Long-term interaction between mid-ocean ridges and mantle ... · Long-term interaction between...

14
Long-term interaction between mid-ocean ridges and mantle plumes Whittaker, J. M., Afonso, J. C., Masterton, S., Müller, R. D., Wessel, P., Williams S. E. and Seton, M. SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO2437 NATURE GEOSCIENCE | www.nature.com/naturegeoscience 1

Transcript of Long-term interaction between mid-ocean ridges and mantle ... · Long-term interaction between...

Page 1: Long-term interaction between mid-ocean ridges and mantle ... · Long-term interaction between mid-ocean ridges and mantle plumes Whittaker, J. M., Afonso, J. C., Masterton, S., Müller,

Long-term interaction between mid-ocean ridges and mantle plumes

Whittaker, J. M., Afonso, J. C., Masterton, S., Müller, R. D., Wessel, P., Williams S. E. and Seton, M.

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NGEO2437

NATURE GEOSCIENCE | www.nature.com/naturegeoscience 1

Page 2: Long-term interaction between mid-ocean ridges and mantle ... · Long-term interaction between mid-ocean ridges and mantle plumes Whittaker, J. M., Afonso, J. C., Masterton, S., Müller,

Long-term interaction between mid-ocean ridges and mantle plumes

Whittaker, J.M., Afonso, J.C., Masterton, S., Müller, R.D., Wessel, P., Williams, S.E., and Seton, M.

Supplementary Information

 Supplementary  Figure  1:  Present-­‐day  distribution  of  LIPs  (Coffin  and  Eldholm,  1994).  Colour-­‐coded  by  age  of  formation  (Supp.  Table  1).    

 Supplementary  Figure  2:  LIPs  (Coffin  and  Eldholm,  1994)  reconstructed  to  location  at  time  of  formation.  Colour-­‐coded  by  age  of  formation.  Note  the  clusters  of  LIPs  exhibit  significant  ranges  in  age  (Supp.  Table  2).  

0 - 22 Ma

22 - 40 Ma

40 - 56 Ma

56 - 67 Ma

67 - 80 Ma

80 - 95 Ma

95 - 111 Ma

111 - 126 Ma

126 - 153 Ma

153 - 200 Ma

Page 3: Long-term interaction between mid-ocean ridges and mantle ... · Long-term interaction between mid-ocean ridges and mantle plumes Whittaker, J. M., Afonso, J. C., Masterton, S., Müller,

 Supplementary  Figure  3:  Histogram  of  the  number  of  LIPs  (Coffin  and  Eldholm,  1994)  associated  with  each  deeply  sourced  plume  (Courtillot  et  al.,  2003;  Montelli  et  al.,  2004)  only.  LIPs  were  assigned  to  the  closest  deeply  sourced  plume  based  on  their  reconstructed  position  at  formation.    A)  

 B)  

Page 4: Long-term interaction between mid-ocean ridges and mantle ... · Long-term interaction between mid-ocean ridges and mantle plumes Whittaker, J. M., Afonso, J. C., Masterton, S., Müller,

 C)  

 D)  

Page 5: Long-term interaction between mid-ocean ridges and mantle ... · Long-term interaction between mid-ocean ridges and mantle plumes Whittaker, J. M., Afonso, J. C., Masterton, S., Müller,

 E)  

 F)  

Page 6: Long-term interaction between mid-ocean ridges and mantle ... · Long-term interaction between mid-ocean ridges and mantle plumes Whittaker, J. M., Afonso, J. C., Masterton, S., Müller,

 G)  

 H)  

Page 7: Long-term interaction between mid-ocean ridges and mantle ... · Long-term interaction between mid-ocean ridges and mantle plumes Whittaker, J. M., Afonso, J. C., Masterton, S., Müller,

 I)  

 Supplementary  Figure  4:  Reconstructed  LIPs  (Coffin  and  Eldholm,  1994)  clustered  around  a)  Bouvet/Shona,  b)  Cape  Verde,  c)  Galapagos,  d)  Iceland,  e)  Kerguelen,  f)  Marion,  g)  Marqueses,  h)  Reunion,  and  i)  Tristan  de  Cunha  plume.  

Page 8: Long-term interaction between mid-ocean ridges and mantle ... · Long-term interaction between mid-ocean ridges and mantle plumes Whittaker, J. M., Afonso, J. C., Masterton, S., Müller,

Supplementary Figure 5. Workflow for the construction of predicted volume of extracted mantle (VEM).    

Page 9: Long-term interaction between mid-ocean ridges and mantle ... · Long-term interaction between mid-ocean ridges and mantle plumes Whittaker, J. M., Afonso, J. C., Masterton, S., Müller,

 

 

Supplementary  Figure  6:  Distribution  of  mean  palaeo-­‐ridge  positions  within  each  grid  cell  following  division  of  Earth's  surface  into  a  regular  global  grid  of  resolution  a)  1°  x  1°,  b)  2°  x  2°,  c)  3°  x  3°  and  d)  5°  x  5°.  Mean  positions  are  colour-­‐coded  by  the  number  of  irregularly-­‐  spaced  age  points  that  have  been  averaged  within  each  grid  cell:  n  <  5  (red),  5  <  n  ≤  15  (orange),  15  <  n  ≤  25  (green),  25  <  n  ≤  35  (blue),  n  >  35  (cyan).  Areas  with  no  data  coverage  have  not  experienced  seafloor  spreading  in  the  past  140  Myr.  Grid  resolution  5°  x  5°  is  used  as  majority  of  grid  cells  comprise  n  >  15.  

   

Page 10: Long-term interaction between mid-ocean ridges and mantle ... · Long-term interaction between mid-ocean ridges and mantle plumes Whittaker, J. M., Afonso, J. C., Masterton, S., Müller,

 

Supplementary  Figure  7:  Age  distributions  of  reconstructed  palaeo-­‐MOR  points  within  a  5°  x  5°  grid:  a)  Total  –  interquartile  age  ranges;  b)  colour-­‐coded  locations  (stars)  of  grid  cells  selected  for  age  distribution  examination;  selected  cells  exhibit  large  differences  between  total  and  interquartile  age  ranges;  c)  Box-­‐and-­‐whisker  plots  of  age  distributions  in  selected  grid  cells  (colour-­‐coded  to  stars  in  b)).  Coloured  blocks  show  upper  and  lower  age  quartiles;  median  age  is  a  black  line  within  each  block;  Red  circles:  mean  age;  Black  `whiskers':  total  age  range;  Red  `whiskers':  standard  deviation  about  mean  age.  

Supplementary Figure 3: Age distributions of reconstructed palaeo-MOR points within a

5° x 5° grid: a) Total – interquartile age ranges; b) colour-coded locations (stars) of grid cells

selected for age distribution examination; selected cells exhibit large differences between

total and interquartile age ranges; c) Box-and-whisker plots of age distributions in selected

grid cells (colour-coded to stars in b)). Coloured blocks show upper and lower age quartiles;

median age is a black line within each block; Red circles: mean age; Black `whiskers': total

age range; Red `whiskers': standard deviation about mean age.

Page 11: Long-term interaction between mid-ocean ridges and mantle ... · Long-term interaction between mid-ocean ridges and mantle plumes Whittaker, J. M., Afonso, J. C., Masterton, S., Müller,

 

Supplementary  Figure  8:  a)  Mean  full  seafloor  palaeo-­‐spreading  rate  and  b)  interquartile  age  range  of  palaeo-­‐spreading  centres  within  5°  x  5°  grid  cells.  

 

Supplementary  Figure  9:  Schematic  of  the  derivation  of  units  for  estimated  relative  mantle  extraction  within  each  cell  within  a  5°  x  5°  grid.  

Supplementary Figure 5: Schematic of the derivation of units for estimated relative mantle

depletion within each cell within a 5° x 5° grid.

Page 12: Long-term interaction between mid-ocean ridges and mantle ... · Long-term interaction between mid-ocean ridges and mantle plumes Whittaker, J. M., Afonso, J. C., Masterton, S., Müller,

 

Supplementary  Figure  10:  Distribution  of  non-­‐backarc  MORB  samples  from  Gale  et  al.  (2013)  relative  to  deeply-­‐sourced  plumes  (Courtillot  et  al.,  2003).  

   

 

Page 13: Long-term interaction between mid-ocean ridges and mantle ... · Long-term interaction between mid-ocean ridges and mantle plumes Whittaker, J. M., Afonso, J. C., Masterton, S., Müller,

Supplementary  Figure  11:  Estimated  global  Volume  of  Extracted  Mantle  (VEM)  compared  with  major  element  geochemistry  (CaO/Al2O3,  Na8.0,  Fe8.0;  Gale  et  al.  (2013))  from  present-­‐day  MOR  segments  that  are  >1,400  km  from  the  nearest  deeply-­‐sourced  plume(Courtillot  et  al.,  2003).    

 Supplementary  Figure  12:  Mantle  flow  pattern  (white  arrows)  from  numerical  simulations  of  MORs  without  (a)  and  with  (b)  ridge  migration.  The  standard  equations  of  mass,  momentum  and  energy  under  the  Boussinesq  approximation  are  solved  with  staggered  and  regular  2D  finite  difference  grid  (Gerya,  2009)  and  Newtonian  viscosity.  The  numerical  box  represents  a  domain  of  14,000  (length)  x  600  (depth)  km.  Background  color  represents  temperature  distribution.    In  (b)  the  rate  of  MOR  migration  is  1/3  that  of  the  spreading  rate.  Lateral  boundary  conditions  are  “external  no  slip”  (Gerya,  2009);  top  and  bottom  boundary  conditions  are  no  slip.  Schematic  Figs.  3b  and  3c  in  the  main  text  are  based  on  these  simulations.      

Supplementary  Table  3.  Statistical  analysis  of  the  distance  from  each  LIP  at  the  time  of  formation  to  the  nearest  plume  using  alternative  absolute  reference  frames  for  either  the  Indo-­‐Atlantic  or  Pacific  LIPs.  Bold  type  shows  reference  frames  used.  Note  that  in  both  regions  alternative  reference  frames  result  in  very  similar  results.  

    Doubrovine  et  al.  (2012)  

O’Neill  et  al.  (2005)    

Müller  et  al.  (1993)  

van  der  Meer  et  al.  (2010)    

Torsvik  et  al.    (2008)  

Wessel  and  Kroenke  (2008)  

Chandler  et  al.  (2012)  

Andrews  et  al.  (2006)  

Indo-­‐Atlantic  Median  (km)  

428  km  3.85°  

268  km  2.41°  

338  km  3.05°  

498  km  4.49°  

262  km  2.36°            

St.Dev  (km)  

357  km  3.22°  

390  km  3.51°  

360  km  3.24°  

349  km  3.14°  

381  km  3.43°              

Pacific  Median  (km)               518  km  

4.67°  519  km  4.68°  

528  km  4.76°  

St.  Dev.  (km)                       382  km  

3.44°  430  km  3.87°  

369  km  3.32°  

     

T [oC]

200

600

1000

100

100

200

200

0

0

Dep

th [k

m]

Dep

th [k

m]

distance [km]

a

b-700 -350 0 350 700

Page 14: Long-term interaction between mid-ocean ridges and mantle ... · Long-term interaction between mid-ocean ridges and mantle plumes Whittaker, J. M., Afonso, J. C., Masterton, S., Müller,

References  

Andrews,  D.  L.,  Gordon,  R.  G.,  and  Horner-­‐Johnson,  C.,  2006,  Uncertainties  in  plate  reconstructions  relative  to  the  hotspots;  Pacific-­‐hotspot  rotations  and  uncertainties  for  the  past  68  million  years:  Geophysical  Journal  International,  v.  166,  no.  2,  p.  939–951.  

Chandler,  M.  T.,  Wessel,  P.,  Taylor,  B.,  Seton,  M.,  Kim,  S.  S.,  and  Hyeong,  K.,  2012,  Reconstructing  Ontong  Java  Nui:  Implications  for  Pacific  absolute  plate  motion,  hotspot  drift  and  true  polar  wander:  Earth  Planet  Sci  Lett,  v.  331,  p.  140-­‐151.  

Coffin,  M.  F.,  and  Eldholm,  O.,  1994,  Large  Igneous  Provinces:  Crustal  Structure,  Dimensions,  and  External  Consequences:  Reviews  of  Geophysics,  v.  32,  no.  1,  p.  1-­‐36.  

Courtillot,  V.,  Davaille,  A.,  Besse,  J.,  and  Stock,  J.,  2003,  Three  distinct  types  of  hotspots  in  the  Earth’s  mantle:  Earth  Planet  Sci  Lett,  v.  205,  no.  3,  p.  295-­‐308.  

Doubrovine,  P.  V.,  Steinberger,  B.,  and  Torsvik,  T.  H.,  2012,  Absolute  plate  motions  in  a  reference  frame  defined  by  moving  hot  spots  in  the  Pacific,  Atlantic,  and  Indian  oceans:  Journal  of  Geophysical  Research:  Solid  Earth,  v.  117,  no.  9.  

Gale,  A.,  Dalton,  C.  A.,  Langmuir,  C.  H.,  Su,  Y.,  and  Schilling,  J.-­‐G.,  2013,  The  mean  composition  of  ocean  ridge  basalts:  Geochemistry  Geophysics  Geosystems,  v.  14,  no.  3,  p.  doi:10.1029/2012GC004334.  

Gerya,  T.,  2009,  Introduction  to  numerical  geodynamic  modelling,  Cambridge  University  Press.  

Montelli,  R.,  Nolet,  G.,  Dahlen,  F.  A.,  Masters,  G.,  Engdahl,  E.  R.,  and  Hung,  S.-­‐H.,  2004,  Finite-­‐Frequency  Tomography  Reveals  a  Variety  of  Plumes  in  the  Mantle:  Science,  v.  303,  no.  5656,  p.  338-­‐343.  

Müller,  R.  D.,  Royer,  J.-­‐Y.,  and  Lawver,  L.  A.,  1993,  Revised  plate  motions  relative  to  the  hotspots  from  combined  Atlantic  and  Indian  Ocean  hotspot  tracks:  Geology,  v.  16,  p.  275-­‐278.  

O'Neill,  C.,  Müller,  R.  D.,  and  Steinberger,  B.,  2005,  On  the  Uncertainties  in  Hotspot  Reconstructions,  and  the  Significance  of  Moving  Hotspot  Reference  Frames:  Geochemistry,  Geophysics,  Geosystems,  v.  6,  p.  doi:10.1029/2004GC000784,  002005.  

Torsvik,  T.  H.,  Müller,  R.  D.,  Van  Der  Voo,  R.,  Steinberger,  B.,  and  Gaina,  C.,  2008,  Global  plate  motion  frames:  Toward  a  unified  model:  Reviews  of  Geophysics,  v.  46,  no.  3.  

van  der  Meer,  D.  G.,  Spakman,  W.,  van  Hinsbergen,  D.  J.  J.,  Amaru,  M.  L.,  and  Torsvik,  T.  H.,  2010,  Towards  absolute  plate  motions  constrained  by  lower-­‐mantle  slab  remnants:  Nature  Geoscience,  v.  3.  

Wessel,  P.,  and  Kroenke,  L.  W.,  2008,  Pacific  absolute  plate  motion  since  145  Ma:  An  assessment  of  the  fixed  hot  spot  hypothesis:  Journal  of  Geophysical  Research  v.  113,  no.  B6.