LOW-POWER mWAVE hopwood/lab/images/ICOPS03_IzaHopwood.pdf · PDF file 2007. 6....
date post
03-Mar-2021Category
Documents
view
0download
0
Embed Size (px)
Transcript of LOW-POWER mWAVE hopwood/lab/images/ICOPS03_IzaHopwood.pdf · PDF file 2007. 6....
Northeastern University Boston, MA
- USA -
LLOWOW--PPOWEROWER µµWAVEWAVE PPLASMALASMA
SSOURCEOURCE FFOROR MMICROSYSTEMSICROSYSTEMS
Felipe Iza and Jeffrey A. HopwoodFelipe Iza and Jeffrey A. Hopwood
ICOPS - Cheju, 2003
Outline
DEVICE DESCRIPTION
v Low-cost gap-excited microwave plasma source
v Low-power device
v Atmospheric pressure
PROBE DIAGNOSTICS
v High-density discharge
v Low sheath voltage
SPECTRUM ANALISYS
v Non-equilibrium, low-temperature discharge
CONCLUSIONS
Plasma Source Description
RT/Duroid 6010.8
Dielectric: Ceramic reinforced teflon Dielectric constant εr=10.8 Dielectric thickness: 635µm
Conductor: Copper Conductor thickness: 9 µm
Operation Conditions
900 MHz 0.1 - 760 torr 0.150 - 3 W
Ground Plane Dielectric
Discharge gap
Lin e
SMA connector
Discharge Gap
λ/4
~ 2 cm
~ 5
cm
λ/2
Matching network
Split ring resonator
I V
? 2
Principle of Operation
Discharge gap
g o h
E 2 E g
≈ Ground Plane
Dielectric
g
h Eo
Eg
Line
Ground plane
Line plane
Section AA’
Ground plane
Line plane
Section BB’
A’
A B’
B Magnitude of the electric field |E| Simulation using HFSS from Ansoft
Experiment Set-up
Glass tube
(chamber)
Manifold
Plasma SourceGas outlet
To pressure gauges
Coaxial Probe
Gas inlet
Needle valve
30dB
900.000 -7.3
MKS
0.53
0.53 - - -
Ignition Power & Gap engineering
Pressure (torr)
Ig ni
tio n
Po w
er (W
)
0.1 1 10 100
1
6
760
3
0.5
500 µm gap - Argon
50 µm gap - Argon
500 µm gap - Air
0.6
0.7
0.8 0.9
2
4
5
Pressure Range of Operation
Probe diagnostics: v Ion Density ~1011cm-3
v Floating Potential
Probe diagnostics: Ion density
100 mtorr 200 mtorr 300 mtorr 400 mtorr
Power (W) 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Io n
D en
si ty
n ii (c
m -3
)
0.0
2.0e+10
4.0e+10
6.0e+10
8.0e+10
1.0e+11
1.2e+11
1.4e+11
[1] Iza F. and Hopwood J., Plasma Sources Science and Technology, vol. 11, no. 3, pp. 229-235, August 2002
mICP @ 400 mtorr[1]
mICP 400 mtorr[1]
Ring resonator 400 mtorr
335Q ≈
40Q ≈
Argon
Probe diagnostics: Floating Potential
Pressure (torr)
0.01 0.1 1 10 100 1000 10000
Fl oa
tin g
Po te
nt ia
l ( V
)
-5
0
5
10
15
20
25
1250 mW
1000 mW
750 mW
250 mW
500 mW
150 mW
Probe: Thin gold wire (d=50µm)
Argon
Pressure Range of Operation
Probe diagnostics: v Ion Density ~1011cm-3
v Floating Potential
Ar: 760 torr, 1.5 W
4000 5000 6000 7000 8000 9000 10000
4000 4500
Texcitation and Tvibrational @760 torr
Ar Ground state
E (eV)Ar+
Ar*
15
10
5
13
-14
-12
-10
-8
-6
-4
-2
0
2
ln (I
*l am
bd a/
A )
7 8 9 10 11 12 14 15 -16
Energy (eV) 16
4000 5000 6000 7000 8000 9000
99.9% Ar + 0.1% N2 : 760 torr, 1.5 W 1st Positive Band: 3 3 +g uB ? A→ ∑2nd Positive Band:
3 3 u gC ? B ?→
∆ν = ... 0 2 3 41 -3 -1-2- 4
∆ν = ...
N2 Ground state
ν=1
N2+
ν=2 ν=3
ν=1 ν=2 ν=3
3 + uA ∑
3 gB Π
3 uC Π
... ...
...
ν=1 ν=2 ν=3
N2+
Tvib = 0.70 eV (8124 K)
Tvib = 0.25 eV (2901 K)
N2:1 st positive band
N2:2 nd positive band
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1
Wavelength (Å)
In te
ns ity
(a .u
.)
Ar* Ar+
Argon
Texc = 0.32 eV (3714 K)
********** *** *
* *
* ** **
* *
***** **
Boltzmann plot
4000 5000 6000 7000 8000 90000 0.2 0.4 0.6 0.8
1
Wavelength (Å)
In te
ns ity
-3 -1-2- 4
1st Positive Band: 3 3 +
g uB ? A→ ∑2nd Positive Band: 3 3
u gC ? B ?→
∆ν = ... 0 2 3 41 ∆ν = ...
Rotational Temperature Trot @760 torr
N2 Ground state
ν=1
N2+
ν=2 ν=3
ν=1 ν=2 ν=3
3 + uA ∑
3 gB Π
3 uC Π
... ...
...
ν=1 ν=2 ν=3
99.9% Ar + 0.1% N2 : P=760 torr, 1.5 W
3680 3700 3720 3740 3760 3780 3800 3820 Wavelength (Å)
2- 4
1- 3
0- 2
Trot = 350 K
Trot = 400 K
Trot = 450 K
gas rotT T = 400 K≈
Conclusions NEW DEVICE BASED ON A SPLIT-RING RESONATOR v Low cost, robust and high-Q v Low-Power
Ø 0.5W Argon @ 760torr v Wide pressure range operation Ø 0.1-760 torr
PROBE DIAGNOSTICS (LOW PRESSURE) v High-density discharge v Small sheath voltage at pressures > 3 torr
SPECTRUM ANALISYS v Non-thermal plasma v 99.9% Ar +0.1%N2, 760 torr, 1.5W ØTexc= 0.32eV (3714 K) ØTvib= 0.7eV (8124 K) ØTrot= 0.03eV (400K)
PORTABLE DEVICE
EFFICIENT AND DURABLE
LOW-TEMP. APPLICATIONS
This research has been supported by Northeastern University, the Fulbright Program, and the National Science Foundation under Grant No. DMI-0078406.
Acknowledgment