LNA design for 10 GHz bandwidth - UiO

14
LNA design in CMOS for 10 GHz bandwidth Mats Risopatron Knutsen, Master student Nanoelectronics group Dept. of Informatics University of Oslo University of Oslo

Transcript of LNA design for 10 GHz bandwidth - UiO

Page 1: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz gbandwidth

Mats Risopatron Knutsen,Master student Nanoelectronics group g p

Dept. of InformaticsUniversity of OsloUniversity of Oslo

Page 2: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz bandwidth

• Challenges in the design of LNAs with bandwidth towards 10 GHz

• Implemented circuit• Implemented circuit

• Measurements 

Page 3: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz bandwidth

• Challenges in the design of LNAs with bandwidth towards 10 GHz 

– Lower supply voltage Fewer topologies– Lower supply voltage  Fewer topologies 

M t hi d b d idth h t ith– Matching and bandwidth enhancement with as few inductors as possible

– Lower dynamic range  Lower SNR

Page 4: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz bandwidth

• Challenges in the design of LNAs with bandwidth towards 10 GHz 

• Implemented circuit• Implemented circuit– PLS performance– Matching properties

• Measurements 

Page 5: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz bandwidth

I l t d i it• Implemented circuit

– InverterbasedInverterbased

– Splitting ‐loadpeaking stagepeaking stage

– Implementedwithoutbondwiremodel

Page 6: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz bandwidth

• Implemented circuit

– S21 15.1 dB

– Bandwidth 0 4 8 6 GHz0.4‐8.6 GHz

NF 5 8 dB– NF < 5.8 dB

Page 7: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz bandwidth

• Implemented circuit– Matching approachesg pp

2011.03.09 7

Page 8: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz bandwidth

• Challenges in the design of LNAs with bandwidth towards 10 GHz 

• Implemented circuit• Implemented circuit

• Measurements – ResultsResults– Reasons for degradation

Page 9: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz bandwidth

• Measurements

– Gain 9.5±2dBbetween 0.3 andbetween 0.3 and3.6 GHzReverse gain 30– Reverse gain 30 dB higher than PLSPLS

– “Spiky” responses9

Page 10: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz bandwidth

• Measurements

– S11 and S22

– Total reflectionin large parts ofin large parts ofthe sweep

10

Page 11: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz bandwidth

• Measurements

– Open and shortedshortedbond wiretest benchestest benchesincludedResonates at– Resonates at above 9 GHz

11

Page 12: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz bandwidth

• Measurement,reasons for degradation from PLS to gmeasurements

– Reactive nature of bond wire and pad degrades matching propertiesmatching properties

– S12 results indicate cross talk on PCB– Noisy measurement environment

12

Page 13: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz bandwidth

• Summary:

– LNA design in CMOS for 10 GHz is a challenge• Reducing the number of inductors still achieve theReducing the number of inductors, still achieve the bandwidth and matching properties

• Maintaining the simulated performance from PLS toMaintaining the simulated performance from PLS to measurements

– Good models of bond wire and pad are essentialGood models of bond wire and pad are essential to implement in the design phase for a good resultsresults

Page 14: LNA design for 10 GHz bandwidth - UiO

LNA design in CMOS for 10 GHz bandwidth

• References:• S‐F. Chao, J‐J Kuo, C‐L. Lin, M‐D‐ Tsai and H. Wang, “A DC‐11.5 GHz Low‐

d b d l f l d d kPower, Wideband Amplifier Using Splitting‐Load Inductive Peaking Technique,” in IEEE Microwave and Wireless Components Letters, Vol 18, NO 7, July 2008

• P. Heydari, “Design and Analysis of a Performance‐Optimized CMOS UWB Distributed LNA,” in IEEE Journal of Solid‐State Circuits, Vol 42, No 9, September 2007September 2007

• S.B‐T. Wang, Design of Ultra‐Wideband RF Front‐End, Berkeley: PhD dissertation, University Of California, Berkeley, 2005

• W. Sansen, Analog Design Essentials,  Springer, 2006