Low-Energy Ion Beams in a Max-Planck Institute for Nuclear...

45

Transcript of Low-Energy Ion Beams in a Max-Planck Institute for Nuclear...

Page 1: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40
Page 2: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

Low-Energy Ion Beams in aCryogenic Environment

High resolution merged beams experiments with molecular ions

CSR: Goals, layout, design status

Beyond CSR: Collision physics with low-energy antihydrogen beams

Andreas WolfMax-Planck Institute for Nuclear Physics, Heidelberg

COOL05Galena, Illinois, Sept. 21, 2005

The Heidelberg CSR:

Page 3: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

Ion storage ring Merged electron beam

ve ~ vi

Collision measurements: ve ≠ vi

Electron cooling: vi = ve !

Þ collision energy: ~1 meV up to keV

!

Reaction products

Collision experiments with fast merged beams

energy resolution: < 1 meV (at collision energy < 100 meV)

Page 4: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

+

-e

(AB +)* + nℓ

AB **=

Resonant electron capture

+ eAB + B*A +

Dissociative recombination

Page 5: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

T = 300 K

HD+ Be = 2.78 meV

0 20 40 60 80 100

0.1

0.2

0.3 J = 1 3

5

Energy (meV)

Leve

l pop

ulat

ion

HD+ (1sσ, v = 0, J ) + e → HD** (1sσ nℓλ , v'J' ) → H + DRotational resolution

Dissociative recombination

Page 6: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

kT^ ~ 0.5 meV, kT|| ~ 0.02 meV

CRYRING (2001)kT┴ ~ 2 meV

TSRE-target and

photocathode(2004)

HD+ (1sσ, v = 0, J ) + e → HD** (1sσ nℓλ , v'J' ) → H + DRotational resolution

Low-energy rovibrational resonances

ΔJ = 0

v ’ = 1, n = 8

v ’ = 4, n = 4

(J increasing)

|ΔJ| = 4|ΔJ| = 2

(ℓ = 0, 2 )

Page 7: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

HD+ (1sσ, v = 0, J ) + e → HD** (1sσ nℓλ , v'J' ) → H + DRotational resolution

Low-energy rovibrational resonances

MQDT: Ioan Schneider and F. O. Waffeu Tamo (LeHavre)

0 – 2 1 – 3

v ’ = 4, n = 4

v ’ = 1, n = 8

(ℓ = 0, 2 → ΔJ = 0, ± 2, ± 4)

(calculations in progress)

Page 8: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

H. B. Pedersen et al., PRA 72, 012712 (2005)

Rotational dependence of 3He4He+ recombination rate

Time after injection (s)

Rec

ombi

natio

n ra

te c

oeffi

cien

t (a

rb. u

nits

)Radiative cooling only

Electron cooling

Vibrational cooling by radiation: < 5 s

Inelastic electron collisions

Rotational cooling by radiation: > 40 s

Rotational cooling by electron collisions: ~ 10 s

Start of electron interaction

...

Page 9: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

kT = 0.086 meV · (T / K)

T = 300 K

HD+ Be = 2.78 meV

0 20 40 60 80 100

0.1

0.2

0.3 J = 1 3

5

Energy (meV)

Leve

l pop

ulat

ion

0 20 40 60 80 100

0.5

1.0J = 0

T < 10 K

Cryogenic low-density environment for ion storage

t > 3 min

Page 10: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

Cryogenic low-density environment for ion storage

Cryogenic (4.2 K) Penning trap for antiprotons:Storage lifetime τ > 3.4 months

Small, hermeticallyclosed system

G. Gabrielse et al., PRL 65, 1317 (1990) PRL 74, 3544 (1995)

From low-energy p annihilation cross section:p (4.2 K) < 5 x 10-17 mbar

Page 11: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

Electrostatic storage ring20 … 300 keV·q

Cryogenic vacuum ≤ 10-15 mbarWall temperature ~ 2 K

Long storage time:Rotational relaxation

~ 20 ... 1000 s

Fast molecular ionsLight and heavy species

Cluster ions

Highly charged, heavyatomic ions

The CSR project

Cryopumpingof H2

Page 12: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

Electrostatic storage ring20 … 300 keV·q

Cryogenic vacuum ≤ 10-15 mbarWall temperature ~ 2 K

Electron target~ 3 ... 300 eV

Electron coolingInelastic electron collisions

The CSR project

Page 13: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

Electrostatic storage ring20 … 300 keV·q

Cryogenic vacuum ≤ 10-15 mbarWall temperature ~ 2 K

Electron target~ 3 ... 300 eV

He jet

Reactionmicroscope

Highly charged ionsPrecision spectroscopy

Multiple electron capture

The CSR project

Page 14: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

Mergedatomicbeam

H, D, C, O, ...~ 5 ... 100 keV

He jet

Reactionmicroscope

Electrostatic storage ring20 … 300 keV·q

Cryogenic vacuum ≤ 10-15 mbarWall temperature ~ 2 K

Electron target~ 3 ... 300 eV

~ 9 m

Cold ion atom reactionsLow-energy resonance scanIsotopic exchange reactions

The CSR project

Page 15: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

H2 molecular beam

Ar+ guided ion beam

P. Tosi et al. (Trento/Perugia)J. of Chemical Physics 99, 985 (1993)

20 meV ... 1 eV

Energy resolution ~ 10 meV

ArH+ detection

Energy resolved ion reaction studies

Ar+ + H2 → Ar + H2+ → ArH+ + H

Page 16: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

Accelerator physics with low-energy ion beams

Acceleration, short pulses, loss mechanisms ...Diagnostic using sensitive cryogenic electronics

(amplifiers, current probes, SQUID sensors ...)Beam noise and stochastic coolingSingle-ion measurements ? ...

The CSR project

Page 17: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

Layout of the Heidelberg CSR

Lattice,electron cooling:

Poster byH. Fadiltoday

Page 18: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

Layout of the Heidelberg CSR

Deflector layout and molecular fragment detection

M. Grieser, C. Welsch

Page 19: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

Layout of the Heidelberg CSR

2006 / 08

Page 20: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

Outer vacuum chamber

Inner vacuum chamber

Cooling chamberIon trap

Mirror electrodesEinzel lens

Heidelberg cryogenic ion beam trap

Prototype for cryogenic CSR components

~0.3 W/m @ 2 K ~10 W/m @ 5…80 K

2005 / 06

Page 21: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

CSR project team

Weizmann Institute of ScienceRehovot, Israel

M. RappaportUniv. Louvain-la-Neuve,Belgium

X. Urbain

R. von HahnM. GrieserD. OrlovH. FadilT. SieberA. DiehlA. WolfC. WelschV. AndrianarijaonaJ. UllrichC. D. SchröterJ. Crespo Lopez-Urrutia

Max-Planck-Institut für KernphysikHeidelberg, Germany

D. Zajfman

H. Kreckel

L. Lammich

Kirchhoff Institute of PhysicsUniversity of Heidelberg, Germany

C. EnssA. Fleischmann

Technical University, Dresden, GermanyH. Quack

Ch. Haberstroh

Infrared experimentsat cryogenic ion trap

Rovibrational laser diagnostic(prelim. studies)

Ion-atom merged beams

Ion detectors

Cryogenic consulting

Page 22: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

Low energy antiproton facilityFLAIR

GSI DarmstadtFAIR project

Antiproton collector ring

30 MeV ... 300 keV: LSR (magnetic) 300 keV ... 20 keV: USR (electrostatic)

Existing GSI machines

New machines

Stored antiproton beams at keV energies

> 2010

Page 23: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

Antihydrogen collision experiment

Antihydrogen formationElab ≤ 25 keVEe ≤ 13.6 eV

Np = 107ne = 107 cm-3Te = 1 meV

→ 200 H/s

3.5 m 2.0 m

H collisionexperiment–

Ee ≤ 13.6 eV

Ee ≤ 13.6 eV

Elab ≤ 25 keV

H + H → e+ + e− + p + p → Ps + p + p

Page 24: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

- Rotationally controlled, high-resolution, low energy reaction studies- Merged beams of electrons and atoms (meV resolution)- Sensitive detection of electronic signals and infrared radiation- Ultrahigh vacuum: long-time storage of highly charged ions- Fixed target collisions with velocities around 1 a.u.- Low-energy ion beam physics (cooling, diagnostic)

Summary

Low-energy ion beams in a cryogenic electrostatic storage ring (CSR)

Physics opportunities

Experimental challenges

- Extreme vacuum requirements – 2 K cryogenic cooling- Low energy electron beams (eV range laboratory energy)- Imaging and mass sensitive detectors- Control and diagnostic of rotational cooling

Page 25: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40
Page 26: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

Parameters:

Elab ≤ 0.3 eV (nested traps)Elab ≤ 50 eV (modif. nested traps)

Required production rate ~ 100 H/s

Hydrogen–antihydrogen rearrangement at eV energies

Page 27: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

InjectionBeamline

IonOrbitElectron beam

(co-moving)

Recombinationproducts

Ion Storage Ring TSR

Ion accelerator ~0.2 ... 8 MeV/uH2+ ... Li+ ... C6+ ... Mg8+ ... Cu26+ ...

Pt48+ MPI-K Heidelberg

Page 28: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

Electron cooler

~0.2 ... 8 MeV/u

H2+ ... Li+ ... C6+ ... Mg8+ ... Cu26+ ... Pt48+

Detectors (ions and neutrals)

Continuously cooled ion beam

~0.5 ... 8 keV

High resolution electron target at TSR

Avoided during DR measurement: - Self-heating of ion beam - Ion velocity shift by electron drag force

Page 29: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

TSR electron cooler

Acceleration section

Collector

Toroid

TSR dipole

Interaction sectionelectron beam

Ion beam

Correction dipoles

Rails

High resolution electron target at TSR

Installation: Summer 2003

Page 30: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

EF

E vac

Thermocathode vacuumT=1300-1500 K

kT=110-120 meV

E vac

E F

E c

(CsO)

E v GaAs vacuum

T= 80 K

kT=7 meV

Cryogenic photocathode

Page 31: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

Fully activated cathode Quantum yield: 31%

D. A. Orlov et al.,Appl. Phys. Lett. 78, 2721 (2001)

300 K 90 K

Energy distributions of photoelectrons“2D”-measurement

(E|| , E^ )

Space charge limited Thermalized e –: ~1.6%Laser power (800 nm) for 1 mA: < 1 W

cut

Þ 90 K electron source

Extracted current reached: ~0.25 mA (10-16 hrs) (mA currents may become possible)kT after magnetic expansion reached: ~0.5 meV (5 K)

Cryogenic photocathode

Photocathode principle

Semiconductor

Cs/O deposition for negative

electron affinityLaser

DiffusionTunnel barrier

Scattering

hνe-

conductance band minimumvacuum level

Direct transmission

E┴n ~ 0.1 π mm mrad

Page 32: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

Cryogenic photocathode

Photocathode gun

Laser illumination up to 1 WTemperature rise 15-20 K/W at 90 K

U. Weigel et al., NIM A 536 (2005) 323

Page 33: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

New instrumentation at TSR in 2004

Neutralfragments

Advanced (3D)Molecular Imaging

1300 K

90 KElectron source

2600 K

10 K

Molecular ion source

Sep 04June 04

June 04

Page 34: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

Radiativerecombination

(atoms)

Dielectronicrecombination

(atoms)

Dissociativerecombination

(molecules)

Photoemission Internal dynamics

-

+

Page 35: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

“Recombination phase” in cosmology

Interstellar plasma - Photoionized interstellar gas - Molecular clouds, star forming regions

Excited states for highly charged few-e systems - Ground state Lamb shift in, e.g., U91+

Atoms from elementary particles:e+ p (antihydrogen) ( e+e− , pp )

Importance of low-energy electron-ion recombination

-

+

Page 36: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

20

10

-10

0Ene

rgy

(eV

)

2ps

2pp

HD+

HD

0 4321Internuclear distance (A)

2pσ nlλ

2pσ nlλ 2pπ nlλ 2pπ nlλ

(2pσ)2

(2pσ)2

TSR: M. Lange et al., PRL 83 (1999) 4979;Al-Khalili et al., PRA (2003)

Dissociative recombination

Page 37: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

HD+H++D

H*+D

v=0

v'

nl

HD**TSR: M. Lange et al., PRL 83 (1999) 4979;Al-Khalili et al., PRA (2003)

Dissociative recombination

Page 38: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

CH+ + hν → C+ + H

Feshbach resonances throughC+ fine structure splitting

U. Hechtfischer et al., PRL 80, 2809 (1998)

Rotational cooling and diagnostic

Page 39: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

Rotational cooling to ~ 300 K

U. Hechtfischer et al., PRL 80, 2809 (1998)

CH+ + hν → C+ + H

Rotational cooling and diagnostic

Page 40: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

~ 300 H3+ ions

Ro-vibrational spectroscopy withmass spectrometric probing

Rotational cooling and diagnostic

(H3+)* + Ar → ArH+ + H2

H. Kreckelin collaboration withJ. Glosik, R. Plasil (Prague)R. Wester, J. Mikosch (Freiburg)D. Gerlich (Chemitz)

Page 41: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

H. Kreckelin collaboration withJ. Glosik, R. Plasil (Prague)R. Wester, J. Mikosch (Freiburg)D. Gerlich (Chemitz)J. Mikosch et al., JCP 121,

11030 (2004)

Ro-vibrational spectroscopy withmass spectrometric probing

~ 300 H3+ ions

Rotational cooling and diagnostic

Page 42: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

Stored antiproton beams at keV energies

Systems: H on H, H2, He, ...¯

Collision energy regimes and dynamics:Collision velocity matched to bound leptons

e+e- formation dynamics – Lepton rearrangement

v ≤ 1 a.u. EH ≤ 25 keV

Collision velocity matched to bound hadronspp formation dynamics – Hadron rearrangement

v < 0.046 a.u. EH ≤ 54 eV

¯

Hydrogen-Antihydrogen collision experiments

Page 43: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

3.5 m 2.0 m

H collisionexperiment–

Ee ≤ 13.6 eV

Ee ≤ 13.6 eV

Elab ≤ 25 keV

Antihydrogen collisionsσ ~ 10-16 cm2dnt = 1014 cm-2→ Event rate ~ 1/s for 200 H/s

(from H+H collisions)

Antihydrogen collision experiment

H + H → e+ + e− + p + p → Ps + p + p

Page 44: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

R (a.u.)E (a.u.) 1 2

-1

-2

-3

0100

50

Elab (eV)

0.040.02

vr (a.u.)

0.06

Hydrogen–antihydrogen rearrangement at eV energies

H + H → pp + Ps → pp + e+ + e−

p / H laboratory energy

Page 45: Low-Energy Ion Beams in a Max-Planck Institute for Nuclear ...conferences.fnal.gov/cool05/Presentations/Wednesday/W03...kT = 0.086 meV · (T / K) T = 300 K HD+ Be = 2.78 meV 0 20 40

10

50.01

0.02

Elab (eV) vr (a.u.)

e+e- kinetic energy

Protoniumlevels

Positronium levels

Hydrogen–antihydrogen rearrangement at eV energies

H + H → pp + Ps → pp + e+ + e−