chemistry, 2004. 177(10): p. 3709-3714.

65. Zhang, Y., et al., Synthesis, Characterization, and Photoluminescence Property of LaCO3OH Microspheres. Inorganic Chemistry, 2007. 46(11): p. 4713-4717.

66. Ji, P., et al., Preparation with a facile template-free method of uniform-sized mesoporous microspheres of rare earth (La, Ce, Pr, Nd) oxides. Materials Research Bulletin, 2011. 46(11): p. 1902-1907.

67. Pol, V.G., et al., Solvent-Free Fabrication of Rare LaCO3OH Luminescent Superstructures. Inorganic Chemistry, 2009. 48(14): p. 6417-6424.

68. Menke, A.G. and F. Walmsley, Transition metal coordination compounds of 2-aminoethylphosphonic acid. Inorganica Chimica Acta, 1976. 17(0): p. 193-197.

69. Liang, X., et al., Synthesis of NaYF4 Nanocrystals with Predictable Phase and Shape. Advanced Functional Materials, 2007. 17(15): p. 2757-2765.

70. Grzyb, T. and S. Lis, Photoluminescent properties of LaF3:Eu3+ and GdF3:Eu3+ nanoparticles prepared by co-precipitation method. Journal of Rare Earths, 2009. 27(4): p. 588-592.

71. Panchula, M.L. and M. Akinc, Morphology of lanthanum carbonate particles prepared by homogeneous precipitation. Journal of the European Ceramic Society, 1996. 16(8): p. 833-841.

72. Jeevanandam, P., et al., Synthesis of morphologically controlled lanthanum carbonate particles using ultrasound irradiation. Journal of Materials Chemistry, 2001. 11(3): p. 869-873.

73. Wang, F., et al., Facile synthesis of water-soluble LaF3 [ratio] Ln3+ nanocrystals. Journal of Materials Chemistry, 2006. 16(11): p. 1031-1034.

74. Yan, R.X. and Y.D. Li, Down/Up Conversion in Ln3+-Doped YF3 Nanocrystals. Advanced Functional Materials, 2005. 15(5): p. 763-770.

Page 85: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

80

11 Appendix

11.1 Synthesis methods

11.1.1 Synthesis of lanthanum carbonate nanoparticles

11.1.1.1 Uncoated lanthanum carbonate particles

For synthesizing uncoated lanthanum carbonate nanoparticles hydrothermal conditions were

used. The reactions were carried out at different temperatures and times. La(NO3)3 was used

as lanthanum source, but different amounts of water and different carbonate sources (urea

and Na2CO3) were investigated. As a result of the reactions white powders were formed

which were washed with methanol or ethanol and collected by centrifuging. The products

were dried in the oven (60°C). The different syntheses are summarized in Table 13.

Table 13: synthesis of the uncoated lanthanum carbonate particles with La(NO3)3 as a lanthanum source

Sample Amount of

La(NO3)3

(mmol)

Amount of

Na2CO3

(mmol)

Amount of

urea

(mmol)

Amount of

water (ml)

Time

(h)

Reaction

temperature

(°C)

ZL 16 3 3 - 50 12 120

ZL 32 3 3 - 50 12 140

ZL 34 3 3 - 50 24 120

ZL 18 1,5 - 15 20 24 120

ZL 26 1,5 - 15 20 12 140

ZL 29 1,5 - 15 20 24 140

ZL 20 1,5 - 15 30 24 120

ZL 27 1,5 - 15 30 12 140

ZL 30 1,5 - 15 30 24 140

ZL 21 1,5 - 15 50 24 120

ZL 28 1,5 - 15 50 12 140

ZL 31 1,5 - 15 50 24 140

Page 86: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

81

In addition La(OAc)3 was used as lanthanum source. The reaction was carried out in water

with urea or Na2CO3 as carbonate source. The reaction time was 24 h and the temperature

was set to 120 °C. The exact parameters can be found in Table 14. Purification occurred the

same way as described above.

Table 14: synthesis of the uncoated lanthanum carbonate particles with La(OAc)3 as a lanthanum source

Sample Amount of

La(OAc)3

(mmol)

Amount of

Na2CO3

(mmol)

Amount of

urea

(mmol)

Amount of

water (ml)

Time (h) Reaction

temperature

(°C)

ZL 19 1,5 - 15 20 24 120

ZL 33 3 3 - 50 24 120

ZL 47 1,5 - 15 20 12 120

Finally a reaction with water and ethanol as a solvent was performed (ZL 24). 3 mmol of

La(NO3)3 were used together with 30 mmol of urea. The hydrothermal reaction was carried

out at 160 °C for 24 h in 12,5 ml of ethanol and 12,5 ml of water. Purification was done in the

same way as described before.

The reaction conditions of ZL 18 and ZL 28 were chosen for doping the particles with

Eu(NO3)3 or Tb(NO3)3. The specific details are summarized in Table 15

Page 87: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

82

Table 15: doping percentages of the synthesized particles

Eu3+(%) Tb3+(%) Time (h) Temperature (°C)

ZL 35 - 5 12 140

ZL 36 - 2 12 140

ZL 40 - 0,1 12 140

ZL 41 - 1 12 140

ZL42 - 10 12 140

ZL 49 - 2 24 120

ZL 50 - 5 24 120

ZL 51 - 10 24 120

ZL 52 - 12 24 120

ZL 53 - 15 24 120

ZL 54 - 20 24 120

ZL 55 2 - 24 120

ZL 56 5 - 24 120

ZL 57 10 - 24 120

ZL 58 12 - 24 120

ZL 59 15 - 24 120

ZL 60 15 - 24 120

11.1.1.2 Using 2-aminoethyl phosphate (AEP) as a ligand

During the synthesis procedure 1,5 mmol of La(NO3)3 and 4 mmol of AEP were used. Na2CO3

and urea were used as carbonate source. Each substance was dissolved separately and in

total 30 ml of water was used. The AEP-solution was neutralized with NH3(aq). First the

lanthanide solution was added to the solution of the ligand and the carbonate source was

added last to the reaction mixture. The flask reaction was carried out at 85 °C for 2 or 3

hours. The specific details are summarized in

Table 16. In each case clear solutions were obtained. A synthesis without any carbonate

source was carried out following the same procedure as described above, only in this case 20

Page 88: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

83

ml of water was used in total. The reaction gave a white suspension. The products were

precipitated and washed with ethanol or methanol. They were collected by centrifugation

and dried in the oven (60 °C). In each case a white powder was acquired.

Table 16: synthesis of lanthanum carbonate in presence of AEP

Sample Amount

of

La(NO3)3

(mmol)

Amount

of AEP

(mmol)

Amount

of water

(ml)

Amount

of

Na2CO3

(mmol)

Amount

of Urea

(mmol)

Time (h) Color of

the

solution

after

reaction

AEP 11 1,5 4 30 1,5 - 2 clear

AEP 17 1,5 4 30 1,5 - 3 Clear/pale

white

AEP 19 1,5 4 30 - 15 3 clear

AEP 20 1,5 4 30 - - 2 white

11.1.1.3 Using malic acid (MA) as a ligand

For each reaction 1,5 mmol of La(NO3)3 was used together with 15 mmol of urea. The

amounts of malic acid varied (Table 17). Each substance was dissolved separately and in total

50 ml of water was used. The solution of malic acid was neutralized with NH3(aq). The

reactants were added in the following order: malic acid solution, lanthanum solution and

finally the urea solution. The reaction was a flask reaction, stirred at 80 °C for 3 hours. In the

case of MA 12 and MA 15 no urea was used. Depending on the amount of MA used the

reactions gave a clear or white suspension (Table 17). The products were precipitated and

washed with ethanol or methanol. In the case of a white solution the products could be dried

in a normal oven (60 °C) otherwise the vacuum oven was used. White powders were

obtained.

Page 89: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

84

Table 17: synthesis of lanthanum carbonate in presence of malic acid

Sample Amount of

La(NO3)3

(mmol)

Amount of MA

(mmol)

Amount of

urea (mmol)

Amount of

water (ml)

Color of the

solution after

reaction

MA 14 1,5 1 15 50 white

MA 2 1,5 4 15 50 white

MA 12 1,5 8 - 50 clear

MA 13 1,5 8 15 50 clear

MA 15 1,5 4 - 50 white

11.1.1.4 Using glucose (Gluc) as a ligand

1,5 mmol of La(NO3)3 was used together with varying amount of glucose (Table 18) and 15

mmol of urea. Each component was dissolved separately and the order of addition was the

following: glucose solution, lanthanide solution, urea solution. In total 50 ml of water was

used. The flask reaction was performed at 85 °C for 3 h. A reaction without urea (Gluc 10)

was additionally prepared. White or clear suspensions were obtained. In the case of a white

suspension the product could be collected by centrifuging, it was washed with methanol or

ethanol and dried in the oven (60°C). In this case white powders were gained. In the case of a

clear solution the products were precipitated by increasing the pH using a NaOH solution and

centrifuging. They could be redissolved by adjusting the pH to 7-6 by adding a HCl solution.

This was done multiple times in order to purify the products. The precipitates were dried

under vacuum and (slightly) yellow products were obtained.

Page 90: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

85

Table 18: synthesis of lanthanum carbonate in presence of glucose

Sample Amount of

La(NO3)3

(mmol)

Amount of

urea (mmol)

Amount of

water (ml)

Amount of

glucose

(mmol)

Color of the

solution after

reaction

Gluc 2 1,5 15 50 4 white

Gluc 3 1,5 15 50 8 white

Gluc 12 1,5 15 50 12 clear

Gluc 10 1,5 - 50 12 clear

In Gluc 23 La(OAc)3 was used as lanthanum source under the same reaction conditions as

Gluc 2: 1,5 mmol La(OAc)3, 15 mmol urea, 4 mmol glucose and 50 ml of water in a flask

reaction at 85 °C for 3 hours. A clear solution was obtained. Purification was performed as

described above for clear solutions.

11.1.2 Glucose coated fluoride nanoparticles

A modified synthesis method of Shan et al. [53] was used. 2 g of glucose was dissolved in 20

ml of water and while stirring 0,156 g of NaF was added. The stirred reaction mixture was

heated to 60 °C after which 0,65720 g of La(NO3)3 dissolved in 3 ml of water, was added. The

flask reaction was stirred for 1,5 or 3 h at 60 °C. After the reaction was stopped a clear

suspension was obtained. The particles were precipitated by increasing the pH above 7 using

a NaOH solution. The precipitate could be redissolved using a HCl solution. The procedure of

precipitating and redissolving was repeated several times with the objective to purify the

products. Finally the products were collected by centrifuge and they could be dried in the

oven (60 °C). A pale yellow powder was obtained. An unmodified synthesis (described in the

article) was additionally carried out for comparison (Gluc 13). Everything is summarized in

Table 19.

Page 91: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

86

Table 19: synthesis of glucose coated LaF3 nanoparticles

Sample Amount of

La(NO3)3 (g)

Amount of NaF

(g)

Amount of

glucose (g)

Reaction time (h)

Gluc 6 0,65720 0,156 2 1,5

Gluc 13 0,65720 0,156 2 ± 120

Gluc 17 0,65720 0,156 2 3

Reaction Gluc 6 was repeated with Y(NO3)3 (Gluc 15), Gd(NO3)3 (Gluc 16) and La(OAc)3 (Gluc

24) as lanthanide source. White suspensions were obtained. The products were collected by

centrifuge and washed with EtOH or MeOH before drying.

Page 92: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

87

11.2 Luminescence spectra

In this section the remaining emission spectra of the lanthanum carbonate samples can be

found.

Page 93: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

88

Page 94: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

89

Page 95: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

90

Page 96: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

91

Page 97: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

92

Page 98: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

93

Page 99: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

94

Page 100: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

95

Page 101: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

96

Page 102: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

97

Page 103: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

98

Page 104: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

99

Page 105: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

100

Page 106: Luminescent lanthanide-doped nanomaterialslib.ugent.be/fulltxt/RUG01/001/892/420/RUG01-001892420...anorganische kern en een organisch ligand als schil. Verschillende liganden werden

101