Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 ·...

126
Information Display Engineering Liquid Crystal Display

Transcript of Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 ·...

Page 1: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Liquid Crystal Display

Info

rmat

ion

Dis

play

Eng

inee

ring

What is LCDs

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

What kind of physical mechanism is involved

전기장자기장

자극 분자배열 변화 광학효과 유발

Electro-Optic effect

v Operating Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Physics of Liquid Crystals

Info

rmat

ion

Dis

play

Eng

inee

ring

What are Liquid Crystals

LC 자연의 미묘한 상

Info

rmat

ion

Dis

play

Eng

inee

ring

Liquid Crystals = Liquid + Crystals

No Positional Order

No Orientational Order

Positional Order

Orientational Order

Weak Positional Order

Weak Orientational Order

Crystal LC Liquid

T

구동 광학 v Definition of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

- Thermotropic LCs

Rigid part

(Core)

Flexible part

(Tail)

hydrophobic

hydrophilic

v Types of LC Structure

- Lyotropic LCs

Oil

Water

egrave Detergent Surfactant Oil recovery Bio-technology

egrave LCD

Info

rmat

ion

Dis

play

Eng

inee

ring

Main-Chain PLC

Side-Chain PLC

- Polymeric LCs

- Discotic LCs

Info

rmat

ion

Dis

play

Eng

inee

ring

v History of LC

Soft crystal

Floating crystal

Crystalline fluid

Liquid crystal

액정분류화 체계 확립

최초 발견자

구조규명

LCD 선도자

師祖님

Info

rmat

ion

Dis

play

Eng

inee

ring

Smectic A

(SmA)Nematic (N) Smectic C

(SmC)

Crystalline

structure

v LC Phases (Non-Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Chiral Smectic C FLC (SmC)

Chiral Smectic CA

AFLC (SmCA)

Chiral nematic

Cholesteric (NCh)

v LC Phases (Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Blue Phase LC

Phases between Iso amp N phase in short pitch ChLCFluid lattice stabilized by lattice defects (disclinations) (주기 수백 nm)n Optical isotropy but large rotatory powern Competition between chirality amp uniformly molecular packingn Formation of double-twist cylinder

(energetically more favorable than conventional ChLC)n No alignment layer

Three possible phases in double twist cylindern BP I (body-centered cubic) BP II (simple cubic) BP III (amorphous)

Double twist cylinderBP I (bcc) BP II (sc) BP III (amorphous)

disclination

Info

rmat

ion

Dis

play

Eng

inee

ring

Operating Principle

bull Electric field induced birefringence ( BP harr Nematic )

Optically isotropic Optically anisotropic

E = 0

E = 0

bull Response time

Where lattice constant

Info

rmat

ion

Dis

play

Eng

inee

ring

bull H Kikuchi et al Nature Materials (2002) - Polymer-Stabilized LC BP I - Wide temp range (gt60) - Fast response time ~200 us (applied voltage 57V cell gap 49 um)

bull A Yoshizawa et al Advanced Materials (2007) - BP III - Fast response time ~15 ms (applied voltage 82Vum) - In-plane switching (electrode distance 10 um)

bull Samsung Electronics SID (2008) - 15rdquo BP LCD - Polymer-stabilized liquid crystal - Alignment layer free - Wide viewing angle - Fast response time

Blue Phase LCDs

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Physical Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

n εσ

χη

nperp εperpσperp χperpηperp

egrave 액정의 화학적 구조 비등방적

Key Characteristics of LC

Δε = ε - εperp Dielectric anisotropy

Δn = n - nperp Birefringence

Apply Electric Field rarr Control of molecular alignment rarr Control of retardation rarr Optical effect rarr Optical Device

d

w

1 액정분자의 배열은 어떻게 결정되는가 2 배열에 따라 광학효과가 달라지는 이유는 Question

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy for LC

Info

rmat

ion

Dis

play

Eng

inee

ring

LCs Continuous medium

v Continuum Theory

Continuum theory

In equilibrium state (without external force)

n homogeneous f(elastic energy density) = f0(minimize)

Info

rmat

ion

Dis

play

Eng

inee

ring

Deformation of director eth restoring force

F

F

With external force

Director의 변형을 기술

Elastic energy density

f를 nij의 급수로 전개가능

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 2: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

What is LCDs

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

What kind of physical mechanism is involved

전기장자기장

자극 분자배열 변화 광학효과 유발

Electro-Optic effect

v Operating Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Physics of Liquid Crystals

Info

rmat

ion

Dis

play

Eng

inee

ring

What are Liquid Crystals

LC 자연의 미묘한 상

Info

rmat

ion

Dis

play

Eng

inee

ring

Liquid Crystals = Liquid + Crystals

No Positional Order

No Orientational Order

Positional Order

Orientational Order

Weak Positional Order

Weak Orientational Order

Crystal LC Liquid

T

구동 광학 v Definition of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

- Thermotropic LCs

Rigid part

(Core)

Flexible part

(Tail)

hydrophobic

hydrophilic

v Types of LC Structure

- Lyotropic LCs

Oil

Water

egrave Detergent Surfactant Oil recovery Bio-technology

egrave LCD

Info

rmat

ion

Dis

play

Eng

inee

ring

Main-Chain PLC

Side-Chain PLC

- Polymeric LCs

- Discotic LCs

Info

rmat

ion

Dis

play

Eng

inee

ring

v History of LC

Soft crystal

Floating crystal

Crystalline fluid

Liquid crystal

액정분류화 체계 확립

최초 발견자

구조규명

LCD 선도자

師祖님

Info

rmat

ion

Dis

play

Eng

inee

ring

Smectic A

(SmA)Nematic (N) Smectic C

(SmC)

Crystalline

structure

v LC Phases (Non-Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Chiral Smectic C FLC (SmC)

Chiral Smectic CA

AFLC (SmCA)

Chiral nematic

Cholesteric (NCh)

v LC Phases (Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Blue Phase LC

Phases between Iso amp N phase in short pitch ChLCFluid lattice stabilized by lattice defects (disclinations) (주기 수백 nm)n Optical isotropy but large rotatory powern Competition between chirality amp uniformly molecular packingn Formation of double-twist cylinder

(energetically more favorable than conventional ChLC)n No alignment layer

Three possible phases in double twist cylindern BP I (body-centered cubic) BP II (simple cubic) BP III (amorphous)

Double twist cylinderBP I (bcc) BP II (sc) BP III (amorphous)

disclination

Info

rmat

ion

Dis

play

Eng

inee

ring

Operating Principle

bull Electric field induced birefringence ( BP harr Nematic )

Optically isotropic Optically anisotropic

E = 0

E = 0

bull Response time

Where lattice constant

Info

rmat

ion

Dis

play

Eng

inee

ring

bull H Kikuchi et al Nature Materials (2002) - Polymer-Stabilized LC BP I - Wide temp range (gt60) - Fast response time ~200 us (applied voltage 57V cell gap 49 um)

bull A Yoshizawa et al Advanced Materials (2007) - BP III - Fast response time ~15 ms (applied voltage 82Vum) - In-plane switching (electrode distance 10 um)

bull Samsung Electronics SID (2008) - 15rdquo BP LCD - Polymer-stabilized liquid crystal - Alignment layer free - Wide viewing angle - Fast response time

Blue Phase LCDs

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Physical Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

n εσ

χη

nperp εperpσperp χperpηperp

egrave 액정의 화학적 구조 비등방적

Key Characteristics of LC

Δε = ε - εperp Dielectric anisotropy

Δn = n - nperp Birefringence

Apply Electric Field rarr Control of molecular alignment rarr Control of retardation rarr Optical effect rarr Optical Device

d

w

1 액정분자의 배열은 어떻게 결정되는가 2 배열에 따라 광학효과가 달라지는 이유는 Question

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy for LC

Info

rmat

ion

Dis

play

Eng

inee

ring

LCs Continuous medium

v Continuum Theory

Continuum theory

In equilibrium state (without external force)

n homogeneous f(elastic energy density) = f0(minimize)

Info

rmat

ion

Dis

play

Eng

inee

ring

Deformation of director eth restoring force

F

F

With external force

Director의 변형을 기술

Elastic energy density

f를 nij의 급수로 전개가능

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 3: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

What kind of physical mechanism is involved

전기장자기장

자극 분자배열 변화 광학효과 유발

Electro-Optic effect

v Operating Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Physics of Liquid Crystals

Info

rmat

ion

Dis

play

Eng

inee

ring

What are Liquid Crystals

LC 자연의 미묘한 상

Info

rmat

ion

Dis

play

Eng

inee

ring

Liquid Crystals = Liquid + Crystals

No Positional Order

No Orientational Order

Positional Order

Orientational Order

Weak Positional Order

Weak Orientational Order

Crystal LC Liquid

T

구동 광학 v Definition of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

- Thermotropic LCs

Rigid part

(Core)

Flexible part

(Tail)

hydrophobic

hydrophilic

v Types of LC Structure

- Lyotropic LCs

Oil

Water

egrave Detergent Surfactant Oil recovery Bio-technology

egrave LCD

Info

rmat

ion

Dis

play

Eng

inee

ring

Main-Chain PLC

Side-Chain PLC

- Polymeric LCs

- Discotic LCs

Info

rmat

ion

Dis

play

Eng

inee

ring

v History of LC

Soft crystal

Floating crystal

Crystalline fluid

Liquid crystal

액정분류화 체계 확립

최초 발견자

구조규명

LCD 선도자

師祖님

Info

rmat

ion

Dis

play

Eng

inee

ring

Smectic A

(SmA)Nematic (N) Smectic C

(SmC)

Crystalline

structure

v LC Phases (Non-Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Chiral Smectic C FLC (SmC)

Chiral Smectic CA

AFLC (SmCA)

Chiral nematic

Cholesteric (NCh)

v LC Phases (Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Blue Phase LC

Phases between Iso amp N phase in short pitch ChLCFluid lattice stabilized by lattice defects (disclinations) (주기 수백 nm)n Optical isotropy but large rotatory powern Competition between chirality amp uniformly molecular packingn Formation of double-twist cylinder

(energetically more favorable than conventional ChLC)n No alignment layer

Three possible phases in double twist cylindern BP I (body-centered cubic) BP II (simple cubic) BP III (amorphous)

Double twist cylinderBP I (bcc) BP II (sc) BP III (amorphous)

disclination

Info

rmat

ion

Dis

play

Eng

inee

ring

Operating Principle

bull Electric field induced birefringence ( BP harr Nematic )

Optically isotropic Optically anisotropic

E = 0

E = 0

bull Response time

Where lattice constant

Info

rmat

ion

Dis

play

Eng

inee

ring

bull H Kikuchi et al Nature Materials (2002) - Polymer-Stabilized LC BP I - Wide temp range (gt60) - Fast response time ~200 us (applied voltage 57V cell gap 49 um)

bull A Yoshizawa et al Advanced Materials (2007) - BP III - Fast response time ~15 ms (applied voltage 82Vum) - In-plane switching (electrode distance 10 um)

bull Samsung Electronics SID (2008) - 15rdquo BP LCD - Polymer-stabilized liquid crystal - Alignment layer free - Wide viewing angle - Fast response time

Blue Phase LCDs

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Physical Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

n εσ

χη

nperp εperpσperp χperpηperp

egrave 액정의 화학적 구조 비등방적

Key Characteristics of LC

Δε = ε - εperp Dielectric anisotropy

Δn = n - nperp Birefringence

Apply Electric Field rarr Control of molecular alignment rarr Control of retardation rarr Optical effect rarr Optical Device

d

w

1 액정분자의 배열은 어떻게 결정되는가 2 배열에 따라 광학효과가 달라지는 이유는 Question

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy for LC

Info

rmat

ion

Dis

play

Eng

inee

ring

LCs Continuous medium

v Continuum Theory

Continuum theory

In equilibrium state (without external force)

n homogeneous f(elastic energy density) = f0(minimize)

Info

rmat

ion

Dis

play

Eng

inee

ring

Deformation of director eth restoring force

F

F

With external force

Director의 변형을 기술

Elastic energy density

f를 nij의 급수로 전개가능

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 4: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

What kind of physical mechanism is involved

전기장자기장

자극 분자배열 변화 광학효과 유발

Electro-Optic effect

v Operating Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Physics of Liquid Crystals

Info

rmat

ion

Dis

play

Eng

inee

ring

What are Liquid Crystals

LC 자연의 미묘한 상

Info

rmat

ion

Dis

play

Eng

inee

ring

Liquid Crystals = Liquid + Crystals

No Positional Order

No Orientational Order

Positional Order

Orientational Order

Weak Positional Order

Weak Orientational Order

Crystal LC Liquid

T

구동 광학 v Definition of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

- Thermotropic LCs

Rigid part

(Core)

Flexible part

(Tail)

hydrophobic

hydrophilic

v Types of LC Structure

- Lyotropic LCs

Oil

Water

egrave Detergent Surfactant Oil recovery Bio-technology

egrave LCD

Info

rmat

ion

Dis

play

Eng

inee

ring

Main-Chain PLC

Side-Chain PLC

- Polymeric LCs

- Discotic LCs

Info

rmat

ion

Dis

play

Eng

inee

ring

v History of LC

Soft crystal

Floating crystal

Crystalline fluid

Liquid crystal

액정분류화 체계 확립

최초 발견자

구조규명

LCD 선도자

師祖님

Info

rmat

ion

Dis

play

Eng

inee

ring

Smectic A

(SmA)Nematic (N) Smectic C

(SmC)

Crystalline

structure

v LC Phases (Non-Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Chiral Smectic C FLC (SmC)

Chiral Smectic CA

AFLC (SmCA)

Chiral nematic

Cholesteric (NCh)

v LC Phases (Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Blue Phase LC

Phases between Iso amp N phase in short pitch ChLCFluid lattice stabilized by lattice defects (disclinations) (주기 수백 nm)n Optical isotropy but large rotatory powern Competition between chirality amp uniformly molecular packingn Formation of double-twist cylinder

(energetically more favorable than conventional ChLC)n No alignment layer

Three possible phases in double twist cylindern BP I (body-centered cubic) BP II (simple cubic) BP III (amorphous)

Double twist cylinderBP I (bcc) BP II (sc) BP III (amorphous)

disclination

Info

rmat

ion

Dis

play

Eng

inee

ring

Operating Principle

bull Electric field induced birefringence ( BP harr Nematic )

Optically isotropic Optically anisotropic

E = 0

E = 0

bull Response time

Where lattice constant

Info

rmat

ion

Dis

play

Eng

inee

ring

bull H Kikuchi et al Nature Materials (2002) - Polymer-Stabilized LC BP I - Wide temp range (gt60) - Fast response time ~200 us (applied voltage 57V cell gap 49 um)

bull A Yoshizawa et al Advanced Materials (2007) - BP III - Fast response time ~15 ms (applied voltage 82Vum) - In-plane switching (electrode distance 10 um)

bull Samsung Electronics SID (2008) - 15rdquo BP LCD - Polymer-stabilized liquid crystal - Alignment layer free - Wide viewing angle - Fast response time

Blue Phase LCDs

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Physical Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

n εσ

χη

nperp εperpσperp χperpηperp

egrave 액정의 화학적 구조 비등방적

Key Characteristics of LC

Δε = ε - εperp Dielectric anisotropy

Δn = n - nperp Birefringence

Apply Electric Field rarr Control of molecular alignment rarr Control of retardation rarr Optical effect rarr Optical Device

d

w

1 액정분자의 배열은 어떻게 결정되는가 2 배열에 따라 광학효과가 달라지는 이유는 Question

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy for LC

Info

rmat

ion

Dis

play

Eng

inee

ring

LCs Continuous medium

v Continuum Theory

Continuum theory

In equilibrium state (without external force)

n homogeneous f(elastic energy density) = f0(minimize)

Info

rmat

ion

Dis

play

Eng

inee

ring

Deformation of director eth restoring force

F

F

With external force

Director의 변형을 기술

Elastic energy density

f를 nij의 급수로 전개가능

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 5: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

What kind of physical mechanism is involved

전기장자기장

자극 분자배열 변화 광학효과 유발

Electro-Optic effect

v Operating Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Physics of Liquid Crystals

Info

rmat

ion

Dis

play

Eng

inee

ring

What are Liquid Crystals

LC 자연의 미묘한 상

Info

rmat

ion

Dis

play

Eng

inee

ring

Liquid Crystals = Liquid + Crystals

No Positional Order

No Orientational Order

Positional Order

Orientational Order

Weak Positional Order

Weak Orientational Order

Crystal LC Liquid

T

구동 광학 v Definition of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

- Thermotropic LCs

Rigid part

(Core)

Flexible part

(Tail)

hydrophobic

hydrophilic

v Types of LC Structure

- Lyotropic LCs

Oil

Water

egrave Detergent Surfactant Oil recovery Bio-technology

egrave LCD

Info

rmat

ion

Dis

play

Eng

inee

ring

Main-Chain PLC

Side-Chain PLC

- Polymeric LCs

- Discotic LCs

Info

rmat

ion

Dis

play

Eng

inee

ring

v History of LC

Soft crystal

Floating crystal

Crystalline fluid

Liquid crystal

액정분류화 체계 확립

최초 발견자

구조규명

LCD 선도자

師祖님

Info

rmat

ion

Dis

play

Eng

inee

ring

Smectic A

(SmA)Nematic (N) Smectic C

(SmC)

Crystalline

structure

v LC Phases (Non-Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Chiral Smectic C FLC (SmC)

Chiral Smectic CA

AFLC (SmCA)

Chiral nematic

Cholesteric (NCh)

v LC Phases (Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Blue Phase LC

Phases between Iso amp N phase in short pitch ChLCFluid lattice stabilized by lattice defects (disclinations) (주기 수백 nm)n Optical isotropy but large rotatory powern Competition between chirality amp uniformly molecular packingn Formation of double-twist cylinder

(energetically more favorable than conventional ChLC)n No alignment layer

Three possible phases in double twist cylindern BP I (body-centered cubic) BP II (simple cubic) BP III (amorphous)

Double twist cylinderBP I (bcc) BP II (sc) BP III (amorphous)

disclination

Info

rmat

ion

Dis

play

Eng

inee

ring

Operating Principle

bull Electric field induced birefringence ( BP harr Nematic )

Optically isotropic Optically anisotropic

E = 0

E = 0

bull Response time

Where lattice constant

Info

rmat

ion

Dis

play

Eng

inee

ring

bull H Kikuchi et al Nature Materials (2002) - Polymer-Stabilized LC BP I - Wide temp range (gt60) - Fast response time ~200 us (applied voltage 57V cell gap 49 um)

bull A Yoshizawa et al Advanced Materials (2007) - BP III - Fast response time ~15 ms (applied voltage 82Vum) - In-plane switching (electrode distance 10 um)

bull Samsung Electronics SID (2008) - 15rdquo BP LCD - Polymer-stabilized liquid crystal - Alignment layer free - Wide viewing angle - Fast response time

Blue Phase LCDs

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Physical Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

n εσ

χη

nperp εperpσperp χperpηperp

egrave 액정의 화학적 구조 비등방적

Key Characteristics of LC

Δε = ε - εperp Dielectric anisotropy

Δn = n - nperp Birefringence

Apply Electric Field rarr Control of molecular alignment rarr Control of retardation rarr Optical effect rarr Optical Device

d

w

1 액정분자의 배열은 어떻게 결정되는가 2 배열에 따라 광학효과가 달라지는 이유는 Question

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy for LC

Info

rmat

ion

Dis

play

Eng

inee

ring

LCs Continuous medium

v Continuum Theory

Continuum theory

In equilibrium state (without external force)

n homogeneous f(elastic energy density) = f0(minimize)

Info

rmat

ion

Dis

play

Eng

inee

ring

Deformation of director eth restoring force

F

F

With external force

Director의 변형을 기술

Elastic energy density

f를 nij의 급수로 전개가능

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 6: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

What kind of physical mechanism is involved

전기장자기장

자극 분자배열 변화 광학효과 유발

Electro-Optic effect

v Operating Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Physics of Liquid Crystals

Info

rmat

ion

Dis

play

Eng

inee

ring

What are Liquid Crystals

LC 자연의 미묘한 상

Info

rmat

ion

Dis

play

Eng

inee

ring

Liquid Crystals = Liquid + Crystals

No Positional Order

No Orientational Order

Positional Order

Orientational Order

Weak Positional Order

Weak Orientational Order

Crystal LC Liquid

T

구동 광학 v Definition of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

- Thermotropic LCs

Rigid part

(Core)

Flexible part

(Tail)

hydrophobic

hydrophilic

v Types of LC Structure

- Lyotropic LCs

Oil

Water

egrave Detergent Surfactant Oil recovery Bio-technology

egrave LCD

Info

rmat

ion

Dis

play

Eng

inee

ring

Main-Chain PLC

Side-Chain PLC

- Polymeric LCs

- Discotic LCs

Info

rmat

ion

Dis

play

Eng

inee

ring

v History of LC

Soft crystal

Floating crystal

Crystalline fluid

Liquid crystal

액정분류화 체계 확립

최초 발견자

구조규명

LCD 선도자

師祖님

Info

rmat

ion

Dis

play

Eng

inee

ring

Smectic A

(SmA)Nematic (N) Smectic C

(SmC)

Crystalline

structure

v LC Phases (Non-Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Chiral Smectic C FLC (SmC)

Chiral Smectic CA

AFLC (SmCA)

Chiral nematic

Cholesteric (NCh)

v LC Phases (Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Blue Phase LC

Phases between Iso amp N phase in short pitch ChLCFluid lattice stabilized by lattice defects (disclinations) (주기 수백 nm)n Optical isotropy but large rotatory powern Competition between chirality amp uniformly molecular packingn Formation of double-twist cylinder

(energetically more favorable than conventional ChLC)n No alignment layer

Three possible phases in double twist cylindern BP I (body-centered cubic) BP II (simple cubic) BP III (amorphous)

Double twist cylinderBP I (bcc) BP II (sc) BP III (amorphous)

disclination

Info

rmat

ion

Dis

play

Eng

inee

ring

Operating Principle

bull Electric field induced birefringence ( BP harr Nematic )

Optically isotropic Optically anisotropic

E = 0

E = 0

bull Response time

Where lattice constant

Info

rmat

ion

Dis

play

Eng

inee

ring

bull H Kikuchi et al Nature Materials (2002) - Polymer-Stabilized LC BP I - Wide temp range (gt60) - Fast response time ~200 us (applied voltage 57V cell gap 49 um)

bull A Yoshizawa et al Advanced Materials (2007) - BP III - Fast response time ~15 ms (applied voltage 82Vum) - In-plane switching (electrode distance 10 um)

bull Samsung Electronics SID (2008) - 15rdquo BP LCD - Polymer-stabilized liquid crystal - Alignment layer free - Wide viewing angle - Fast response time

Blue Phase LCDs

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Physical Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

n εσ

χη

nperp εperpσperp χperpηperp

egrave 액정의 화학적 구조 비등방적

Key Characteristics of LC

Δε = ε - εperp Dielectric anisotropy

Δn = n - nperp Birefringence

Apply Electric Field rarr Control of molecular alignment rarr Control of retardation rarr Optical effect rarr Optical Device

d

w

1 액정분자의 배열은 어떻게 결정되는가 2 배열에 따라 광학효과가 달라지는 이유는 Question

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy for LC

Info

rmat

ion

Dis

play

Eng

inee

ring

LCs Continuous medium

v Continuum Theory

Continuum theory

In equilibrium state (without external force)

n homogeneous f(elastic energy density) = f0(minimize)

Info

rmat

ion

Dis

play

Eng

inee

ring

Deformation of director eth restoring force

F

F

With external force

Director의 변형을 기술

Elastic energy density

f를 nij의 급수로 전개가능

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 7: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

What kind of physical mechanism is involved

전기장자기장

자극 분자배열 변화 광학효과 유발

Electro-Optic effect

v Operating Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Physics of Liquid Crystals

Info

rmat

ion

Dis

play

Eng

inee

ring

What are Liquid Crystals

LC 자연의 미묘한 상

Info

rmat

ion

Dis

play

Eng

inee

ring

Liquid Crystals = Liquid + Crystals

No Positional Order

No Orientational Order

Positional Order

Orientational Order

Weak Positional Order

Weak Orientational Order

Crystal LC Liquid

T

구동 광학 v Definition of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

- Thermotropic LCs

Rigid part

(Core)

Flexible part

(Tail)

hydrophobic

hydrophilic

v Types of LC Structure

- Lyotropic LCs

Oil

Water

egrave Detergent Surfactant Oil recovery Bio-technology

egrave LCD

Info

rmat

ion

Dis

play

Eng

inee

ring

Main-Chain PLC

Side-Chain PLC

- Polymeric LCs

- Discotic LCs

Info

rmat

ion

Dis

play

Eng

inee

ring

v History of LC

Soft crystal

Floating crystal

Crystalline fluid

Liquid crystal

액정분류화 체계 확립

최초 발견자

구조규명

LCD 선도자

師祖님

Info

rmat

ion

Dis

play

Eng

inee

ring

Smectic A

(SmA)Nematic (N) Smectic C

(SmC)

Crystalline

structure

v LC Phases (Non-Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Chiral Smectic C FLC (SmC)

Chiral Smectic CA

AFLC (SmCA)

Chiral nematic

Cholesteric (NCh)

v LC Phases (Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Blue Phase LC

Phases between Iso amp N phase in short pitch ChLCFluid lattice stabilized by lattice defects (disclinations) (주기 수백 nm)n Optical isotropy but large rotatory powern Competition between chirality amp uniformly molecular packingn Formation of double-twist cylinder

(energetically more favorable than conventional ChLC)n No alignment layer

Three possible phases in double twist cylindern BP I (body-centered cubic) BP II (simple cubic) BP III (amorphous)

Double twist cylinderBP I (bcc) BP II (sc) BP III (amorphous)

disclination

Info

rmat

ion

Dis

play

Eng

inee

ring

Operating Principle

bull Electric field induced birefringence ( BP harr Nematic )

Optically isotropic Optically anisotropic

E = 0

E = 0

bull Response time

Where lattice constant

Info

rmat

ion

Dis

play

Eng

inee

ring

bull H Kikuchi et al Nature Materials (2002) - Polymer-Stabilized LC BP I - Wide temp range (gt60) - Fast response time ~200 us (applied voltage 57V cell gap 49 um)

bull A Yoshizawa et al Advanced Materials (2007) - BP III - Fast response time ~15 ms (applied voltage 82Vum) - In-plane switching (electrode distance 10 um)

bull Samsung Electronics SID (2008) - 15rdquo BP LCD - Polymer-stabilized liquid crystal - Alignment layer free - Wide viewing angle - Fast response time

Blue Phase LCDs

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Physical Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

n εσ

χη

nperp εperpσperp χperpηperp

egrave 액정의 화학적 구조 비등방적

Key Characteristics of LC

Δε = ε - εperp Dielectric anisotropy

Δn = n - nperp Birefringence

Apply Electric Field rarr Control of molecular alignment rarr Control of retardation rarr Optical effect rarr Optical Device

d

w

1 액정분자의 배열은 어떻게 결정되는가 2 배열에 따라 광학효과가 달라지는 이유는 Question

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy for LC

Info

rmat

ion

Dis

play

Eng

inee

ring

LCs Continuous medium

v Continuum Theory

Continuum theory

In equilibrium state (without external force)

n homogeneous f(elastic energy density) = f0(minimize)

Info

rmat

ion

Dis

play

Eng

inee

ring

Deformation of director eth restoring force

F

F

With external force

Director의 변형을 기술

Elastic energy density

f를 nij의 급수로 전개가능

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 8: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

What kind of physical mechanism is involved

전기장자기장

자극 분자배열 변화 광학효과 유발

Electro-Optic effect

v Operating Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Physics of Liquid Crystals

Info

rmat

ion

Dis

play

Eng

inee

ring

What are Liquid Crystals

LC 자연의 미묘한 상

Info

rmat

ion

Dis

play

Eng

inee

ring

Liquid Crystals = Liquid + Crystals

No Positional Order

No Orientational Order

Positional Order

Orientational Order

Weak Positional Order

Weak Orientational Order

Crystal LC Liquid

T

구동 광학 v Definition of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

- Thermotropic LCs

Rigid part

(Core)

Flexible part

(Tail)

hydrophobic

hydrophilic

v Types of LC Structure

- Lyotropic LCs

Oil

Water

egrave Detergent Surfactant Oil recovery Bio-technology

egrave LCD

Info

rmat

ion

Dis

play

Eng

inee

ring

Main-Chain PLC

Side-Chain PLC

- Polymeric LCs

- Discotic LCs

Info

rmat

ion

Dis

play

Eng

inee

ring

v History of LC

Soft crystal

Floating crystal

Crystalline fluid

Liquid crystal

액정분류화 체계 확립

최초 발견자

구조규명

LCD 선도자

師祖님

Info

rmat

ion

Dis

play

Eng

inee

ring

Smectic A

(SmA)Nematic (N) Smectic C

(SmC)

Crystalline

structure

v LC Phases (Non-Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Chiral Smectic C FLC (SmC)

Chiral Smectic CA

AFLC (SmCA)

Chiral nematic

Cholesteric (NCh)

v LC Phases (Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Blue Phase LC

Phases between Iso amp N phase in short pitch ChLCFluid lattice stabilized by lattice defects (disclinations) (주기 수백 nm)n Optical isotropy but large rotatory powern Competition between chirality amp uniformly molecular packingn Formation of double-twist cylinder

(energetically more favorable than conventional ChLC)n No alignment layer

Three possible phases in double twist cylindern BP I (body-centered cubic) BP II (simple cubic) BP III (amorphous)

Double twist cylinderBP I (bcc) BP II (sc) BP III (amorphous)

disclination

Info

rmat

ion

Dis

play

Eng

inee

ring

Operating Principle

bull Electric field induced birefringence ( BP harr Nematic )

Optically isotropic Optically anisotropic

E = 0

E = 0

bull Response time

Where lattice constant

Info

rmat

ion

Dis

play

Eng

inee

ring

bull H Kikuchi et al Nature Materials (2002) - Polymer-Stabilized LC BP I - Wide temp range (gt60) - Fast response time ~200 us (applied voltage 57V cell gap 49 um)

bull A Yoshizawa et al Advanced Materials (2007) - BP III - Fast response time ~15 ms (applied voltage 82Vum) - In-plane switching (electrode distance 10 um)

bull Samsung Electronics SID (2008) - 15rdquo BP LCD - Polymer-stabilized liquid crystal - Alignment layer free - Wide viewing angle - Fast response time

Blue Phase LCDs

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Physical Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

n εσ

χη

nperp εperpσperp χperpηperp

egrave 액정의 화학적 구조 비등방적

Key Characteristics of LC

Δε = ε - εperp Dielectric anisotropy

Δn = n - nperp Birefringence

Apply Electric Field rarr Control of molecular alignment rarr Control of retardation rarr Optical effect rarr Optical Device

d

w

1 액정분자의 배열은 어떻게 결정되는가 2 배열에 따라 광학효과가 달라지는 이유는 Question

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy for LC

Info

rmat

ion

Dis

play

Eng

inee

ring

LCs Continuous medium

v Continuum Theory

Continuum theory

In equilibrium state (without external force)

n homogeneous f(elastic energy density) = f0(minimize)

Info

rmat

ion

Dis

play

Eng

inee

ring

Deformation of director eth restoring force

F

F

With external force

Director의 변형을 기술

Elastic energy density

f를 nij의 급수로 전개가능

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 9: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

What kind of physical mechanism is involved

전기장자기장

자극 분자배열 변화 광학효과 유발

Electro-Optic effect

v Operating Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Physics of Liquid Crystals

Info

rmat

ion

Dis

play

Eng

inee

ring

What are Liquid Crystals

LC 자연의 미묘한 상

Info

rmat

ion

Dis

play

Eng

inee

ring

Liquid Crystals = Liquid + Crystals

No Positional Order

No Orientational Order

Positional Order

Orientational Order

Weak Positional Order

Weak Orientational Order

Crystal LC Liquid

T

구동 광학 v Definition of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

- Thermotropic LCs

Rigid part

(Core)

Flexible part

(Tail)

hydrophobic

hydrophilic

v Types of LC Structure

- Lyotropic LCs

Oil

Water

egrave Detergent Surfactant Oil recovery Bio-technology

egrave LCD

Info

rmat

ion

Dis

play

Eng

inee

ring

Main-Chain PLC

Side-Chain PLC

- Polymeric LCs

- Discotic LCs

Info

rmat

ion

Dis

play

Eng

inee

ring

v History of LC

Soft crystal

Floating crystal

Crystalline fluid

Liquid crystal

액정분류화 체계 확립

최초 발견자

구조규명

LCD 선도자

師祖님

Info

rmat

ion

Dis

play

Eng

inee

ring

Smectic A

(SmA)Nematic (N) Smectic C

(SmC)

Crystalline

structure

v LC Phases (Non-Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Chiral Smectic C FLC (SmC)

Chiral Smectic CA

AFLC (SmCA)

Chiral nematic

Cholesteric (NCh)

v LC Phases (Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Blue Phase LC

Phases between Iso amp N phase in short pitch ChLCFluid lattice stabilized by lattice defects (disclinations) (주기 수백 nm)n Optical isotropy but large rotatory powern Competition between chirality amp uniformly molecular packingn Formation of double-twist cylinder

(energetically more favorable than conventional ChLC)n No alignment layer

Three possible phases in double twist cylindern BP I (body-centered cubic) BP II (simple cubic) BP III (amorphous)

Double twist cylinderBP I (bcc) BP II (sc) BP III (amorphous)

disclination

Info

rmat

ion

Dis

play

Eng

inee

ring

Operating Principle

bull Electric field induced birefringence ( BP harr Nematic )

Optically isotropic Optically anisotropic

E = 0

E = 0

bull Response time

Where lattice constant

Info

rmat

ion

Dis

play

Eng

inee

ring

bull H Kikuchi et al Nature Materials (2002) - Polymer-Stabilized LC BP I - Wide temp range (gt60) - Fast response time ~200 us (applied voltage 57V cell gap 49 um)

bull A Yoshizawa et al Advanced Materials (2007) - BP III - Fast response time ~15 ms (applied voltage 82Vum) - In-plane switching (electrode distance 10 um)

bull Samsung Electronics SID (2008) - 15rdquo BP LCD - Polymer-stabilized liquid crystal - Alignment layer free - Wide viewing angle - Fast response time

Blue Phase LCDs

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Physical Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

n εσ

χη

nperp εperpσperp χperpηperp

egrave 액정의 화학적 구조 비등방적

Key Characteristics of LC

Δε = ε - εperp Dielectric anisotropy

Δn = n - nperp Birefringence

Apply Electric Field rarr Control of molecular alignment rarr Control of retardation rarr Optical effect rarr Optical Device

d

w

1 액정분자의 배열은 어떻게 결정되는가 2 배열에 따라 광학효과가 달라지는 이유는 Question

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy for LC

Info

rmat

ion

Dis

play

Eng

inee

ring

LCs Continuous medium

v Continuum Theory

Continuum theory

In equilibrium state (without external force)

n homogeneous f(elastic energy density) = f0(minimize)

Info

rmat

ion

Dis

play

Eng

inee

ring

Deformation of director eth restoring force

F

F

With external force

Director의 변형을 기술

Elastic energy density

f를 nij의 급수로 전개가능

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 10: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

What kind of physical mechanism is involved

전기장자기장

자극 분자배열 변화 광학효과 유발

Electro-Optic effect

v Operating Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Physics of Liquid Crystals

Info

rmat

ion

Dis

play

Eng

inee

ring

What are Liquid Crystals

LC 자연의 미묘한 상

Info

rmat

ion

Dis

play

Eng

inee

ring

Liquid Crystals = Liquid + Crystals

No Positional Order

No Orientational Order

Positional Order

Orientational Order

Weak Positional Order

Weak Orientational Order

Crystal LC Liquid

T

구동 광학 v Definition of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

- Thermotropic LCs

Rigid part

(Core)

Flexible part

(Tail)

hydrophobic

hydrophilic

v Types of LC Structure

- Lyotropic LCs

Oil

Water

egrave Detergent Surfactant Oil recovery Bio-technology

egrave LCD

Info

rmat

ion

Dis

play

Eng

inee

ring

Main-Chain PLC

Side-Chain PLC

- Polymeric LCs

- Discotic LCs

Info

rmat

ion

Dis

play

Eng

inee

ring

v History of LC

Soft crystal

Floating crystal

Crystalline fluid

Liquid crystal

액정분류화 체계 확립

최초 발견자

구조규명

LCD 선도자

師祖님

Info

rmat

ion

Dis

play

Eng

inee

ring

Smectic A

(SmA)Nematic (N) Smectic C

(SmC)

Crystalline

structure

v LC Phases (Non-Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Chiral Smectic C FLC (SmC)

Chiral Smectic CA

AFLC (SmCA)

Chiral nematic

Cholesteric (NCh)

v LC Phases (Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Blue Phase LC

Phases between Iso amp N phase in short pitch ChLCFluid lattice stabilized by lattice defects (disclinations) (주기 수백 nm)n Optical isotropy but large rotatory powern Competition between chirality amp uniformly molecular packingn Formation of double-twist cylinder

(energetically more favorable than conventional ChLC)n No alignment layer

Three possible phases in double twist cylindern BP I (body-centered cubic) BP II (simple cubic) BP III (amorphous)

Double twist cylinderBP I (bcc) BP II (sc) BP III (amorphous)

disclination

Info

rmat

ion

Dis

play

Eng

inee

ring

Operating Principle

bull Electric field induced birefringence ( BP harr Nematic )

Optically isotropic Optically anisotropic

E = 0

E = 0

bull Response time

Where lattice constant

Info

rmat

ion

Dis

play

Eng

inee

ring

bull H Kikuchi et al Nature Materials (2002) - Polymer-Stabilized LC BP I - Wide temp range (gt60) - Fast response time ~200 us (applied voltage 57V cell gap 49 um)

bull A Yoshizawa et al Advanced Materials (2007) - BP III - Fast response time ~15 ms (applied voltage 82Vum) - In-plane switching (electrode distance 10 um)

bull Samsung Electronics SID (2008) - 15rdquo BP LCD - Polymer-stabilized liquid crystal - Alignment layer free - Wide viewing angle - Fast response time

Blue Phase LCDs

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Physical Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

n εσ

χη

nperp εperpσperp χperpηperp

egrave 액정의 화학적 구조 비등방적

Key Characteristics of LC

Δε = ε - εperp Dielectric anisotropy

Δn = n - nperp Birefringence

Apply Electric Field rarr Control of molecular alignment rarr Control of retardation rarr Optical effect rarr Optical Device

d

w

1 액정분자의 배열은 어떻게 결정되는가 2 배열에 따라 광학효과가 달라지는 이유는 Question

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy for LC

Info

rmat

ion

Dis

play

Eng

inee

ring

LCs Continuous medium

v Continuum Theory

Continuum theory

In equilibrium state (without external force)

n homogeneous f(elastic energy density) = f0(minimize)

Info

rmat

ion

Dis

play

Eng

inee

ring

Deformation of director eth restoring force

F

F

With external force

Director의 변형을 기술

Elastic energy density

f를 nij의 급수로 전개가능

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 11: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Physics of Liquid Crystals

Info

rmat

ion

Dis

play

Eng

inee

ring

What are Liquid Crystals

LC 자연의 미묘한 상

Info

rmat

ion

Dis

play

Eng

inee

ring

Liquid Crystals = Liquid + Crystals

No Positional Order

No Orientational Order

Positional Order

Orientational Order

Weak Positional Order

Weak Orientational Order

Crystal LC Liquid

T

구동 광학 v Definition of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

- Thermotropic LCs

Rigid part

(Core)

Flexible part

(Tail)

hydrophobic

hydrophilic

v Types of LC Structure

- Lyotropic LCs

Oil

Water

egrave Detergent Surfactant Oil recovery Bio-technology

egrave LCD

Info

rmat

ion

Dis

play

Eng

inee

ring

Main-Chain PLC

Side-Chain PLC

- Polymeric LCs

- Discotic LCs

Info

rmat

ion

Dis

play

Eng

inee

ring

v History of LC

Soft crystal

Floating crystal

Crystalline fluid

Liquid crystal

액정분류화 체계 확립

최초 발견자

구조규명

LCD 선도자

師祖님

Info

rmat

ion

Dis

play

Eng

inee

ring

Smectic A

(SmA)Nematic (N) Smectic C

(SmC)

Crystalline

structure

v LC Phases (Non-Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Chiral Smectic C FLC (SmC)

Chiral Smectic CA

AFLC (SmCA)

Chiral nematic

Cholesteric (NCh)

v LC Phases (Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Blue Phase LC

Phases between Iso amp N phase in short pitch ChLCFluid lattice stabilized by lattice defects (disclinations) (주기 수백 nm)n Optical isotropy but large rotatory powern Competition between chirality amp uniformly molecular packingn Formation of double-twist cylinder

(energetically more favorable than conventional ChLC)n No alignment layer

Three possible phases in double twist cylindern BP I (body-centered cubic) BP II (simple cubic) BP III (amorphous)

Double twist cylinderBP I (bcc) BP II (sc) BP III (amorphous)

disclination

Info

rmat

ion

Dis

play

Eng

inee

ring

Operating Principle

bull Electric field induced birefringence ( BP harr Nematic )

Optically isotropic Optically anisotropic

E = 0

E = 0

bull Response time

Where lattice constant

Info

rmat

ion

Dis

play

Eng

inee

ring

bull H Kikuchi et al Nature Materials (2002) - Polymer-Stabilized LC BP I - Wide temp range (gt60) - Fast response time ~200 us (applied voltage 57V cell gap 49 um)

bull A Yoshizawa et al Advanced Materials (2007) - BP III - Fast response time ~15 ms (applied voltage 82Vum) - In-plane switching (electrode distance 10 um)

bull Samsung Electronics SID (2008) - 15rdquo BP LCD - Polymer-stabilized liquid crystal - Alignment layer free - Wide viewing angle - Fast response time

Blue Phase LCDs

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Physical Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

n εσ

χη

nperp εperpσperp χperpηperp

egrave 액정의 화학적 구조 비등방적

Key Characteristics of LC

Δε = ε - εperp Dielectric anisotropy

Δn = n - nperp Birefringence

Apply Electric Field rarr Control of molecular alignment rarr Control of retardation rarr Optical effect rarr Optical Device

d

w

1 액정분자의 배열은 어떻게 결정되는가 2 배열에 따라 광학효과가 달라지는 이유는 Question

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy for LC

Info

rmat

ion

Dis

play

Eng

inee

ring

LCs Continuous medium

v Continuum Theory

Continuum theory

In equilibrium state (without external force)

n homogeneous f(elastic energy density) = f0(minimize)

Info

rmat

ion

Dis

play

Eng

inee

ring

Deformation of director eth restoring force

F

F

With external force

Director의 변형을 기술

Elastic energy density

f를 nij의 급수로 전개가능

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 12: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

What are Liquid Crystals

LC 자연의 미묘한 상

Info

rmat

ion

Dis

play

Eng

inee

ring

Liquid Crystals = Liquid + Crystals

No Positional Order

No Orientational Order

Positional Order

Orientational Order

Weak Positional Order

Weak Orientational Order

Crystal LC Liquid

T

구동 광학 v Definition of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

- Thermotropic LCs

Rigid part

(Core)

Flexible part

(Tail)

hydrophobic

hydrophilic

v Types of LC Structure

- Lyotropic LCs

Oil

Water

egrave Detergent Surfactant Oil recovery Bio-technology

egrave LCD

Info

rmat

ion

Dis

play

Eng

inee

ring

Main-Chain PLC

Side-Chain PLC

- Polymeric LCs

- Discotic LCs

Info

rmat

ion

Dis

play

Eng

inee

ring

v History of LC

Soft crystal

Floating crystal

Crystalline fluid

Liquid crystal

액정분류화 체계 확립

최초 발견자

구조규명

LCD 선도자

師祖님

Info

rmat

ion

Dis

play

Eng

inee

ring

Smectic A

(SmA)Nematic (N) Smectic C

(SmC)

Crystalline

structure

v LC Phases (Non-Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Chiral Smectic C FLC (SmC)

Chiral Smectic CA

AFLC (SmCA)

Chiral nematic

Cholesteric (NCh)

v LC Phases (Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Blue Phase LC

Phases between Iso amp N phase in short pitch ChLCFluid lattice stabilized by lattice defects (disclinations) (주기 수백 nm)n Optical isotropy but large rotatory powern Competition between chirality amp uniformly molecular packingn Formation of double-twist cylinder

(energetically more favorable than conventional ChLC)n No alignment layer

Three possible phases in double twist cylindern BP I (body-centered cubic) BP II (simple cubic) BP III (amorphous)

Double twist cylinderBP I (bcc) BP II (sc) BP III (amorphous)

disclination

Info

rmat

ion

Dis

play

Eng

inee

ring

Operating Principle

bull Electric field induced birefringence ( BP harr Nematic )

Optically isotropic Optically anisotropic

E = 0

E = 0

bull Response time

Where lattice constant

Info

rmat

ion

Dis

play

Eng

inee

ring

bull H Kikuchi et al Nature Materials (2002) - Polymer-Stabilized LC BP I - Wide temp range (gt60) - Fast response time ~200 us (applied voltage 57V cell gap 49 um)

bull A Yoshizawa et al Advanced Materials (2007) - BP III - Fast response time ~15 ms (applied voltage 82Vum) - In-plane switching (electrode distance 10 um)

bull Samsung Electronics SID (2008) - 15rdquo BP LCD - Polymer-stabilized liquid crystal - Alignment layer free - Wide viewing angle - Fast response time

Blue Phase LCDs

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Physical Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

n εσ

χη

nperp εperpσperp χperpηperp

egrave 액정의 화학적 구조 비등방적

Key Characteristics of LC

Δε = ε - εperp Dielectric anisotropy

Δn = n - nperp Birefringence

Apply Electric Field rarr Control of molecular alignment rarr Control of retardation rarr Optical effect rarr Optical Device

d

w

1 액정분자의 배열은 어떻게 결정되는가 2 배열에 따라 광학효과가 달라지는 이유는 Question

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy for LC

Info

rmat

ion

Dis

play

Eng

inee

ring

LCs Continuous medium

v Continuum Theory

Continuum theory

In equilibrium state (without external force)

n homogeneous f(elastic energy density) = f0(minimize)

Info

rmat

ion

Dis

play

Eng

inee

ring

Deformation of director eth restoring force

F

F

With external force

Director의 변형을 기술

Elastic energy density

f를 nij의 급수로 전개가능

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 13: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Liquid Crystals = Liquid + Crystals

No Positional Order

No Orientational Order

Positional Order

Orientational Order

Weak Positional Order

Weak Orientational Order

Crystal LC Liquid

T

구동 광학 v Definition of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

- Thermotropic LCs

Rigid part

(Core)

Flexible part

(Tail)

hydrophobic

hydrophilic

v Types of LC Structure

- Lyotropic LCs

Oil

Water

egrave Detergent Surfactant Oil recovery Bio-technology

egrave LCD

Info

rmat

ion

Dis

play

Eng

inee

ring

Main-Chain PLC

Side-Chain PLC

- Polymeric LCs

- Discotic LCs

Info

rmat

ion

Dis

play

Eng

inee

ring

v History of LC

Soft crystal

Floating crystal

Crystalline fluid

Liquid crystal

액정분류화 체계 확립

최초 발견자

구조규명

LCD 선도자

師祖님

Info

rmat

ion

Dis

play

Eng

inee

ring

Smectic A

(SmA)Nematic (N) Smectic C

(SmC)

Crystalline

structure

v LC Phases (Non-Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Chiral Smectic C FLC (SmC)

Chiral Smectic CA

AFLC (SmCA)

Chiral nematic

Cholesteric (NCh)

v LC Phases (Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Blue Phase LC

Phases between Iso amp N phase in short pitch ChLCFluid lattice stabilized by lattice defects (disclinations) (주기 수백 nm)n Optical isotropy but large rotatory powern Competition between chirality amp uniformly molecular packingn Formation of double-twist cylinder

(energetically more favorable than conventional ChLC)n No alignment layer

Three possible phases in double twist cylindern BP I (body-centered cubic) BP II (simple cubic) BP III (amorphous)

Double twist cylinderBP I (bcc) BP II (sc) BP III (amorphous)

disclination

Info

rmat

ion

Dis

play

Eng

inee

ring

Operating Principle

bull Electric field induced birefringence ( BP harr Nematic )

Optically isotropic Optically anisotropic

E = 0

E = 0

bull Response time

Where lattice constant

Info

rmat

ion

Dis

play

Eng

inee

ring

bull H Kikuchi et al Nature Materials (2002) - Polymer-Stabilized LC BP I - Wide temp range (gt60) - Fast response time ~200 us (applied voltage 57V cell gap 49 um)

bull A Yoshizawa et al Advanced Materials (2007) - BP III - Fast response time ~15 ms (applied voltage 82Vum) - In-plane switching (electrode distance 10 um)

bull Samsung Electronics SID (2008) - 15rdquo BP LCD - Polymer-stabilized liquid crystal - Alignment layer free - Wide viewing angle - Fast response time

Blue Phase LCDs

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Physical Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

n εσ

χη

nperp εperpσperp χperpηperp

egrave 액정의 화학적 구조 비등방적

Key Characteristics of LC

Δε = ε - εperp Dielectric anisotropy

Δn = n - nperp Birefringence

Apply Electric Field rarr Control of molecular alignment rarr Control of retardation rarr Optical effect rarr Optical Device

d

w

1 액정분자의 배열은 어떻게 결정되는가 2 배열에 따라 광학효과가 달라지는 이유는 Question

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy for LC

Info

rmat

ion

Dis

play

Eng

inee

ring

LCs Continuous medium

v Continuum Theory

Continuum theory

In equilibrium state (without external force)

n homogeneous f(elastic energy density) = f0(minimize)

Info

rmat

ion

Dis

play

Eng

inee

ring

Deformation of director eth restoring force

F

F

With external force

Director의 변형을 기술

Elastic energy density

f를 nij의 급수로 전개가능

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 14: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

- Thermotropic LCs

Rigid part

(Core)

Flexible part

(Tail)

hydrophobic

hydrophilic

v Types of LC Structure

- Lyotropic LCs

Oil

Water

egrave Detergent Surfactant Oil recovery Bio-technology

egrave LCD

Info

rmat

ion

Dis

play

Eng

inee

ring

Main-Chain PLC

Side-Chain PLC

- Polymeric LCs

- Discotic LCs

Info

rmat

ion

Dis

play

Eng

inee

ring

v History of LC

Soft crystal

Floating crystal

Crystalline fluid

Liquid crystal

액정분류화 체계 확립

최초 발견자

구조규명

LCD 선도자

師祖님

Info

rmat

ion

Dis

play

Eng

inee

ring

Smectic A

(SmA)Nematic (N) Smectic C

(SmC)

Crystalline

structure

v LC Phases (Non-Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Chiral Smectic C FLC (SmC)

Chiral Smectic CA

AFLC (SmCA)

Chiral nematic

Cholesteric (NCh)

v LC Phases (Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Blue Phase LC

Phases between Iso amp N phase in short pitch ChLCFluid lattice stabilized by lattice defects (disclinations) (주기 수백 nm)n Optical isotropy but large rotatory powern Competition between chirality amp uniformly molecular packingn Formation of double-twist cylinder

(energetically more favorable than conventional ChLC)n No alignment layer

Three possible phases in double twist cylindern BP I (body-centered cubic) BP II (simple cubic) BP III (amorphous)

Double twist cylinderBP I (bcc) BP II (sc) BP III (amorphous)

disclination

Info

rmat

ion

Dis

play

Eng

inee

ring

Operating Principle

bull Electric field induced birefringence ( BP harr Nematic )

Optically isotropic Optically anisotropic

E = 0

E = 0

bull Response time

Where lattice constant

Info

rmat

ion

Dis

play

Eng

inee

ring

bull H Kikuchi et al Nature Materials (2002) - Polymer-Stabilized LC BP I - Wide temp range (gt60) - Fast response time ~200 us (applied voltage 57V cell gap 49 um)

bull A Yoshizawa et al Advanced Materials (2007) - BP III - Fast response time ~15 ms (applied voltage 82Vum) - In-plane switching (electrode distance 10 um)

bull Samsung Electronics SID (2008) - 15rdquo BP LCD - Polymer-stabilized liquid crystal - Alignment layer free - Wide viewing angle - Fast response time

Blue Phase LCDs

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Physical Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

n εσ

χη

nperp εperpσperp χperpηperp

egrave 액정의 화학적 구조 비등방적

Key Characteristics of LC

Δε = ε - εperp Dielectric anisotropy

Δn = n - nperp Birefringence

Apply Electric Field rarr Control of molecular alignment rarr Control of retardation rarr Optical effect rarr Optical Device

d

w

1 액정분자의 배열은 어떻게 결정되는가 2 배열에 따라 광학효과가 달라지는 이유는 Question

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy for LC

Info

rmat

ion

Dis

play

Eng

inee

ring

LCs Continuous medium

v Continuum Theory

Continuum theory

In equilibrium state (without external force)

n homogeneous f(elastic energy density) = f0(minimize)

Info

rmat

ion

Dis

play

Eng

inee

ring

Deformation of director eth restoring force

F

F

With external force

Director의 변형을 기술

Elastic energy density

f를 nij의 급수로 전개가능

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 15: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Main-Chain PLC

Side-Chain PLC

- Polymeric LCs

- Discotic LCs

Info

rmat

ion

Dis

play

Eng

inee

ring

v History of LC

Soft crystal

Floating crystal

Crystalline fluid

Liquid crystal

액정분류화 체계 확립

최초 발견자

구조규명

LCD 선도자

師祖님

Info

rmat

ion

Dis

play

Eng

inee

ring

Smectic A

(SmA)Nematic (N) Smectic C

(SmC)

Crystalline

structure

v LC Phases (Non-Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Chiral Smectic C FLC (SmC)

Chiral Smectic CA

AFLC (SmCA)

Chiral nematic

Cholesteric (NCh)

v LC Phases (Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Blue Phase LC

Phases between Iso amp N phase in short pitch ChLCFluid lattice stabilized by lattice defects (disclinations) (주기 수백 nm)n Optical isotropy but large rotatory powern Competition between chirality amp uniformly molecular packingn Formation of double-twist cylinder

(energetically more favorable than conventional ChLC)n No alignment layer

Three possible phases in double twist cylindern BP I (body-centered cubic) BP II (simple cubic) BP III (amorphous)

Double twist cylinderBP I (bcc) BP II (sc) BP III (amorphous)

disclination

Info

rmat

ion

Dis

play

Eng

inee

ring

Operating Principle

bull Electric field induced birefringence ( BP harr Nematic )

Optically isotropic Optically anisotropic

E = 0

E = 0

bull Response time

Where lattice constant

Info

rmat

ion

Dis

play

Eng

inee

ring

bull H Kikuchi et al Nature Materials (2002) - Polymer-Stabilized LC BP I - Wide temp range (gt60) - Fast response time ~200 us (applied voltage 57V cell gap 49 um)

bull A Yoshizawa et al Advanced Materials (2007) - BP III - Fast response time ~15 ms (applied voltage 82Vum) - In-plane switching (electrode distance 10 um)

bull Samsung Electronics SID (2008) - 15rdquo BP LCD - Polymer-stabilized liquid crystal - Alignment layer free - Wide viewing angle - Fast response time

Blue Phase LCDs

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Physical Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

n εσ

χη

nperp εperpσperp χperpηperp

egrave 액정의 화학적 구조 비등방적

Key Characteristics of LC

Δε = ε - εperp Dielectric anisotropy

Δn = n - nperp Birefringence

Apply Electric Field rarr Control of molecular alignment rarr Control of retardation rarr Optical effect rarr Optical Device

d

w

1 액정분자의 배열은 어떻게 결정되는가 2 배열에 따라 광학효과가 달라지는 이유는 Question

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy for LC

Info

rmat

ion

Dis

play

Eng

inee

ring

LCs Continuous medium

v Continuum Theory

Continuum theory

In equilibrium state (without external force)

n homogeneous f(elastic energy density) = f0(minimize)

Info

rmat

ion

Dis

play

Eng

inee

ring

Deformation of director eth restoring force

F

F

With external force

Director의 변형을 기술

Elastic energy density

f를 nij의 급수로 전개가능

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 16: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

v History of LC

Soft crystal

Floating crystal

Crystalline fluid

Liquid crystal

액정분류화 체계 확립

최초 발견자

구조규명

LCD 선도자

師祖님

Info

rmat

ion

Dis

play

Eng

inee

ring

Smectic A

(SmA)Nematic (N) Smectic C

(SmC)

Crystalline

structure

v LC Phases (Non-Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Chiral Smectic C FLC (SmC)

Chiral Smectic CA

AFLC (SmCA)

Chiral nematic

Cholesteric (NCh)

v LC Phases (Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Blue Phase LC

Phases between Iso amp N phase in short pitch ChLCFluid lattice stabilized by lattice defects (disclinations) (주기 수백 nm)n Optical isotropy but large rotatory powern Competition between chirality amp uniformly molecular packingn Formation of double-twist cylinder

(energetically more favorable than conventional ChLC)n No alignment layer

Three possible phases in double twist cylindern BP I (body-centered cubic) BP II (simple cubic) BP III (amorphous)

Double twist cylinderBP I (bcc) BP II (sc) BP III (amorphous)

disclination

Info

rmat

ion

Dis

play

Eng

inee

ring

Operating Principle

bull Electric field induced birefringence ( BP harr Nematic )

Optically isotropic Optically anisotropic

E = 0

E = 0

bull Response time

Where lattice constant

Info

rmat

ion

Dis

play

Eng

inee

ring

bull H Kikuchi et al Nature Materials (2002) - Polymer-Stabilized LC BP I - Wide temp range (gt60) - Fast response time ~200 us (applied voltage 57V cell gap 49 um)

bull A Yoshizawa et al Advanced Materials (2007) - BP III - Fast response time ~15 ms (applied voltage 82Vum) - In-plane switching (electrode distance 10 um)

bull Samsung Electronics SID (2008) - 15rdquo BP LCD - Polymer-stabilized liquid crystal - Alignment layer free - Wide viewing angle - Fast response time

Blue Phase LCDs

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Physical Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

n εσ

χη

nperp εperpσperp χperpηperp

egrave 액정의 화학적 구조 비등방적

Key Characteristics of LC

Δε = ε - εperp Dielectric anisotropy

Δn = n - nperp Birefringence

Apply Electric Field rarr Control of molecular alignment rarr Control of retardation rarr Optical effect rarr Optical Device

d

w

1 액정분자의 배열은 어떻게 결정되는가 2 배열에 따라 광학효과가 달라지는 이유는 Question

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy for LC

Info

rmat

ion

Dis

play

Eng

inee

ring

LCs Continuous medium

v Continuum Theory

Continuum theory

In equilibrium state (without external force)

n homogeneous f(elastic energy density) = f0(minimize)

Info

rmat

ion

Dis

play

Eng

inee

ring

Deformation of director eth restoring force

F

F

With external force

Director의 변형을 기술

Elastic energy density

f를 nij의 급수로 전개가능

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 17: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Smectic A

(SmA)Nematic (N) Smectic C

(SmC)

Crystalline

structure

v LC Phases (Non-Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Chiral Smectic C FLC (SmC)

Chiral Smectic CA

AFLC (SmCA)

Chiral nematic

Cholesteric (NCh)

v LC Phases (Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Blue Phase LC

Phases between Iso amp N phase in short pitch ChLCFluid lattice stabilized by lattice defects (disclinations) (주기 수백 nm)n Optical isotropy but large rotatory powern Competition between chirality amp uniformly molecular packingn Formation of double-twist cylinder

(energetically more favorable than conventional ChLC)n No alignment layer

Three possible phases in double twist cylindern BP I (body-centered cubic) BP II (simple cubic) BP III (amorphous)

Double twist cylinderBP I (bcc) BP II (sc) BP III (amorphous)

disclination

Info

rmat

ion

Dis

play

Eng

inee

ring

Operating Principle

bull Electric field induced birefringence ( BP harr Nematic )

Optically isotropic Optically anisotropic

E = 0

E = 0

bull Response time

Where lattice constant

Info

rmat

ion

Dis

play

Eng

inee

ring

bull H Kikuchi et al Nature Materials (2002) - Polymer-Stabilized LC BP I - Wide temp range (gt60) - Fast response time ~200 us (applied voltage 57V cell gap 49 um)

bull A Yoshizawa et al Advanced Materials (2007) - BP III - Fast response time ~15 ms (applied voltage 82Vum) - In-plane switching (electrode distance 10 um)

bull Samsung Electronics SID (2008) - 15rdquo BP LCD - Polymer-stabilized liquid crystal - Alignment layer free - Wide viewing angle - Fast response time

Blue Phase LCDs

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Physical Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

n εσ

χη

nperp εperpσperp χperpηperp

egrave 액정의 화학적 구조 비등방적

Key Characteristics of LC

Δε = ε - εperp Dielectric anisotropy

Δn = n - nperp Birefringence

Apply Electric Field rarr Control of molecular alignment rarr Control of retardation rarr Optical effect rarr Optical Device

d

w

1 액정분자의 배열은 어떻게 결정되는가 2 배열에 따라 광학효과가 달라지는 이유는 Question

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy for LC

Info

rmat

ion

Dis

play

Eng

inee

ring

LCs Continuous medium

v Continuum Theory

Continuum theory

In equilibrium state (without external force)

n homogeneous f(elastic energy density) = f0(minimize)

Info

rmat

ion

Dis

play

Eng

inee

ring

Deformation of director eth restoring force

F

F

With external force

Director의 변형을 기술

Elastic energy density

f를 nij의 급수로 전개가능

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 18: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Chiral Smectic C FLC (SmC)

Chiral Smectic CA

AFLC (SmCA)

Chiral nematic

Cholesteric (NCh)

v LC Phases (Chiral)

Info

rmat

ion

Dis

play

Eng

inee

ring

Blue Phase LC

Phases between Iso amp N phase in short pitch ChLCFluid lattice stabilized by lattice defects (disclinations) (주기 수백 nm)n Optical isotropy but large rotatory powern Competition between chirality amp uniformly molecular packingn Formation of double-twist cylinder

(energetically more favorable than conventional ChLC)n No alignment layer

Three possible phases in double twist cylindern BP I (body-centered cubic) BP II (simple cubic) BP III (amorphous)

Double twist cylinderBP I (bcc) BP II (sc) BP III (amorphous)

disclination

Info

rmat

ion

Dis

play

Eng

inee

ring

Operating Principle

bull Electric field induced birefringence ( BP harr Nematic )

Optically isotropic Optically anisotropic

E = 0

E = 0

bull Response time

Where lattice constant

Info

rmat

ion

Dis

play

Eng

inee

ring

bull H Kikuchi et al Nature Materials (2002) - Polymer-Stabilized LC BP I - Wide temp range (gt60) - Fast response time ~200 us (applied voltage 57V cell gap 49 um)

bull A Yoshizawa et al Advanced Materials (2007) - BP III - Fast response time ~15 ms (applied voltage 82Vum) - In-plane switching (electrode distance 10 um)

bull Samsung Electronics SID (2008) - 15rdquo BP LCD - Polymer-stabilized liquid crystal - Alignment layer free - Wide viewing angle - Fast response time

Blue Phase LCDs

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Physical Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

n εσ

χη

nperp εperpσperp χperpηperp

egrave 액정의 화학적 구조 비등방적

Key Characteristics of LC

Δε = ε - εperp Dielectric anisotropy

Δn = n - nperp Birefringence

Apply Electric Field rarr Control of molecular alignment rarr Control of retardation rarr Optical effect rarr Optical Device

d

w

1 액정분자의 배열은 어떻게 결정되는가 2 배열에 따라 광학효과가 달라지는 이유는 Question

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy for LC

Info

rmat

ion

Dis

play

Eng

inee

ring

LCs Continuous medium

v Continuum Theory

Continuum theory

In equilibrium state (without external force)

n homogeneous f(elastic energy density) = f0(minimize)

Info

rmat

ion

Dis

play

Eng

inee

ring

Deformation of director eth restoring force

F

F

With external force

Director의 변형을 기술

Elastic energy density

f를 nij의 급수로 전개가능

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 19: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Blue Phase LC

Phases between Iso amp N phase in short pitch ChLCFluid lattice stabilized by lattice defects (disclinations) (주기 수백 nm)n Optical isotropy but large rotatory powern Competition between chirality amp uniformly molecular packingn Formation of double-twist cylinder

(energetically more favorable than conventional ChLC)n No alignment layer

Three possible phases in double twist cylindern BP I (body-centered cubic) BP II (simple cubic) BP III (amorphous)

Double twist cylinderBP I (bcc) BP II (sc) BP III (amorphous)

disclination

Info

rmat

ion

Dis

play

Eng

inee

ring

Operating Principle

bull Electric field induced birefringence ( BP harr Nematic )

Optically isotropic Optically anisotropic

E = 0

E = 0

bull Response time

Where lattice constant

Info

rmat

ion

Dis

play

Eng

inee

ring

bull H Kikuchi et al Nature Materials (2002) - Polymer-Stabilized LC BP I - Wide temp range (gt60) - Fast response time ~200 us (applied voltage 57V cell gap 49 um)

bull A Yoshizawa et al Advanced Materials (2007) - BP III - Fast response time ~15 ms (applied voltage 82Vum) - In-plane switching (electrode distance 10 um)

bull Samsung Electronics SID (2008) - 15rdquo BP LCD - Polymer-stabilized liquid crystal - Alignment layer free - Wide viewing angle - Fast response time

Blue Phase LCDs

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Physical Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

n εσ

χη

nperp εperpσperp χperpηperp

egrave 액정의 화학적 구조 비등방적

Key Characteristics of LC

Δε = ε - εperp Dielectric anisotropy

Δn = n - nperp Birefringence

Apply Electric Field rarr Control of molecular alignment rarr Control of retardation rarr Optical effect rarr Optical Device

d

w

1 액정분자의 배열은 어떻게 결정되는가 2 배열에 따라 광학효과가 달라지는 이유는 Question

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy for LC

Info

rmat

ion

Dis

play

Eng

inee

ring

LCs Continuous medium

v Continuum Theory

Continuum theory

In equilibrium state (without external force)

n homogeneous f(elastic energy density) = f0(minimize)

Info

rmat

ion

Dis

play

Eng

inee

ring

Deformation of director eth restoring force

F

F

With external force

Director의 변형을 기술

Elastic energy density

f를 nij의 급수로 전개가능

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 20: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Operating Principle

bull Electric field induced birefringence ( BP harr Nematic )

Optically isotropic Optically anisotropic

E = 0

E = 0

bull Response time

Where lattice constant

Info

rmat

ion

Dis

play

Eng

inee

ring

bull H Kikuchi et al Nature Materials (2002) - Polymer-Stabilized LC BP I - Wide temp range (gt60) - Fast response time ~200 us (applied voltage 57V cell gap 49 um)

bull A Yoshizawa et al Advanced Materials (2007) - BP III - Fast response time ~15 ms (applied voltage 82Vum) - In-plane switching (electrode distance 10 um)

bull Samsung Electronics SID (2008) - 15rdquo BP LCD - Polymer-stabilized liquid crystal - Alignment layer free - Wide viewing angle - Fast response time

Blue Phase LCDs

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Physical Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

n εσ

χη

nperp εperpσperp χperpηperp

egrave 액정의 화학적 구조 비등방적

Key Characteristics of LC

Δε = ε - εperp Dielectric anisotropy

Δn = n - nperp Birefringence

Apply Electric Field rarr Control of molecular alignment rarr Control of retardation rarr Optical effect rarr Optical Device

d

w

1 액정분자의 배열은 어떻게 결정되는가 2 배열에 따라 광학효과가 달라지는 이유는 Question

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy for LC

Info

rmat

ion

Dis

play

Eng

inee

ring

LCs Continuous medium

v Continuum Theory

Continuum theory

In equilibrium state (without external force)

n homogeneous f(elastic energy density) = f0(minimize)

Info

rmat

ion

Dis

play

Eng

inee

ring

Deformation of director eth restoring force

F

F

With external force

Director의 변형을 기술

Elastic energy density

f를 nij의 급수로 전개가능

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 21: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

bull H Kikuchi et al Nature Materials (2002) - Polymer-Stabilized LC BP I - Wide temp range (gt60) - Fast response time ~200 us (applied voltage 57V cell gap 49 um)

bull A Yoshizawa et al Advanced Materials (2007) - BP III - Fast response time ~15 ms (applied voltage 82Vum) - In-plane switching (electrode distance 10 um)

bull Samsung Electronics SID (2008) - 15rdquo BP LCD - Polymer-stabilized liquid crystal - Alignment layer free - Wide viewing angle - Fast response time

Blue Phase LCDs

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Physical Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

n εσ

χη

nperp εperpσperp χperpηperp

egrave 액정의 화학적 구조 비등방적

Key Characteristics of LC

Δε = ε - εperp Dielectric anisotropy

Δn = n - nperp Birefringence

Apply Electric Field rarr Control of molecular alignment rarr Control of retardation rarr Optical effect rarr Optical Device

d

w

1 액정분자의 배열은 어떻게 결정되는가 2 배열에 따라 광학효과가 달라지는 이유는 Question

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy for LC

Info

rmat

ion

Dis

play

Eng

inee

ring

LCs Continuous medium

v Continuum Theory

Continuum theory

In equilibrium state (without external force)

n homogeneous f(elastic energy density) = f0(minimize)

Info

rmat

ion

Dis

play

Eng

inee

ring

Deformation of director eth restoring force

F

F

With external force

Director의 변형을 기술

Elastic energy density

f를 nij의 급수로 전개가능

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 22: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Physical Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

n εσ

χη

nperp εperpσperp χperpηperp

egrave 액정의 화학적 구조 비등방적

Key Characteristics of LC

Δε = ε - εperp Dielectric anisotropy

Δn = n - nperp Birefringence

Apply Electric Field rarr Control of molecular alignment rarr Control of retardation rarr Optical effect rarr Optical Device

d

w

1 액정분자의 배열은 어떻게 결정되는가 2 배열에 따라 광학효과가 달라지는 이유는 Question

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy for LC

Info

rmat

ion

Dis

play

Eng

inee

ring

LCs Continuous medium

v Continuum Theory

Continuum theory

In equilibrium state (without external force)

n homogeneous f(elastic energy density) = f0(minimize)

Info

rmat

ion

Dis

play

Eng

inee

ring

Deformation of director eth restoring force

F

F

With external force

Director의 변형을 기술

Elastic energy density

f를 nij의 급수로 전개가능

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 23: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Physical Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

n εσ

χη

nperp εperpσperp χperpηperp

egrave 액정의 화학적 구조 비등방적

Key Characteristics of LC

Δε = ε - εperp Dielectric anisotropy

Δn = n - nperp Birefringence

Apply Electric Field rarr Control of molecular alignment rarr Control of retardation rarr Optical effect rarr Optical Device

d

w

1 액정분자의 배열은 어떻게 결정되는가 2 배열에 따라 광학효과가 달라지는 이유는 Question

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy for LC

Info

rmat

ion

Dis

play

Eng

inee

ring

LCs Continuous medium

v Continuum Theory

Continuum theory

In equilibrium state (without external force)

n homogeneous f(elastic energy density) = f0(minimize)

Info

rmat

ion

Dis

play

Eng

inee

ring

Deformation of director eth restoring force

F

F

With external force

Director의 변형을 기술

Elastic energy density

f를 nij의 급수로 전개가능

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 24: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

n εσ

χη

nperp εperpσperp χperpηperp

egrave 액정의 화학적 구조 비등방적

Key Characteristics of LC

Δε = ε - εperp Dielectric anisotropy

Δn = n - nperp Birefringence

Apply Electric Field rarr Control of molecular alignment rarr Control of retardation rarr Optical effect rarr Optical Device

d

w

1 액정분자의 배열은 어떻게 결정되는가 2 배열에 따라 광학효과가 달라지는 이유는 Question

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy for LC

Info

rmat

ion

Dis

play

Eng

inee

ring

LCs Continuous medium

v Continuum Theory

Continuum theory

In equilibrium state (without external force)

n homogeneous f(elastic energy density) = f0(minimize)

Info

rmat

ion

Dis

play

Eng

inee

ring

Deformation of director eth restoring force

F

F

With external force

Director의 변형을 기술

Elastic energy density

f를 nij의 급수로 전개가능

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 25: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy for LC

Info

rmat

ion

Dis

play

Eng

inee

ring

LCs Continuous medium

v Continuum Theory

Continuum theory

In equilibrium state (without external force)

n homogeneous f(elastic energy density) = f0(minimize)

Info

rmat

ion

Dis

play

Eng

inee

ring

Deformation of director eth restoring force

F

F

With external force

Director의 변형을 기술

Elastic energy density

f를 nij의 급수로 전개가능

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 26: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

LCs Continuous medium

v Continuum Theory

Continuum theory

In equilibrium state (without external force)

n homogeneous f(elastic energy density) = f0(minimize)

Info

rmat

ion

Dis

play

Eng

inee

ring

Deformation of director eth restoring force

F

F

With external force

Director의 변형을 기술

Elastic energy density

f를 nij의 급수로 전개가능

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 27: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Deformation of director eth restoring force

F

F

With external force

Director의 변형을 기술

Elastic energy density

f를 nij의 급수로 전개가능

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 28: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring Curvature strain tensor

Eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 29: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

v Elastic Deformation in LC

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 30: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 31: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

i j=12hellip6

Ki 6개 Kij 36개

xy

z

- LC molecules Cylindrical Symmetry

eth Free energy must be conserved under rotation around z-axis

n의 변형에 대해 작용하는 복원력이 Hook의 법칙에 따라 n의 변형에 비례한다고 하면

비압축성유체의 등온적인 n의 변형에 대한 자유밀도에너지는 다음과 같이 주어진다

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 32: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

x rarr -x y rarr -y z rarr z Eq (1)

180ordm Rotation

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 33: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

90ordm Rotation

x rarr y y rarr -x z rarr z

Eq (1)

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 34: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

45ordm Rotation

180ordm Rotation wrt x-axis

xy

z

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 35: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Free Energy Density per unit volume

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 36: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 37: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

If we consider bulk LC it can be neglected

Gauss theorem

from molecular chirality

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 38: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Splay (K11) Twist (K22) Bend (K33)

For non-chiral nematic LC

K11=K1=07 times 10-12 N

K22=K2=04 times 10-12 N

K33=K3=17 times 10-12 N

for PAA

K33 gt K11 gt K22

One elastic constant approximation

K33 = K11 = K22 = K

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 39: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring n εσ

χη

n εσ χη

rArr 액정의 화학적 구조에 의해 결정

v Anisotropic Properties of LC

Δε = ε - ε Dielectric anisotropy

Δn = n - n Birefringence

Optical effects

Apply Electric Field rarr Molecular motion control rarr Control of retardationrarr Optical effect rarr Optical Device

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 40: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring - Optical property

- Dynamic property Very Poor

Uncontrollable

LC molecules align on properly treated surfaces

v LC Alignment

R d

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 41: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar

Rubbed PI PVASiO2 (20ordmltθ lt40ordm)

Homeotropic

Surfactant (Lecithin)PI Rotationally evaporated SiO2Tilted

Lecithin+rubbingSiO2+homeotropic alignment layerRubbed PI

Rubbed side chain PISiO2 (θ lt20ordm)

Pre-tilt angle

Hybrid

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 42: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

v Surfactant

r

a

r gt a

r ~ a

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 43: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

v Organic Layer

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 44: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

v SiO2 Evaporation

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 45: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Ⅰa Ⅱa Ⅲb Ⅳb Ⅴb Ⅵb Ⅶb Ⅷ Ⅰ b Ⅱ b Ⅲ a Ⅳ a Ⅴ a

LiF perp CaF2

XX

BN X C X

NaF X NaCl

X

MgF XMg(OH)2 perp

Al XAl2O3 X

perp

Aluminosilicat

es X

Si3N4

XSiO2

X

KBrX

Kl X

TiO2

XCr2O3 X

Cr X 17

Fe2O3 perp NiO X

Ni X

ZnS Xperp

ZnO X

Ge2O3 perp

AsS3

X

Y2O3 X ZrO2

Xperp

In2O3 Xperp

SnO2

Xperp

Cs2O X

BaTiO4X CeO

XThF4 perp

TaN5

X perp

Pt X Au X HGF2X PbO2 X

v Inorganic Substrate

times Parallel nonuniformperp Homeotropic

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 46: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

90

65

60

15

10

5

3

0

SurfactantsPolymenthylsiloxanneFluorinated PolymersTangentially evaporated CaF

Long chain alchohol on SAIBE SiOx

Surfactants on tangentially evaporated layersPlasma polymerized fluorinated film on tang evap layers(one of the method below + surfactant)

Lecithin or DMOAP adsorbed on SiOx

evaporated tangentially

SiOx Mgf2 evaporated at (-) lt 75

C2F4 plasma polymerized on SiOx evaporated at (-) lt 75

25

Double evaporation

SiOx evaporated at 72lt (-) lt 75

Rubbing of inorganic layersObliquely evaporated SiOx Mgf2 evaporated at 45 lt (-) lt 75Macrocycles

Rubbed Polymers

Summary

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 47: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

CommonLiquid Crystal Alignment Methods

Gratings SiO Evaporation

UV Treatment

Glass Polyimide Polystyrene

Contact Methods Non-Contact Methods

Rubbed Substrates Stamping Ion Beam

Polyimide Photopolymer

Imprinting

v Alignment Methods

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 48: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

1 Rubbing Method

- Contact method- Advantages Simple amp Cheap process ethMass-production- Disadvantages Produce dust particle static charge defects- Shear alignment of polymer chain- Anisotropy of surface morphology

N Rubbing 횟수

d 러빙천과 배향막간의 접촉거리

n 회전수

v 기판의 이동속도

r 러빙롤러의 반경

rd

v

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 49: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Photo Alignment

- Non-contact method- Advantages Multi-domain No particles- Disadvantages Poor thermal stability image sticking- Photo-dissociation Photo-dimerization Photo-isomerization

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 50: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Photo-dimerization

Photo-dissociation

N

O

O

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 51: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Ion-beam exposure

DLC Al2O3 Polyimide

Multi-domain

- PI JALS-2021-1 (Homeotropic alignment)- Ion-beam 250 eV- Incidence angle gt20o

- Exposure time ~ 10s

J ndashC KimPusan National Univ

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 52: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

A B

Polyamic Acid

O O O

Main Chain 배향막의 기계적 물성 및 신뢰성을 결정함

Side Chain Pre-tilt 및 Surface Energy를 결정함

Polyimide Alignment Layer

- 세정제에 대한 내약품성 - Pre-tilt angle (2 ~ 90deg) 조절이 용이해야 함 - Pre-tilt 안정성이 좋아야 함 - 고신뢰성 (High Voltage Holding Ratio Low residual DC)

A AB

B

Imide Part Amic Acid Part

Heat

Imidization

- 인쇄성과 밀착성이 좋을 것 (700 ~ 1000 Å) - 낮은 bake 온도 (230 이하) - 강한 배향력 - 내열성 (250 이상)

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 53: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

eth Morphology amp Polymer chain distribution

Chain ordering

Chain Distribution isotropic

Chain Distribution anisotropic

Rubbing or LPUV exposure

What is happening on substrates

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 54: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Morphological Effect Minimization of long-range elastic energy

a

λ

탄성 에너지가 낮은 상태

탄성 에너지가 높은 상태

bull Physico-Chemical Effect Surface Anisotropy and LC-Surface Interaction

Rubbing direction

Alignment Mechanism

- SEM AFM X-ray scattering

- Contact angle measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 55: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

E S Lee JJAP 32 L1822 (1993)D -S Seo MCLC 231 95 (1993)

PI PS

R R

1 Anchoring energy 2 Rubbed Polystyrene

Alignment Mechanism

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 56: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Oslash AFM image

h asymp 5 nmλ asymp 60 ~ 70 nm

Rubbed Polystyrene

200 400 600 8000 nm-50

+50 nm

R

Oslash X-ray

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 57: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Azimuthal Anchoring energy

Characterization of LC Alignment

ALC

Direction

Value(How strong)

bull Azimuthalbull Polar

ϕ amp θ

Anchoringenergy

bull Azimuthalbull Polar

Polar Anchoring energy

Surface anchoring energy

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 58: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Phenomenological model No information about microscopic interactionRubbing pound egrave Wi pound Why

Need more microscopic model to understandLC anchoring properties

Rapini-Papoular form

0 2 4 6 800

02

04

06

08

10

12

of Rubbing

Anc

horin

g En

ergy

egrave Consider polymer chain distributionwhere

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 59: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

- Bulk Free Energy Density

- Surface Free Energy Density

- Electromagnetic Energy

Total Free Energy

v Total Free Energy

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 60: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

ϕ

θ

E static (constant)

Nature Entropy aacute Free energy acirc

Energy

x

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 61: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Theorem (Calculus of variation)

For any F which can be written as

can be minimized by solving the Euler-Lagrange equations

Find θ(z) amp ϕ(z)

Find LCrsquos orientational distribution

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 62: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

v Example Twisted Nematic

ϕ(0)=0 ϕ(d)= ϕ0 θ(0)=θ(d)=0

x

y

z

d

ϕ0

Assume Hard anchoring No field

x

y

ϕ 0 0

Boundary condition

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 63: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

From boundary condition [ϕ(0)=0 ϕ(d)= ϕ0]

z

ϕ(z)

d

ϕ0

x

y

z

d

Euler-Lagrange Eq

If ϕ0=π2 TN

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 64: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Example 2 Tilt amp Twisted Nematic

ϕ

θ

where

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 65: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

ab constant

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 66: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted Solution

z=0

z=d

θ0

z=0

z=d

θ0

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 67: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Tilted amp Twisted Solution

egrave possible solution is depending on the relative magnitude of Kegrave undefined at θm=π2 amp cannot be positive at θm=0

--- eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 68: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

i) K3 le 2K2

ii) K3 gt 2K2

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 69: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

From eq(1)

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 70: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Planar amp non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 71: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

egrave non-planar solution is preferred to the planar twist solution

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 72: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (i) K2 gt K1

egrave Non-planar twist

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 73: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Case (ii) K1 gt K2

egrave Planar twist

Case (iii) K1 = K2 (K1= K2 = K3)

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 74: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

HW

ϕ

θ

α

α

(i) θ(0)=π2 - α θ(d)=π2 + α

(ii) θ(0)=π2 - α θ(d)=π2 + α - π

Find the LCrsquos distribution in the cell with the following boundary conditions

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 75: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Stimulus

Cell thicknessExternal fieldEtchellip

Response

RetardationThreshold fieldTorqueTwisting angle

LC director rArr Deformed

Elastic energy+

Electro-magnetic energy+

Surface energy

Anchoring EnergyRapini-Papoular form

Wθ Polar anchoring energy Wφ Azimuthal anchoring energy

v Anchoring Energy Measurement

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 76: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

How can we measure anchoring strength

Experimental

technique

Indirect

Direct

Geometry

type

External

field type

Surface

disclination

Twist angle

measurement

Wedge

cell

Freedericksz

transition

High field

Torque

measurement

Flexoelectricity

The effect of substrate on the director profile near the interface

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 77: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

LC +

Chiral dopant

Natural twist angle φ0 =2πdp

Minimization

Twist angle measurement (d ~ de)

Strong anchoring Bottom surface

Top surface

Δφ

φ0

φr

Θ

R

R

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 78: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Static amp Dynamic Propertiesof LC Alignment

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 79: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Director Distribution of LC in Steady State

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 80: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

v Electric Field amp Electric Energy

VV E

Independent of n egrave omitting

electric susceptibility tensor

20

20 )(

21

21

21 EnEEDFelec

sdotΔminusminus=sdotminus= perp εεεε

20 )(

21 EnFelec

sdotΔminus= εε

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 81: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Field amp Magnetic Energy

where B is magnetic induction

n)Hn)(- χ(χHχM mm||m||

sdot+= perp

n)Hn(HMHB sdotΔ+=+= perp micromicromicromicromicro 000 )(

20

20 )(

21

21

21 HnHHBFmag

sdotΔminusminus=sdotminus= perp χmicromicromicro

20 )(

21 HnFmag

sdotΔminus= χmicro

sample infinite-semifor ])(21

[21 22

0 HnHFmag

sdotminusΔ= χmicro

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 82: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

v Magnetic Coherence Length

φ

x

y

zR

H

0FF=

$$

amp

part

partminus

part

part

φφ dzd

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 83: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Magnetic coherence length

0]cos)([ 2222 =minusrarr φφHξ

dzd

constant cos)( 2222 +=rarr φφHξ

χξφφφξ

Δ==+rarr 2

22

21

)( where0sincos)( K

HHH

infinrarrinfinrarr= zz as )( 0)0( condition Boundary φφ

φφ cos)(2 plusmn=Hξ

intint =rarr+z

Hξdzd

02

0 )(cos sign Choose

φ

φφ

$amp

(

)+

minusminus=rarr=

(

)+

minus minus

)(exptan2

2)(

)(24cotln

2

1

2 Hzz

Hz

ξπ

φξ

φπ

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 84: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

With different geometries

oerstedsHχdynesK a476 10 10 10 === minusminus

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 85: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

VV

Δε gt 0Δn gt 0

0 V 3 V 5 V

v Freedericksz Phase Transition

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 86: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Elastic Energy density

x

y

z

nEθ

232

1222

1212

1 )()()( nnKnnKnKFd

timesnablatimes+timesnablasdot+sdotnabla=

dzdsinn θ

θ=sdotnabla

$

amp=

$

amppart

part+

$

amppart

part+

$$

amp

part

partminus

part

part==timesnabla part

partpartpart

partpart

00cos

ˆsinˆcosˆsincoscossin0

ˆˆˆn

dzd

zx

yx

xzy

zyx

zyx

θθ

θθθθ

θθ

0 0 0

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 87: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

( )

( )θθθ

θθθθ

θθ

23

21

2

21

2224

321

22

121

232

1222

1212

1

cossin

cossincossin

)()()(

KKdzd

dzdK

dzdK

nnKnnKnKFd

+

$amp

=

$amp

++

$amp

=

timesnablatimes+timesnablasdot+sdotnabla=

000cos)cossin0(nn =

$

ampsdot=timesnablasdotdzdθ

θθθ

$

amp minusminus==timesnablatimesdzd

dzd

zyx

dzd

θθ

θθθ

θ

θθθ

2cossincos000coscossin0ˆˆˆ

nn

( )θθθ 2

32

1

2

21 cossin KKdzdFd +

$amp

=

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 88: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

y

z

θ

yrsquo

zrsquo

$$

amp

$$

amp=

$$

amp perp

||0

00

z

y

z

y

EE

DD

ε

εε

In the principal axes (yrsquo zrsquo) of the LC molecule

In the laboratory frame (y z)

$$

amp

$$

amp=

$$

amp

z

y

zzzy

yzyy

z

y

EE

DD

εε

εε

bull  Electric Energy density

zze DEDEF21

21

=sdot=

jiji ED ε=

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 89: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Coordinate Transformation

Eno

Ey

Ene

Ex

$$

amp

minus=

θθθθ

θcossinsincos

)(R

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 90: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

ndash  Coordinate transform

$$

amp

$$

amp

minus=

$$

amp(

(

z

y

z

y

EE

EE

θθ

θθ

cossinsincos

$$

amp

$$

amp

minus

$$

amp=

$$

amp(

( perp

z

y

z

y

EE

DD

θθ

θθε

ε

cossinsincos

00

||

$$

amp

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

z

y

z

y

EE

DD

θθ

θθε

ε

θθ

θθ

cossinsincos

00

cossinsincos

||

$$

amp

minus

$$

amp

$$

amp minus=

$$

amp perp

θθ

θθε

ε

θθ

θθεε

εε

cossinsincos

00

cossinsincos

||zzzy

yzyy

yzzy

yyzz

yz

yy

εε

εε

θθεε

θεεθεθεε

minus=

=

Δ=

Δ+=+= perpperp

cossinsinsincos 22

||2

perpminus=Δ εεε ||

( )zE00=E ( )

$$

amp

Δ+

Δ=

$$

amp=

$$

amp

$$

amp=

$$

amp

perp z

z

zzz

zyz

zzzzy

yzyy

z

y

EE

EE

EDD

θεε

θθε

ε

εεε

εε2sin

cossin0

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 91: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

The voltage is given by

intint Δ+==

perp

dd dzDdzzEV0 2

00 )sin(

)(θεεε

1

0 20

0 )sin(

minus

perp $

amp(

Δ+= int

d dzVDθεεε

ε

1

0 22

021

021

021

)sin(

21)(

minus

perp $

amp(

Δ+===sdot intintint

ddd dzVDVdzzEDdzEDθεε

ε

1

0 20

202

1223

212

1

)sin(]sincos[

minus

perp $

amp(

Δ+minus+= intint

dd

totaldz

VdzKKFθεε

εθθθ

220

2213

23

21 )sin(

cossincossin)(]sincos[

θεεεθθ

εθθθθθθΔ+

minus=minus++perp

aDKKKK

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 92: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Letrsquos suppose Econstant One constant approximation K1=K2=K3=K

)sin(21

21

21

21 222 θεεε Δ+minus=minus=minus=sdotminus= perpEEDEDEF zzzzze

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

θθεθ

cossinΔεEdzd

K 202

2

minus=$$

amp(

)

θθεθθ

θθ

cossinΔεEKdzd

K 202

2

==$

ampamp

(

dd

θθε

θ 220 coscosKΔε

E minus= m

z

d

0

θm d2 θ(d2)=θm

$

amp minus=minus

int 2KΔε

Ecoscos

022

dzd

m m

ε

θθ

θθ

θ

$

amp=minus

int 2KΔε

Ecoscos

02

22

dd

m m

ε

θθ

θπ

θ

At z=d

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 93: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

If E=0 θm=π2 EraquoEth θm=0

As E decreases θm approaches to π2

2coscoslim

2

222

π

θθ

θπ

θπθ

=minus

intrarrm

mm

d

E

θm

π2

Eth

22KΔεE 0

thπε

=$

amp

( d

ε ΔεK

dVE

0

thth ==

ΔεKV0

th επ= Threshold voltage

(Frederick transition voltage)

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 94: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring (z)θ

Distribution of Molecular Alignment

0 V 3 V 5 V

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =$

amp

(minus+$

ampamp

(+

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 95: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

z=0

z=d

1 Find molecular distribution [θ(z)] and discuss the case of Δεgt0 or Δεlt02 Determine the threshold voltage

E

Suppose (i) one constant approximation (ii) Δε ltlt1 (iii) hard anchoring

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 96: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Properties of LC

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 97: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Property

Erickson-Leslie Equation (elastic torque oacute electric torque)

Eq of Motion

At equilibrium

|elastic torque| = |electric torque|

torqueelectric torqueelastictφγ1 +=part

part

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 98: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

( ) ( )θεεεθθθ 2

||2

02

32

1

2

sin21

cossin21

Δminus++amp

()

=+= EKKdzdFFF ed

Electric torque = EPE

times=τ

xE

xED

zEDEDyEDEDxEDEDED

EDP

zy

xyyxzxxzyzzyE

ˆ cossin

ˆ

ˆ)(ˆ)(ˆ)(

20

0

θθεε

τ

ε

Δ=

=

minus+minus+minus=times=

minus=

0cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 =+

$

ampminus+

$$

amp+ θθε

θθθ

θθθ

0FF=

$

amppart

partminus

part

part

θθ dzd

θθεθ

θθθ

cossinΔεEdzd

sincos)K(KddF 2

0

2

31 minus$

amp(

)minus=

( ) ( ) ( )2

312

22

32

12

32

1 cossin2cossincossinddF

$

ampminus++=()

+- +=

$

ampdzdKK

dzdKK

dzdKK

dzd

dzd θ

θθθ

θθθ

θθθ

z

z

ED

ED

zzz

yzy

ε

ε

=

=

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 99: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

θθεθ

θθθ

θθ cossinΔεEdzd

sincos)K(Kdzd

)cosKsin(K 20

2

132

22

32

1 minus=$

amp(

)minus+$$

amp(

)+

elastic torque + electric torque = Euler-Lagrange Eq

$

amppart

partminus

part

part=

θθ FF

dzd

At equilibrium

elastic torque = electric torque

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 100: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

bull  Equation of Motion

( )

2

2

12

02

32

2

2

312

22

32

1

tI

tγ cos sinΔεEε

)cosαsin(α

zcos)sinK(K

zsinKcosK

part

part+

part

part=+

part

partminus+

$

amp

(part

partminus+

part

part+

θθθθθθ

θθθ

θθθ α23 Leslie 점성계수

ν  흐름속도 γ1=α3-α2 회전 점성도 I 관성모멘트

dtdφγcosφ sinφΔεEε

K 12

02

2

=+part

part

Back flow 와 관성효과 무시 One constant approximation K1=K2=K3=K

)sin(expφφ dπztτ

mon=

2

22

4πΔεE

1on K

γτminus

=2

2

1off Kγτ =

Solution

$

amppart

partminus

part

part=

θθθ

γ FF

1 dzd

dtd

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 101: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Response Time

- Rising Time (T90 rarr T10 ) τon rarr Field driven

- Decay Time (T10 rarr T 90) τoff rarr Relaxation

bull T-V curve rarr Find Voltages of T(100) and T(04)

Tran

mitt

ance

Voltage

Tran

smitt

ance

Time

bull T-Time curve

T(04)

T(100)

T(90)

T(10) T(10)

T(90)

Definition Operation Voltage (Vop) = Voltage at 04 of Transmittance

V(T100)

Vop

Input Signal

bull Definition of response time

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 102: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Disadvantage

Response Time Viewing Angle Color Reappearance Luminance Contrast Ratio (Dark room)

Advantage

Power Consumption Thickness Purity Focus Minuteness amp Convergence Contrast Ratio (Living room)

v LCD TV Vs CRT TV

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 103: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring bull General TFT-LCD ~ 10s ms oacute CRT EL PDP lt 1ms

bull Frame Rate

- Movie 24 framess eth 124 sec = 417 ms

- TV (NTSC) 30 framess eth 130 sec = 333 ms

- PC 60 framess eth 160sec = 167 ms

Response time of LC mode should faster than 167 ms in all gray levels

0

1000

2000

3000

4000

Response Time (m

s)

63 55 47 39 31 23 15 7 0

Final Gray Level

v 고속응답의 필요성

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 104: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

1 LC molecular parameters

2 Structure andor Driving scheme

bull γ1 darr Δε uarr Keff uarr

bull Synthesis new materials

bull Optimization of cell structurebull Texture-free structurebull Simple dynamicsbull New driving method

v How can we make fast mode

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 105: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Switching Speed of Nematic LC Mode

$

amp

minus=

$

amp

minus()

+

-= 2c

20

12

theff

12

on EE1

Δεεγ

1)(VV1

πdτ

2c0

21

eff

12

off ΔεEε1

dγKγ

πdτ =

$

amp=

ΔεεKπV0

effth =

ΔεεK

dπV

0

effth

=

for TN VA OCB modes

for IPS modes

Keff TN K1+(K3-2K2)4 IPS K2

VAOCB K3

For fast switching γ1 darr Δε uarr Keff uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 106: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

A B core structuresR Rrsquo terminal moietiesM N lateral substituentsX Y Z linking groups

Y Z RrsquoXR

M N

A B

1 Molecular Structures

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 107: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Core Structures rigid part

bull TNI darr phenyl trans-cyclohexane

bull Δε uarr phenyl ring phenylcyclohaxane heterocyclic nitrogenbull Δn prop molecular poarizability order parameter linear long thin uarr rarr aromatic ring tolane + Terminal group CN uarrbull K3K1 darr aromatic ring heterocyclic core

Determine TNI Δε Δn K

Combination n=1~2

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 108: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Terminal Moieties soft part

- 액정성을 결정함

- Hydro Carbon rarr Alkyl chain- Functional group 액정의 물성결정

CN rarr Δε gt 0- Long chain γ uarr larr Inter molecular interaction uarr- Δn Core part에 가장 dependent but terminal group에 의해 dilute 됨- Δn uarr minimize alkyl chain length + cyano group

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O Rigid Part

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 109: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Lateral sustituents

- H F Cl CN CH3

- 물성 조절에 용이하게 이용됨

- Molecular packing에 영향을 미침 rarr 액정의 열적 안정성

- Cl 액정성 darr γ uarr

- 측방 치환기 종류에 따른 액정성 변화의 이유(1) 분자폭의 증가

(2) 분자간의 측면 거리 증가

(3) 분자폭의 증대나 입체장해에 따른 분자의 비틀림도 유발

(4) 분자간 측면 인력이 감소한다 분자간의 분산력이 거리의 6승에 반비례

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 110: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Linking groups

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

Rigid Rigid

- Core group과의 선형성 유지가 중요

- 액정성에 영향을 미침

Aromatic ringgtCyclooctane ringgtCyclohexane ringgt-N=NO-gt -N=N-gt-CH=CH-gt-COO-gt-C=C-gt-CH=N-gtnone- Length uarr rarr anisotropy of molecular polarizability uarr rarr Δn uarr- Azo imine group anisotropy of molecular polarizability uarr- Ester group 안정 합성이 용이 rarr 널리 이용됨

- 말단기에 cyano group을 갖는 ester group γ uarr

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 111: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

CnH2n+1 CnH2n+1OCnH2n-1 CnH2n-1OH F Cl OCF3 OCHF2OCH2F CF3 CN NCS

Design Combination of Nematic Liquid Crystal Molecules

CnH2n+1 CnH2n-1 CnH2n+1O CnH2n-1O

Combination n=1~2

H F Cl CN CH3

H F Cl CN CH3

CequivC COO CH2CH2

C-C CouplingOCH2 (CH2)n

O

n n N

N

N NNO

O S

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 112: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Relation between LC Parameters

K

TN-I Phase Transition TemperatureΔn Birefringence IndexΔε Dielectric Anisotropy γ1 Rotational Viscosityη Bulk Viscosity

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 113: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Rotational viscosity Vs Response Time

Decay time strongly related to γ

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 114: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

2 Cell Structure andor Control of Dynamic Motion

bull Optimization of cell structure

- Width between slits ω darr rArr τdarr

- Cell gap d darr rArr τdarr

- Shape of slit pattern rArr Texture와 관계

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 115: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Texture-free structure

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 116: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

EE

bull Two step (or 3D) dynamics

1st Step Field 2nd Step Elastic property

Simple is Fast

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 117: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

3 Fast Driving Method

bull Capacitive-Coupled Driving (CCD)

Vpacute= Vp +Δ Vp

For example Vp= 3V ΔVp =03V at 3V

Vpacute= 33V

1Vrarr3V ΔVp gt 03V rarr Vpacutegt 33V5Vrarr3V ΔVp lt 03V rarr Vpacutelt 33V

ggdLCst

stp ΔV

C(V)CCCΔV

++=

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 118: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

bull Dynamic Capacitance Compensaion

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 119: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

ToFrom

ToFrom

With DCCWithout DCC

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 120: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

현 상 Example 원 인

Dynamic Contrast Ratio

화면이 갑자기 변할 때의 Contrast ratio

RT gt 1 frame

Stroboscopic Motion 물체가 천천히 움직일 때의 화질

농구공의 long pass

RT gt 1 frame

Tailing 야구공

Mouse pointerRT gt 12 frame

Hold-type display

Blurring 풀밭 WaterfallRT gt 12 frame

Hold-type display

Key Features for Evaluating Motion Picture Quality

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 121: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Real Motion Hold TypeImpulse type

1 frame

bull Impulse Vs Hold Type

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 122: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring Gate selection timing

1 frame (167 ms)

LC response

Lamp illumination

Blink back light system(Hitachi)

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 123: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Black image insertion + Blinking back light system

Super Impulse System

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 124: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Conventional LCD

180 Hz 구동

Field Sequential LCD

FS LCD

Advantage of FS LCD

Higher Properties - Higher Transmittance amp Brightness (more than 3times) - Higher Resolution (more than 3times) - Higher Gamut (more than 80) - Faster Response Image (60Frame3color in One Second) - Low BL Power Consumption Low Cost - No Color Filter amp Less Drive IC

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 125: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Dynamic Dimming

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+

Page 126: Liquid Crystal Displayddlab.hanyang.ac.kr/inner_image/수업자료_under... · 2017-03-20 · Liquid Crystals = Liquid + Crystals No Positional Order No Orientational Order Positional

Info

rmat

ion

Dis

play

Eng

inee

ring

Summary

Materials (New LC)- 50 ~ 60 ms (on+off) rarr 20 ms

For TV application

Fast switching mode- FLC OCB

+

Fast driving method- Inter-gray response 30~40 ms rarr 10 ms

+

Hold eth Impulse-like+