Long Baseline Neutrinos - Stanford University

72
GINA RAMEIKA FERMILAB SLAC SUMMER INSTITUTE AUGUST 5-6, 2010 Long Baseline Neutrinos

Transcript of Long Baseline Neutrinos - Stanford University

Page 1: Long Baseline Neutrinos - Stanford University

G I N A R A M E I K A

F E R M I L A B

S L A C S U M M E R I N S T I T U T E

A U G U S T 5 - 6 , 2 0 1 0

Long Baseline Neutrinos

Page 2: Long Baseline Neutrinos - Stanford University

Lecture 1 Outline

Defining “Long” Baseline

Experiment IngredientsNeutrino Beams

Neutrino Interactions

Neutrino Cross sections

Calculating Neutrino Event Rates

Neutrino Detectors

Predicting and Measuring Backgrounds

Page 3: Long Baseline Neutrinos - Stanford University

Lecture 1 Outline cont.

Long Baseline BasicsThe mass-mixing matrix : mixing angles and

phases

Oscillation Probability : , L, E

Two-flavor approximation

Appearance and disappearance measurements Oscillation Searches Setting limits

Measuring parameters

Page 4: Long Baseline Neutrinos - Stanford University

Lecture 1 Outline, cont.

Experimental Examples : Early Searches

LSND and MiniBooNE (E. Zimmerman Lecture )

K2K and MINOS

OPERA

Page 5: Long Baseline Neutrinos - Stanford University

Lecture 2 Outline

Three neutrinos, Oscillation probability Matter effects Neutrino mass hierarchy

Experimental Techniques : Signals, backgrounds and ambiguities Experiment baseline Neutrino beam configurations

Experimental Landscape Reactor Experiments : disappearance (Ed Blucher

lecture) appearance : T2K, NOvA, LBNE

Page 6: Long Baseline Neutrinos - Stanford University

Lecture 2 Outline cont.

Experiment Prospects Understanding Sensitivity Calculations

Experiment Timelines

New results to keep an eye on

Beyond conventional beams?

Conclusions

Page 7: Long Baseline Neutrinos - Stanford University

“Long” Baselines

Solar neutrinos

Reactor neutrinos

Atmospheric neutrinos

Accelerator neutrinos

Page 8: Long Baseline Neutrinos - Stanford University

“Long” Baselines

Solar neutrinos

Reactor neutrinos

Atmospheric neutrinos

Accelerator neutrinos

Page 9: Long Baseline Neutrinos - Stanford University

A C C E L E R A T O R N E U T R I N O B E A M S

N E U T R I N O I N T E R A C T I O N S

N E U T R I N O C R O S S - S E C T I O N S

C A L C U L A T I N G N E U T R I N O E V E N T R A T E S

N E U T R I N O D E T E C T O R S

P R E D I C T I N G A N D M E A S U R I N G B A C K G R O U N D S

Experiment Ingredients

Page 10: Long Baseline Neutrinos - Stanford University

Neutrino Beams

Page 11: Long Baseline Neutrinos - Stanford University

Neutrino Beams

Neutrinos are produced from the decay of and K mesons

- (bf 99.9877%) - (bf 1.2x10-4) - (bf 63.55%) - (bf 5.07%)

The average distance, d, traveled by an unstable particle before it decays is

- - -

Mostly and a few %

Page 12: Long Baseline Neutrinos - Stanford University

cm

Decay length of pions produced by 120 GeV protons

For a 10 GeV �, ~ 27, and d ~ 220 m

Page 13: Long Baseline Neutrinos - Stanford University
Page 14: Long Baseline Neutrinos - Stanford University

Neutrino Beams

High energy protons hit a target

Unstable pion and kaon charged particles are produced

The pions and kaons are “focused” by a magnetic field to go in the desired direction

The pions and kaons decay into muons and muon neutrinos

The direction of the magnetic field determines whether neutrinos or anti-neutrinos are generated (focus or )

Page 15: Long Baseline Neutrinos - Stanford University

Neutrino Beams : Example – NuMI*

120 GeV protons, 10 microsec spill ~every 2 seconds 4 x 1013 protons/spill

Horn current – 185 kA

By changing the relative position of the target and1st horn, the neutrino energy spectrum can be changed

*Neutrinos at the Main Injector

Page 16: Long Baseline Neutrinos - Stanford University

Composition of a horn focused beam

Page 17: Long Baseline Neutrinos - Stanford University
Page 18: Long Baseline Neutrinos - Stanford University

Neutrino Cross sections

Page 19: Long Baseline Neutrinos - Stanford University

Types of interactions (example topologies)

Quasi-elastic (CCQE)

Neutral Current (NC )

Deep Inelastic (DIS)

Resonant

Coherent

Single pion CC (CC )

CC

NC

lepton

hadronic shower

recoil nucleon

pion

Page 20: Long Baseline Neutrinos - Stanford University

Low energy cross sections

neutrino anti-neutrino

Page 21: Long Baseline Neutrinos - Stanford University

Neutrino CC Energy Spectrum

Flux in neutrinos/cm2/GeV/proton

Cross section=cross section/nucleon/GeV in

Ntgt nucleons= f (Mass,np,nn)

Npot =#protons/unit time × time

Page 22: Long Baseline Neutrinos - Stanford University

Neutrino Detectors

Key Properties Target Mass # of interactions produced

Particle ID, efficiency# of interactions detected

Energy, momentum measurement

Vertex resolution

Page 23: Long Baseline Neutrinos - Stanford University

Tracking Calorimeter

NuTeV @ FNAL

Page 24: Long Baseline Neutrinos - Stanford University

Liquid scintillator tracking calorimeter

A 2-GeV muon is 60 planes long.

NOvA

Page 25: Long Baseline Neutrinos - Stanford University

Ring imaging particle ID

Page 26: Long Baseline Neutrinos - Stanford University

3-d imaging : Bubble chamber

Gargamelle Bubble Chamber

1st detection of a NCinteraction

Page 27: Long Baseline Neutrinos - Stanford University

3-d imaging : Emulsion

NET-scan (Application to DONUT)

2.6 mm

50K segments 3K tracks 200 in vol 1 neutrino int.

Fe

Emulsion (film) layers

Page 28: Long Baseline Neutrinos - Stanford University

3-d imaging : Liquid Argon

Page 29: Long Baseline Neutrinos - Stanford University

Detector Summary

Tracking Calorimeters Target material

Steel

Carbon,lead, scint,water,He…

Tracking detectors Gas tubes

Liquid scintillator

Solid scintillator

Cherenkov radiation detectors Target materials

Water

Scintillator

Mineral Oil

Active detectors : PMT’s

3-d Imaging Bubble Chambers

Emulsion

Liquid Argon

Page 30: Long Baseline Neutrinos - Stanford University

Calculating Neutrino Event Rates

Ingredients Flux

Cross section

Target Mass

Protons on target

Detection efficiency,

Page 31: Long Baseline Neutrinos - Stanford University

NuMI – MINOS example

Proton beam delivers 4x1013 protons every 2sec ~1018 protons/day Produce a few pions/proton About half of the pions produce neutrinos aimed in the right

direction

Neutrino flux @500m is ~ 10-8 /cm2/GeV/proton Neutrino cross section is ~10-38 cm2/GeV Neutrino energy is ~1-10 GeV Near Detector – 1000 tons (~6x1032 target nucleons) Muon detection efficiency ~95% Few neutrinos each spill Thousands of neutrinos per day

Page 32: Long Baseline Neutrinos - Stanford University

Predicting and Measuring Backgrounds

Intrinsic Backgrounds Looking for an event

signature : signal

Another process produces the same result

Detector Performance A process occurs and the

detector reconstruction identifies it as a signal event

Detector reconstruction says e

Page 33: Long Baseline Neutrinos - Stanford University

Predicting and Measuring Backgrounds

Predicting : Monte Carlo simulation of processes

Measuring : Make measurements where signal can’t occur

Page 34: Long Baseline Neutrinos - Stanford University

T H E M A S S - M I X I N G M A T R I X : M I X I N G A N G L E S A N D P H A S E S

O S C I L L A T I O N P R O B A B I L I T Y :

T H R E E N E U T R I N O S

N E U T R I N O M A S S H I E R A R C H Y

T W O - N E U T R I N O A P P R O X I M A T I O N

Long Baseline Basics

Page 35: Long Baseline Neutrinos - Stanford University

The Neutrino Mass-mixing matrix

Three neutrinos having unique massesare related to the three flavor statesvia a Unitary mixing matrix.

Page 36: Long Baseline Neutrinos - Stanford University

The Neutrino Mass-mixing matrix

Page 37: Long Baseline Neutrinos - Stanford University

Features of the matrix

• Two component mixing,12;23• 13 mixing and Complex phase

Let’s first consider the case of two neutrinos :

Page 38: Long Baseline Neutrinos - Stanford University

Neutrino Oscillation Probability

=1 =4

Page 39: Long Baseline Neutrinos - Stanford University

A P P E A R A N C E A N D D I S A P P E A R A N C E

S E T T I N G L I M I T S

M E A S U R I N G P A R A M E T E R S

Oscillation Signatures

Page 40: Long Baseline Neutrinos - Stanford University

Appearance and Disappearance Probability

L/E = 2.

E = 3 GeV L = 735 km

Page 41: Long Baseline Neutrinos - Stanford University

Disappearance “signals”

1 2

12

Un-oscillated

Oscillated

spectrum spectrum ratio

Monte Carlo Monte Carlo

Page 42: Long Baseline Neutrinos - Stanford University

Measuring Parameters

From a MINOS MC mock data challenge

What value of and “best fit” the data?

For what set of points would the differ by 1 (68% C.L.)?

Page 43: Long Baseline Neutrinos - Stanford University

Appearance signals

Page 44: Long Baseline Neutrinos - Stanford University

Setting Limits for No Oscillations

allowed

excluded

Page 45: Long Baseline Neutrinos - Stanford University

E A R L Y S E A R C H E S F O R N E U T R I N O O S C I L L A T I O N S

L S N D A N D M i n i B O O N E

K 2 K A N D M I N O S

O P E R A

Experimental Examples

Page 46: Long Baseline Neutrinos - Stanford University

Early searches : setting limits

1992

measured

proposals

Page 47: Long Baseline Neutrinos - Stanford University

1995 : LSND

167 ton – liquid scintillator1220 8” PMTScintillation & cherenkov light

Los Alamos LANSCE 800 MeV accelerator

Page 48: Long Baseline Neutrinos - Stanford University

Evidence for

excluded

Also reported evidence for

This result was/is controversial….

Page 49: Long Baseline Neutrinos - Stanford University

1998 MiniBooNE Proposal

Search for

With L/E comparable toLSND : E~400-800 MeVL ~ 500 M

Page 50: Long Baseline Neutrinos - Stanford University

MiniBooNE Results

No signal is observed in the LSNDL/E region

Page 51: Long Baseline Neutrinos - Stanford University

1998 : Super-K atmospheric neutrinos

2004Disappearance of atmospheric

Page 52: Long Baseline Neutrinos - Stanford University

1st accelerator long-baseline experiment

250 km

Page 53: Long Baseline Neutrinos - Stanford University
Page 54: Long Baseline Neutrinos - Stanford University

Super-K, K2K contours

Allowed regions from Super-K and K2K

Page 55: Long Baseline Neutrinos - Stanford University

Main Injector Neutrino Oscillation Search : MINOS

Main Injector Neutrino Oscillation Search : MINOS

735 km

Page 56: Long Baseline Neutrinos - Stanford University

Neutrinos from the Main Injector

735 km

1.2 km

Page 57: Long Baseline Neutrinos - Stanford University

What is a neutrino?

Page 58: Long Baseline Neutrinos - Stanford University

MINOS Detectors

1 kiloton Near Detector

5.3 kiloton Far Detector

Steel/solid scintillator, magnetized tracking calorimeters

Page 59: Long Baseline Neutrinos - Stanford University

First Results - 200659

• Measurement errors are 1 sigma, 1 d.o.f.

∑=

+−=∆nbins

iiiiii eoooem

1

222 )/ln(2)(2)2sin,( θχ

Page 60: Long Baseline Neutrinos - Stanford University

60

Ratio of Data/MC

• Data is well-described by the best-fit oscillation hypothesis

Data

Best-fit

Page 61: Long Baseline Neutrinos - Stanford University

61

Page 62: Long Baseline Neutrinos - Stanford University

Neutrino 2010

Page 63: Long Baseline Neutrinos - Stanford University

?

Phys. Rev. Lett. 85(2000) 3999-4003

Page 64: Long Baseline Neutrinos - Stanford University

DONUT

Prompt NeutrinoBeam

Page 65: Long Baseline Neutrinos - Stanford University

1st events

Page 66: Long Baseline Neutrinos - Stanford University

CNGS

CERN to Gran Sasso Long Baseline Neutrinos

Page 67: Long Baseline Neutrinos - Stanford University

CNGS - OPERA

Page 68: Long Baseline Neutrinos - Stanford University

appearance

Difficult experiment, and canonly expect a handful of events…

Page 69: Long Baseline Neutrinos - Stanford University

OPERA candidate

May 2010

Page 70: Long Baseline Neutrinos - Stanford University

Summary

It has long been hypothesized that neutrinos may oscillate and hence have mass, see : Pontecorvo, 1961

Kayser, 1982

Terrestrial based searches (accelerators and reactors) with L/E configurations sensitive to detecting >0.01 all had null results

Data from solar and atmospheric neutrinos fit to two neutrino oscillation hypothesis is consistent with two different values of , one small ( ) and the other very small( )

Long baseline accelerator experiments have confirmed and continue to explore the the mass-mixing parameters at the mass scale

Page 71: Long Baseline Neutrinos - Stanford University

Lecture 2 Outline

Three neutrinos, Oscillation probability Matter effects Neutrino mass hierarchy

Experimental Techniques : Signals, backgrounds and ambiguities Experiment baseline Neutrino beam configurations

Experimental Landscape Reactor Experiments : disappearance (Ed Blucher

lecture) appearance : T2K, NOvA, LBNE

Page 72: Long Baseline Neutrinos - Stanford University

Lecture 2 Outline cont.

Experiment Prospects Understanding Sensitivity Calculations

Experiment Timelines

Nu results to keep an eye on

Beyond Superbeams?

Conclusions