Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf ·...

41
Linking Invariant of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples Higher linking L n,n-1,...,1,0 Examples Massey-Milnor linking L * n,n-1,...,1,0 Table of first non-vanishing linking MATH, Academia Sinica, R.O.C Linking Invariant of Knot Theory Chun-Chung Hsieh Institute of Mathematics Academia Sinica Taiwan EACAT4, 2011 Tokyo, Japan

Transcript of Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf ·...

Page 1: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Linking Invariant of Knot Theory

Chun-Chung Hsieh

Institute of MathematicsAcademia Sinica

Taiwan

EACAT4, 2011Tokyo, Japan

Page 2: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Introduction

L = knot = {L0,L1, . . . ,Ln} ≤ R3, each Li is an oriented basedsmooth circle.

@@@I

6

?

���

x0 0

n

n − 1 2

1

.. . . . .

.

Page 3: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Introduction

Example 1:

Page 4: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Introduction

Example 2:

Page 5: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Introduction

Problem:

To look for knot invariant(KI, for short), KI:{all knots}→ R such thatKI takes the same value on the equivalence class of L which, bydefinition, is the equivalence class of knots under the ambientmotions of R3.

Page 6: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Reidemeister moves

Lemma (Reidemeister) KI:{knots}→ R is a knot invariant iff KI isinvariant under the following 3 moves,

Page 7: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Reidemeister moves

Page 8: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Reidemeister moves

Page 9: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Examples

Theorem (Gauss)

For a knot L = {L0,L1} of 2 components, the numberL1,0 =

∑L1∧L0

(1,0) is an invariant, where

(1) L1 ∧ L0 refers to the crossing of L1, and L0 when representedby a knot diagram of L, and

(2) (1,0) is the crossing signature/symbol defined as

Page 10: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Examples

Page 11: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Examples

Theorem (Gauss)

For a knot of 2 components L = {L0,L1}, the above invariantL1,0 =

∫L0

∫L1

< pull-back of the area form on S2 by the mapping

(L0 × L1 ∈ (x0, x1)→ x1 − x0

|x1 − x0|∈ S2) >.

Page 12: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Higher linking Ln,n−1,...,1,0

Remark/Definition (1) From now on, we will represent our knot of

(n + 1) components L = {L0,L1, . . . ,Ln} as:

@@@I

6

?

���

x0 0

n

n − 1 2

1

.. . . . .

.

Page 13: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Higher linking Ln,n−1,...,1,0

(2) One of the key aspect in this theory is to show that our knotinvariants are independent of the based points{xi ∈ Li |i = 0,1, . . . ,n}.

(3) Chern-Simons-Witten configuration space integral—CSW, forshort.

Page 14: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Higher linking Ln,n−1,...,1,0

Given a knot of (n + 1) components L = {L0,L1, . . . ,Ln}represented as a schematic diagram in the introduction and aCSW-graph of degree n, Γ supported on L we define theconfiguration space integral CSW(Γ) as follows.

Definition: a CSW-graph supported on L is a uni-trivalent graphwith univalent vertices supported on L; and degree(Γ) = #{edges of Γ} −#{trivalent vertices of Γ}.

Page 15: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Higher linking Ln,n−1,...,1,0

(3.1) To each edge AB of Γ, we associate the area form

pulled-back byA− B|A− B|

from the unit sphere in R3.

(3.2) Do the wedge product over all edges to get a differential formof degree 2e, denoted as WΓ.

(3.3) To each trivalent vertex, we associate a copy of the ambientspace R3.

(3.4) To each univalent vertex on the knot component Lj , weassociate a copy Lj , proper.

Page 16: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Higher linking Ln,n−1,...,1,0

(3.5) Do the “oriented product” of all spaces over all vertices to geta configuration space of dimension 2e, denoted as CΓ.

(3.6) CSW (Γ) =∫CΓ

WΓ, which by definition is the Feynman

diagram in the Chern-Simons-Witten perturbative quantum fieldtheory.

(4) Chern-Simons-Witten perturbative quantum field theoryChern-Simons-Witten linking Ln,n−1,...,1,0 = sum of all CSW (Γ)over the set of uni-trivalent graphs of degree n.

Page 17: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Examples

Exmaples 1.

(Gauss linking) L11.

Page 18: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Examples

Exmaples 2. For Borromean ring represented as knot diagram asabove, Gauss Linkings {Li,j} are not good enough to detect itsbeing different from the trivial triple. So, we need higher concept oflinking for knot of 3 components.

Page 19: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Examples

Exmaples 3. For L = {L0,L1,L2} for which all lower linkings of Lvanish, we define L2

2:

Page 20: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Examples

Exmaples 4. For a knot L = {L0,L1,L2,L3} for which all lowerlinkings vanish, we define L3

3:

0 1

23

0 1

23

0 1

23

0 1

23

0 1

23

0 1

23

01

23

0 1

23

0 1

2

3

0

1

23

x1

x0

x2

x3

x1

x2

x3

x0

Page 21: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Examples

Page 22: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Examples

Page 23: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Examples

0 1

2

3

01

23

0 1

23

0

1

23

x2

x2

x2 x2

x0

x3

Page 24: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Examples

0 1

2

3

0

1

2

3

0 1

23

0 1

23

x3 x3

x1

x2

x3 x3

0

1

23

0

1

2

3

0 1

23

0 1

23

x0 x0

x1

x0

x2

x0

Page 25: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Examples

Theorem (H-Yang, H-Kauffman-Tsau)

Given a knot of (n + 1) components L = {L0,L1, . . . ,Ln} for whichall linkings of strictly lower degrees vanish then Ln,n−1,...,1,0 is aknot invariant and is independent of the choice of based points.

Note: So in some sense Ln,n−1,...,1,0 is called the firstnon-vanishing linking of L.

Page 26: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Massey-Milnor linking L∗n,n−1,...,1,0

Next we introduce another concept of linkings—the so-calledMassey-Milnor linking L∗n,n−1,...,1,0. For this purpose we introducethe following.

Page 27: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Massey-Milnor linking L∗n,n−1,...,1,0

Definition: Given a knot L = {L0,L1, . . . ,Ln}

(1) For each knot component Lj , we introduce a differential 1-form

as: j(x) =∮

Lj< pull-back of area form from S2 by

(y − x)

|y − x |>,

∀x /∈ Lj .

(2) We define the key stuffs in this aspect—closed differential2-forms (n,n − 1, . . . ,1) and closed differential 1-forms< n,n − 1, . . . ,1 > as following inductively.

Page 28: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Massey-Milnor linking L∗n,n−1,...,1,0

(2-1)

(2,1) = 2 ∧ 1 + 2(d1)− 1(d2),

< 2,1 >= (2,1) + 21.

(2-2)

(3,2,1) =(3,2) ∧ 1 + 3 ∧ (2,1) + < 3,2 >(d1)− 31(d2) + < 1,2 >(d3),

< 3,2,1 >= (3,2,1) + (3,2)1 + 3< 2,1 >.

Page 29: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Massey-Milnor linking L∗n,n−1,...,1,0

(2-3) in general

(n,n − 1, . . . ,2,1) = (n,n − 1, . . . ,2) ∧ 1

+ (n,n − 1, . . . ,3) ∧ (2,1) + . . .

+ (n,n − 1) ∧ (n − 2, . . . ,1) + n ∧ (n − 1, . . . ,1)

+ < n,n − 1, . . . ,2 >(d1)−< n,n − 1, . . . ,3 >1(d2)

+ < n,n − 1, . . . ,4 >< 1,2 >(d3)± . . . . . .

+ (−1)n−1< 1,2, . . . ,n − 1 >(dn);

Page 30: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Massey-Milnor linking L∗n,n−1,...,1,0

< n,n − 1, . . . ,1 >= (n,n − 1, . . . ,1)

+ (n,n − 1, . . . ,2)1 + (n,n − 1, . . . ,3)< 2,1 >

+ · · ·+ n< n − 1, . . . ,1 >.

Page 31: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Massey-Milnor linking L∗n,n−1,...,1,0

(2-4)

In the above, over-bar(—) denotes the inverse of differential d−1

whenever well-defined for example: in< n,n − 1, . . . , j + 1 >< 1,2, . . . , j − 1 >(dj), as (dj) is a singularDirac 2-form supported only on Lj , functions< n,n − 1, . . . , j + 1 >(x) and< 1,2, . . . , j − 1 >(x) are well-defined in any tubular neighborhoodof Lj as long as∮

Lj

< n,n − 1, . . . , j + 1 >= 0 =

∮Lj

< 1,2, . . . , j − 1 > .

Page 32: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Massey-Milnor linking L∗n,n−1,...,1,0

(3)

L∗n,n−1,...,1,0 =∮L0

< n,n − 1, . . . ,2,1 >.

Page 33: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Massey-Milnor linking L∗n,n−1,...,1,0

Theorem (H) L∗n,n−1,...,1,0 is explicitly coded by the set ofChern-Simons-Witten graphs of degree n.

Theorem (H) The above two linkings coincide, namely thatLn,n−1,...,1,0 = L∗n,n−1,...,1,0.

Theorem (H) There are explicit/combinatorial formulae for the firstnon-vanishing linkings Ln,n−1,...,1,0.

Page 34: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Massey-Milnor linking L∗n,n−1,...,1,0

Example:

L2,1,0 =∑

(2,1)0 +∑1<

02(1,0)(2,0) +

∑2<

10(2,1)(0,1) +

∑0<

21(0,2)(1,2),

where (i , j) denotes the Gauss signature/symbol of crossing asdefined above and (2,1)0 stands for the “residue” defined below.

Page 35: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Massey-Milnor linking L∗n,n−1,...,1,0

Page 36: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Massey-Milnor linking L∗n,n−1,...,1,0

Page 37: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Table of first non-vanishing linking

In the following table, n = degree of linking and m + 1 = number ofknot components: Ln

m = linking of degree n supported onL = {L0,L1, . . . ,Lm−1,Lm}.

Page 38: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Table of first non-vanishing linking

QQ

QQ

QQ

Ln0

L50

L40

L30

L20

L10

Ln1

L51

L41

L31

L21

L11

Ln2

L52

L42

L32

L22

Ln3

L53

L43

L33

Ln4

L54

L44

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Page 39: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Table of first non-vanishing linking

Example L20.

Page 40: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Table of first non-vanishing linking

Example L30.

Page 41: Linking Invariant of Knot Theorypantodon.shinshu-u.ac.jp/.../slides/EACAT4slide_Hsieh.pdf · 2011-11-21 · of Knot Theory Chun-Chung Hsieh Introduction Reidemeister moves Examples

Linking Invariantof Knot Theory

Chun-ChungHsieh

Introduction

Reidemeistermoves

Examples

Higher linkingLn,n−1,...,1,0

Examples

Massey-MilnorlinkingL∗n,n−1,...,1,0

Table of firstnon-vanishinglinking

MATH, Academia Sinica, R.O.C

Table of first non-vanishing linking

Example L21.

0 0 0 0

1111

x0 x0 x0 x0

x1x1x1x1

.