Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung,...

115
Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Main Cells and Materials, Workshop I: Membrane Protein Science and Engineering http://www.mpip-mainz.mpg.de/~deserno IPAM, Los Angeles, California, USA [email protected] A solvent-free coarse- grained simulation model (and what we can learn from it)

Transcript of Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung,...

Page 1: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Lipid membranes between nano and

micro:

Lipid membranes between nano and

micro:

Markus DesernoMax-Planck-Institut für Polymerforschung, Mainz

Cells and Materials, Workshop I: Membrane Protein Science and Engineering

http://www.mpip-mainz.mpg.de/~desernohttp://www.mpip-mainz.mpg.de/~deserno

IPAM, Los Angeles, California, USA

[email protected]@mpip-mainz.mpg.de

A solvent-free coarse-grained simulation model

A solvent-free coarse-grained simulation model

(and what we can learn from it)(and what we can learn from it)

Page 2: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Motivation

Page 3: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Motivation

Cells !

Page 4: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Motivation

Cells & Materials !

Page 5: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Motivation

Cells & Materials?

Page 6: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Some simple scaling

Page 7: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Some simple scaling

Thickness: 5 nm

Page 8: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Some simple scaling

Thickness: 5 nm

Lipids ~ dense hydrocarbons ~ typical length scale: 5 nm ~ between rubber and plastic ~ Young modulus: Pa107

Page 9: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Some simple scaling

Pa107Y

3121 hY

nm5h

Page 10: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Some simple scaling

Pa107Y

3121 hY

Young’s modulusbending modulus

membrane

thickness

nm5h

Page 11: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Some simple scaling

Pa107Y

3121 hY

Young’s modulusbending modulus

membrane

thickness

nm5h

TkB25

Page 12: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Some simple scaling

Pa107Y

3121 hY

Young’s modulusbending modulus

membrane

thickness

nm5h

TkB25 That’s about right!

Page 13: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

ImplicationsBending modulus of phospholipid bilayers:

a few tens of kT

Why’s that such an interesting value?

Page 14: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

ImplicationsBending modulus of phospholipid bilayers:

a few tens of kT

Why’s that such an interesting value?• bigger than thermal energy

Bilayer doesn’t fluctuate into pieces!

Page 15: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

ImplicationsBending modulus of phospholipid bilayers:

a few tens of kT

Why’s that such an interesting value?• bigger than thermal energy

Bilayer doesn’t fluctuate into pieces!

• not much bigger than thermal energy

Nano-sources of energy can deform it!

Page 16: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

ImplicationsBending modulus of phospholipid bilayers:

a few tens of kT

Why’s that such an interesting value?

Ideal material for nano-technology !

• bigger than thermal energy

Bilayer doesn’t fluctuate into pieces!

• not much bigger than thermal energy

Nano-sources of energy can deform it!

Page 17: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

But front-cover “NanoTech” seems to be shiny metal stuff!

Page 18: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

But front-cover “NanoTech” seems to be shiny metal stuff!

Page 19: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

But front-cover “NanoTech” seems to be shiny metal stuff!

Just turn the argument around:

Page 20: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

But front-cover “NanoTech” seems to be shiny metal stuff!

Just turn the argument around:

3121 hY

Page 21: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

But front-cover “NanoTech” seems to be shiny metal stuff!

Just turn the argument around:

3121 hY

TkB25

Page 22: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

But front-cover “NanoTech” seems to be shiny metal stuff!

Just turn the argument around:

3121 hY

TkB25 Pa1010

(metal)

Page 23: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

But front-cover “NanoTech” seems to be shiny metal stuff!

Just turn the argument around:

3121 hY

TkB25 Pa1010

nm5.0h

(metal)

Page 24: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

But front-cover “NanoTech” seems to be shiny metal stuff!

Just turn the argument around:

3121 hY

TkB25 Pa1010

nm5.0h

falls apart !(metal)

Page 25: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

But front-cover “NanoTech” seems to be shiny metal stuff!

Just turn the argument around:

3121 hY

TkB25 Pa1010

nm5.0h

falls apart !

Nanotechnology

invariably means

soft matter!

Nanotechnology

invariably means

soft matter!

(metal)

Page 26: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Nature has found out first!

Membranes everywhere !

Page 27: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

A closer look…Lipid bilayers show interesting physics on many different length scales.

Self-assembly

Protein-embeddingFluidity

Pressure-profilesBending-deformations

J. G

ould

and W

. K

eeto

n,

Bio

logic

al Sci

ence

,6

th e

d.

(W.W

. N

ort

on,

New

York

, 1

99

6)

Page 28: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

A closer look…Lipid bilayers show interesting physics on many different length scales.

J. G

ould

and W

. K

eeto

n,

Bio

logic

al Sci

ence

,6

th e

d.

(W.W

. N

ort

on,

New

York

, 1

99

6)

When studying this system, one’s approach should be tuned towards the length scale one intends to probe.

Page 29: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Lipid bilayers show interesting physics on many different length scales.

J. G

ould

and W

. K

eeto

n,

Bio

logic

al Sci

ence

,6

th e

d.

(W.W

. N

ort

on,

New

York

, 1

99

6)

When studying this system, one’s approach should be tuned towards the length scale one intends to probe.

any

A closer look…

Page 30: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Lipid bilayers show interesting physics on many different length scales.

J. G

ould

and W

. K

eeto

n,

Bio

logic

al Sci

ence

,6

th e

d.

(W.W

. N

ort

on,

New

York

, 1

99

6)

When studying this system, one’s approach should be tuned towards the length scale one intends to probe.

Theory

any

A closer look…

Page 31: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Lipid bilayers show interesting physics on many different length scales.

Simulation

J. G

ould

and W

. K

eeto

n,

Bio

logic

al Sci

ence

,6

th e

d.

(W.W

. N

ort

on,

New

York

, 1

99

6)

When studying this system, one’s approach should be tuned towards the length scale one intends to probe.

Theory

any

A closer look…

Page 32: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Lipid bilayers show interesting physics on many different length scales.

Simulation

J. G

ould

and W

. K

eeto

n,

Bio

logic

al Sci

ence

,6

th e

d.

(W.W

. N

ort

on,

New

York

, 1

99

6)

Experiment

When studying this system, one’s approach should be tuned towards the length scale one intends to probe.

Theory

any

A closer look…

Page 33: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Lipid bilayers show interesting physics on many different length scales.

Simulation

J. G

ould

and W

. K

eeto

n,

Bio

logic

al Sci

ence

,6

th e

d.

(W.W

. N

ort

on,

New

York

, 1

99

6)

Experiment

When studying this system, one’s approach should be tuned towards the length scale one intends to probe.

Theory

any

A closer look…

Page 34: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Simulation of lipid membranes

i n c r e a s i n g l y c o a r s e g r a i n e d

much detail little detail

atomistic models triangulated surfacesbead-spring models

“standard”Lennard-Jones

DPD solvent free

increasing numerical efficiencymatter of debate…

Marrink; Klein, Sansom; Scott; Voth; …

Gompper&Kroll,…

Goetz&Lipowsky;Stevens; …

Groot&Rabone;Shillcock&Lipowsky;Laradji&Kumar, …

Drouffe&Maggs&Leibler;Noguchi&Takasu; Farago;

Brannigan&Brown

Page 35: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Simulation of lipid membranes

i n c r e a s i n g l y c o a r s e g r a i n e d

much detail little detail

atomistic models triangulated surfacesbead-spring models

“standard”Lennard-Jones

DPD solvent free

increasing numerical efficiencymatter of debate…

Marrink; Klein, Sansom; Scott; Voth; …

Gompper&Kroll,…

Goetz&Lipowsky;Stevens; …

Groot&Rabone;Shillcock&Lipowsky;Laradji&Kumar, …

Drouffe&Maggs&Leibler;Noguchi&Takasu; Farago;

Brannigan&Brown

Page 36: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Why is “solvent free” good?

Page 37: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Why is “solvent free” good?

membrane surface

Page 38: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Why is “solvent free” good?

membrane surface

solvent bulk

Page 39: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Why is “solvent free” good?

membrane surface

solvent bulk

Page 40: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Why is “solvent free” good?

membrane surface

solvent bulk

Studying membranes may well become the study of a finite size

effect!

Studying membranes may well become the study of a finite size

effect!

Page 41: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Illustrative examplemembrane surface

solvent bulk

M. Laradji, P. B. Sunil Kumar,Phys. Rev. Lett. 93, 198105 (2004)

16000 (DPD) lipids times 4 beads per lipid 64000 degrees of freedom for lipids

But in total: 1536000 particles in box

96% of simulation time spent with solvent!

Page 42: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

“No solvent” is difficult. Why?Implicit solvent models are very commonand incredibly useful in polymer physics.

Why are they not so common in the membrane field?

Page 43: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

“No solvent” is difficult. Why?Implicit solvent models are very commonand incredibly useful in polymer physics.

Why are they not so common in the membrane field?

Polymers don’t first have to self-assemble

Page 44: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

“No solvent” is difficult. Why?Implicit solvent models are very commonand incredibly useful in polymer physics.

Why are they not so common in the membrane field?

Polymers don’t first have to self-assemble

One needs to introduce additional cohesive energy for the lipid tails!

Page 45: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

kBT, not eV!

“No solvent” is difficult. Why?Implicit solvent models are very commonand incredibly useful in polymer physics.

Why are they not so common in the membrane field?

Polymers don’t first have to self-assemble

One needs to introduce additional cohesive energy for the lipid tails!

Page 46: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

kBT, not eV!

“No solvent” is difficult. Why?Implicit solvent models are very commonand incredibly useful in polymer physics.

Why are they not so common in the membrane field?

Fluidity has proven to be the main challenge

Polymers don’t first have to self-assemble

One needs to introduce additional cohesive energy for the lipid tails!

Page 47: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

DifficultiesPolymers don’t first have to self-assemble

Fluidity has proven to be the main challenge

“gas” phase

solid bilayer

weak attraction

strong attraction

Empirical observation:

Page 48: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

no fluid phase

inbetween!

no fluid phase

inbetween!

DifficultiesPolymers don’t first have to self-assemble

Fluidity has proven to be the main challenge

“gas” phase

solid bilayer

weak attraction

strong attraction

Empirical observation:

Page 49: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

no fluid phase

inbetween!

no fluid phase

inbetween!

DifficultiesPolymers don’t first have to self-assemble

Fluidity has proven to be the main challenge

“gas” phase

solid bilayer

weak attraction

strong attraction

Empirical observation:

This observation is incorrect.But we’ll later see where it came from!

Page 50: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Previous and current solutions• J.-M. Drouffe, A. C. Maggs, and S. Leibler, Science 254, 1353 (1991)• H. Noguchi and M. Takasu, Phys. Rev. E 64, 041913 (2001)• Z.J. Wang and D. Frenkel, J. Chem. Phys. 122, 234711 (2005)• H. Noguchi and G. Gompper, Phys. Rev. E 72, 021903 (2006)

• O. Farago, J. Chem. Phys. 119, 396 (2003)

• G. Brannigan and F.L.H. Brown, J. Chem. Phys. 120, 1059 (2004)

• G. Ayton and G.A. Voth, Biophys. J. 83, 3357 (2002)

• I.R. Cooke, K. Kremer, M. Deserno, Phys. Rev. E 72, 011506 (2005)• G. Brannigan, P.F. Philips, and F.L.H. Brown, Phys. Rev. E 72, 011915, (2005)

Page 51: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Previous and current solutions• J.-M. Drouffe, A. C. Maggs, and S. Leibler, Science 254, 1353 (1991)• H. Noguchi and M. Takasu, Phys. Rev. E 64, 041913 (2001)• Z.J. Wang and D. Frenkel, J. Chem. Phys. 122, 234711 (2005)• H. Noguchi and G. Gompper, Phys. Rev. E 72, 021903 (2006)

• O. Farago, J. Chem. Phys. 119, 396 (2003)

• G. Brannigan and F.L.H. Brown, J. Chem. Phys. 120, 1059 (2004)

• G. Ayton and G.A. Voth, Biophys. J. 83, 3357 (2002)

• I.R. Cooke, K. Kremer, M. Deserno, Phys. Rev. E 72, 011506 (2005)• G. Brannigan, P.F. Philips, and F.L.H. Brown, Phys. Rev. E 72, 011915, (2005)

Multibody interactions

Tethered membrane

Highly tuned Lennard-Jones

Angle-dependent potentials

Pair-potentials

Page 52: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Our own model

Three bead lipid

I.R. Cooke, K. Kremer, M. Deserno,Phys. Rev. E 72, 011506 (2005)

Page 53: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Our own model

Three bead lipid

Only three beads

?

I.R. Cooke, K. Kremer, M. Deserno,Phys. Rev. E 72, 011506 (2005)

Page 54: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Our own model

Three bead lipid

Only three beads

?

I.R. Cooke, K. Kremer, M. Deserno,Phys. Rev. E 72, 011506 (2005)

Look at the aspect ratio for real lipids:

3nm0.7

nm5.2

moleculeper area

icknessbilayer th2

21

Page 55: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Our own model

Three bead lipidhead

tail}

[I. R. Cooke, K. Kremer, M. Deserno, 2005)]

Linked by two bonds

Stiffened by (effective) bending potential

Page 56: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Our own model

Three bead lipid

Stiffened by (effective) bending potential

Tail attraction via some generic potential with tunable range

Linked by two bonds

[I. R. Cooke, K. Kremer, M. Deserno, 2005)]

Page 57: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Our own model

Three bead lipid

Stiffened by (effective) bending potential

Tail attraction via some generic potential with tunable range

Linked by two bonds

2 parameters!

[I. R. Cooke, K. Kremer, M. Deserno, 2005)]

Page 58: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Simulation

• Molecular Dynamics• Langevin thermostat• constant volume/area or constant pressure/tension• Simulation software: ESPResSo

http://www.espresso.mpg.dehttp://www.espresso.mpg.de

c-core controlled via tcl scripts

or: pairwise(DPD

thermostat)

Page 59: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Self-assembly

Page 60: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Example of a self-assembly run

4000 lipids, 100LJ between frames (1000), 10kBT

Page 61: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Tensionless phase diagram

gel-phase(s)gel-phase(s)

fluid phasefluid phase

unstableunstable

Page 62: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

The tragedy of Lennard-JonesLJ potential with artificially “stretched” minimum

gel-phase(s)gel-phase(s)

fluid phasefluid phase

unstableunstable

Page 63: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Bending modulusFluctuation spectrum from continuum Helfrich theory:

Page 64: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Bending modulusFluctuation spectrum from continuum Helfrich theory:

extrinsiccurvature

surfacetension

“Linearized Monge”

Page 65: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Bending modulusFluctuation spectrum from continuum Helfrich theory:

Fourier expansion plus equipartition theorem:

extrinsiccurvature

surfacetension

“Linearized Monge”

Page 66: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Bending modulusFluctuation spectrum from continuum Helfrich theory:

Fourier expansion plus equipartition theorem:

zero tension

extrinsiccurvature

surfacetension

“Linearized Monge”

Page 67: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Bending modulusFluctuation spectrum from continuum Helfrich theory:

Fourier expansion plus equipartition theorem:

zero tension

extrinsiccurvature

surfacetension

“Linearized Monge”

Page 68: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Bending modulus

determinebendingmodulus

Fluctuation spectrum from continuum Helfrich theory:

Fourier expansion plus equipartition theorem:

zero tension

extrinsiccurvature

surfacetension

“Linearized Monge”

Page 69: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Bending modulus

=0

tunable within experimentally relevant range!

Page 70: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Bending modulus

Worries: We’re only probing very weak bending!

Page 71: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Bending modulus

Worries: We’re only probing very weak bending!

Page 72: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Bending modulus

Worries: We’re only probing very weak bending!

Page 73: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Bending modulus

Worries: We’re only probing very weak bending!

Page 74: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Bending modulus

Worries: We’re only probing very weak bending!

This is much weaker bending than what we’d typically like to do in a

simulation!

Page 75: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Bending modulusAlternative: measure response to bending deformation!

Page 76: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Bending modulusAlternative: measure response to bending deformation!

First imple-mentation:

W.K. den Otter and W.J. Briels,J. Chem. Phys. 118, 4712 (2003)

(Impose undulation mode,measure constraining force bending modulus)

Page 77: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Bending modulusAlternative: measure response to bending deformation!

First imple-mentation:

W.K. den Otter and W.J. Briels,J. Chem. Phys. 118, 4712 (2003)

Easier method: Stretch a membrane tether!

(Impose undulation mode,measure constraining force bending modulus)

[V. Harmandaris and M. Deserno, in preparation]

Page 78: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Bending modulus

[V. Harmandaris and M. Deserno, in preparation]

Energy:RR

LL

Page 79: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Bending modulus

Energy:

Force:

RR

LL

Page 80: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Bending modulus

[V. Harmandaris and M. Deserno, in preparation]

Energy:

Force:

Bending modulus:

RR

LL

Page 81: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Bending modulus

[V. Harmandaris and M. Deserno, in preparation]

Energy:

Force:

Bending modulus:

What about fluctuations?

RR

LL

Page 82: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Bending modulus

[V. Harmandaris and M. Deserno, in preparation]

Energy:

Force:

Bending modulus:

What about fluctuations?

goes up

RR

LL

Page 83: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Bending modulus

[V. Harmandaris and M. Deserno, in preparation]

Energy:

Force:

Bending modulus:

What about fluctuations?

goes up goes down

RR

LL

Page 84: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Bending modulus

[V. Harmandaris and M. Deserno, in preparation]

Energy:

Force:

Bending modulus:

What about fluctuations?

goes up goes down

(plane waveapproximation)

RR

LL

Page 85: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Bending modulus

[V. Harmandaris and M. Deserno, in preparation]

Simulation:

Page 86: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Bending modulus

[V. Harmandaris and M. Deserno, in preparation]

Simulation:

Result fromfluctuations

Page 87: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Bending modulus

[V. Harmandaris and M. Deserno, in preparation]

Simulation:

Result fromfluctuations

Within our resolution no “stiffening” of the membrane at

large curvatures is observed!

Within our resolution no “stiffening” of the membrane at

large curvatures is observed!

Page 88: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Domain induced budding

mixed-lipidmembrane

demixing budding

time

Page 89: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Domain induced budding

mixed-lipidmembrane

demixing budding

time

T. Baumgart, S.T. Hess, W.W. Webb, Nature 425, 821 (2003)

5m

5m

sphingomyelin & cholesterol, Lo

DOPC & cholesterol, Ld

Page 90: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Domain induced budding

mixed-lipidmembrane

demixing budding

Balance between• line tension• curvature energy

[R. Lipowsky, (1993)]

time

8 patch2 r

Bud-size: nm50/2bud R

TkB25 nm/1 BTk

Good range for coarse-

grained simulations!

Page 91: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Movie of domain induced budding

16000 lipids, 50LJ between first 50 frames, then 500LJ for next 100 frames; 10kBT

Page 92: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Vice versa…

pancakepancakeR

Page 93: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Vice versa…

holeholeR

frame tension

line tension

RRE 22 Energy for constant frame tension: (Litster, 1975)

Energy for constant frame area:

R

A

RAAKE 2

)(

0

220

21

(Farago 2003; Tolpekina et al., 2004)

nucleation scenario

Page 94: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

wc=1.6, kBT=1.1, =15kBT

Membranes under tensionMeasure tension as a function of frame size (NAT ensemble)

Page 95: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

wc=1.6, kBT=1.1, =15kBT

Membranes under tensionMeasure tension as a function of frame size (NAT ensemble)

pore opens

membrane buckles

Page 96: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Membranes under tensionMeasure tension as a function of frame size (NAT-ensemble)

wc=1.6, kBT=1.1, =15kBT

Simplest possible theory for pore opening: Harmonic extensibility plus line tension.O. Farago, J. Chem. Phys. 119, 596 (2003);T. V. Tolpekina, W. K. den Otter, and W. J. Briels, J. Chem. Phys. 121, 8014 (2004)

Three fit-parameter:

zero tension area

compressibility

rupture tension

6 mN/m3 kT/nm

Page 97: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Lipid sorting in nature

Different cellular membranes are linked by many trafficking processes.

Yet, different membranes have distinctly different lipid compositions!

Why doesn’t the trafficking mess up the compositional gradients?

Idea: trafficking creates the gradient!

Page 98: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Lipid sorting by curvature

50:50mixture

I. R. Cooke and M. Deserno, to appear in Biophys. J.

Page 99: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Lipid sorting by curvature

50:50mixture

Simple model gives:

Density of big headed lipids in the outer

monolayer

Density of big headed lipids in the inner

monolayer

Linear in bilayer

curvature!

R

I. R. Cooke and M. Deserno, to appear in Biophys. J.

Page 100: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Lipid sorting by curvature

50:50mixture

Simple model gives:

Density of big headed lipids in the inner

monolayer

Linear in bilayer

curvature!

in

outln

KDensity of big headed

lipids in the outer monolayer

R

I. R. Cooke and M. Deserno, to appear in Biophys. J.

Page 101: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

in

outln

K

How big is this effect?

45.0lnin

out

6.1in

out

21

21

in

out6.1 2

1out

21

in }

nm12R

0.11R

I. R. Cooke and M. Deserno, to appear in Biophys. J.

Page 102: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

in

outln

K

How big is this effect?

45.0lnin

out

6.1in

out

21

21

in

out6.1 2

1out

21

in }

nm12R

0.11

)(21e

1e 3/2

/2

21

RRkT

KkTKK

kTKK

OlMl

l

M

M

R

I. R. Cooke and M. Deserno, to appear in Biophys. J.

Page 103: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

in

outln

K

How big is this effect?

45.0lnin

out

6.1in

out

21

21

in

out6.1 2

1out

21

in }

nm12R

0.11

)(21e

1e 3/2

/2

21

RRkT

KkTKK

kTKK

OlMl

l

M

M

nm50R

0.03

That’s small !

R

I. R. Cooke and M. Deserno, to appear in Biophys. J.

Page 104: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Neck regionsWhat happens in the highly curved regions where a bud is forming?

H.T. McMahon, J.L. Gallop, Nature 438, 590 (2005)

I. R. Cooke and M. Deserno, to appear in Biophys. J.

Page 105: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Neck regionsWhat happens in the highly curved regions where a bud is forming?

H.T. McMahon, J.L. Gallop, Nature 438, 590 (2005)

I. R. Cooke and M. Deserno, to appear in Biophys. J.

Page 106: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Neck regionsWhat happens in the highly curved regions where a bud is forming?

H.T. McMahon, J.L. Gallop, Nature 438, 590 (2005)

I. R. Cooke and M. Deserno, to appear in Biophys. J.

Page 107: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Neck regionsWhat happens in the highly curved regions where a bud is forming?

Density map of big-headed

lipids

Reason:mean curvature

is zero!Hardly any effect in the neck region! I. R. Cooke and M. Deserno, to appear in Biophys. J.

Page 108: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Mediated interactions

Colloid

ColloidMembrane (=30kT)

B. Reynolds, G. Illya, V. Harmandaris, M. Deserno, in preparation

Page 109: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Mediated interactions

does not stickto membranedoes not stickto membrane

sticks to membranesticks to membrane

zero lateral tension

zero lateral tension

Janus-colloids{}

B. Reynolds, G. Illya, V. Harmandaris, M. Deserno, in preparation

Page 110: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Mediated interactionsFix horizontal separation by

“computational laser tweezers”

Force on tweezer equalsforce between particles!

B. Reynolds, G. Illya, V. Harmandaris, M. Deserno, in preparation

Page 111: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Force-distance-curves

distance

forc

e

B. Reynolds, G. Illya, V. Harmandaris, M. Deserno, in preparation

Page 112: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Four-colloid-interaction

8000 lipids, 4 colloids; 50LJ between frames (448), 12kBT

Page 113: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Four-colloid-interaction

8000 lipids, 4 colloids, 12kBT ; rotation of “final” configuration

Page 114: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

Summary

Simple solvent-free coarse-grained lipid model with pair interactions

Physics is correct, values are tunable

There are many more such questions!

Biological questions accessible, such as budding, coarsening, sorting

Page 115: Lipid membranes between nano and micro: Markus Deserno Max-Planck-Institut für Polymerforschung, Mainz Cells and Materials, Workshop I: Membrane Protein.

GregoriaGregoria

VagelisVagelis(me)(me)

DavoodDavood

MartinMartinIraIra

BenBen

Acknowledgements

Kurt KremerKurt Kremer

Andreas Janshoff, Siegfried SteltenkampAndreas Janshoff, Siegfried Steltenkamp

Olaf Lenz, Friederike SchmidOlaf Lenz, Friederike Schmid

Oded Farago, Hiroshi NoguchiOded Farago, Hiroshi Noguchi

Jemal GuvenJemal Guven