Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between...

46
Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate average velocity, instantaneous velocity, and acceleration in a given frame of reference. b. Compare and contrast scalar and vector quantities. c. Compare graphically and algebraically the relationships among position, velocity,

Transcript of Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between...

Page 1: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Linear Motion or One Dimensional KinematicsSP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects.

a. Calculate average velocity, instantaneous velocity, and acceleration in a given frame of reference.

b. Compare and contrast scalar and vector quantities. c. Compare graphically and algebraically the relationships

among position, velocity, acceleration, and time.

Page 2: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Introduction• Kinematics is the science of describing the

motion of objects using words, diagrams, numbers, graphs, and equations.

• Kinematics is a branch of mechanics. The goal of any study of kinematics is to develop sophisticated mental models which serve to describe (and ultimately, explain) the motion of real-world objects.

Page 3: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Introduction• Physics is a mathematical science. The

underlying concepts and principles have a mathematical basis.

• Throughout the course of our study of physics, we will encounter a variety of concepts which have a mathematical basis associated with them.

• It is imperative that you have a functional scientific calculator with you from now on – NOT A CELL PHONE CALCULATOR, as those will NOT be permitted on tests/quizzes.

Page 4: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Scalars and Vectors• Scalars are quantities which are fully described

by a magnitude alone.– Magnitude refers to the size of a measurement

• Vectors are quantities which are fully described by both a magnitude and a direction.– Direction can be given as a movement through

space (N S E W) or within a coordinate plane (+ or -).– Vectors are represented visually with arrows

pointing in the direction of movement.

Page 5: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Scalars and VectorsCheck Your Understanding:

Categorize each quantity as being either a vector or a scalar.

QUANTITY CATEGORY

a. -5 cm  

b. 256 bytes  

c. 30 m/sec, East  

d. 80 degrees Celsius  

e. 4000 Calories  

f. 7 km, 50° NW  

Page 6: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

MATH ALERT!• Because vectors involve direction, the

problems will often involve combining values that either are or are not in the same direction.

• Vectors are always connected head to tail, and it does not matter in which order.

Page 7: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

MATH ALERT!• For single axis (all X or all Y) measurements,

we connect the vectors head to tail and simply add the values together, retaining the sign to represent direction.

Page 8: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

MATH ALERT!• For dual axis (both X and Y) measurements,

we connect the component vectors head to tail to create a right triangle.

• Connect the initial to the final position with a diagonal vector (i.e. the hypotenuse), called the resultant.

• Use the Pythagorean theorem to calculate the magnitude of the resultant vector.

• Use trig functions to calculate the direction of the resultant vector.

Page 9: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

MATH ALERT!

Page 10: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Distance and Displacement• Distance is a scalar quantity which refers to

"how much ground an object has covered" during its motion. – It can never be negative, never decreases, and can

have multiple directions.• Displacement is a vector quantity which refers

to "how far out of original position an object is“– It is the object's overall change (Δ) in position– Displacement can be negative, represents the

shortest path between two points, and has a singular direction.

Δ = final – initial

Page 11: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Distance and Displacement

Page 12: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Distance vs. DisplacementCheck Your Understanding:

1. You walk 4 meters East, 2 meters South, 4 meters West, and finally 2 meters North.

A. What is the distance covered? __________ mB. What is the displacement? __________ m _____

Page 13: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Distance vs. DisplacementCheck Your Understanding:

2. You walk 3 meters East, 7 meters South, 7 meters West, and finally 7 meters North.

A. What is the distance covered? __________ mB. What is the displacement? __________ m _____

Page 14: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Distance vs. DisplacementCheck Your Understanding:

3. You walk 3 meters East, 4 meters South, 5 meters West, and finally 6 meters North.

A. What is the distance covered? __________ mB. What is the displacement? __________ m _____

Page 15: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Speed and Velocity• Speed is a scalar quantity which refers to "how

fast an object is moving.“– Speed can be thought of as the rate at which an

object covers distance, or distance per time.– A fast-moving object has a high speed; a slow-

moving object has a low speed.– An object with no movement at all has a zero speed.

Page 16: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

• Instantaneous speed is the speed at any given instant in time.– What the speedometer reads when you look at it

• Average speed is the average of all instantaneous speeds– The average of an infinite number of speedometer

readings during a trip– Found simply by a total distance/total time ratio

Instantaneous Speedand Average Speed

Page 17: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Speed and Velocity• Velocity is a vector quantity which refers to "the

rate at which an object changes its position.“– Velocity can be thought of as the rate at which an

object covers displacement, or displacement per time.

• Average velocity is calculated by a total displacement/total time ratio, with consideration of direction.

Page 18: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Average Speed vs. Average Velocity

Check Your Understanding:

1. While on vacation, you traveled from Augusta to Atlanta for a total distance of 234 km. Your trip took 2.5 hours. What was your average speed? ________ km/hr

Can you determine average velocity?

Page 19: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Average Speed vs. Average Velocity

Check Your Understanding:

2. You walk 3 meters East, 7 meters South, 7 meters West, and finally 7 meters North. The entire motion lasted for 24 seconds. Average speed = _______ m/sAverage velocity = _________ m/s _____

Page 20: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Average Speed vs. Average Velocity

Check Your Understanding:

3. Joe is driving to Macon. The first leg of the trip is via I-20 W, where he travels 144 km to Madison. He then takes US 129 S for 70 km to Macon. The trip takes 2.25 hr.Average speed = _______ m/sAverage velocity = _________ m/s _____

Page 21: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

More Problems1. A runner makes one lap around a 200 m track in a time of

25.0 s. What was the runner's average speed?

2. If a car moves with an average speed of 60 km/hr, how

far will it travel if it continues this average rate for 4 hrs?

3. A bullet is shot from a rifle with a speed of 720 m/s. What time is required for the bullet to strike a target 3240 m away?

Page 22: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

More Problems4. A bird is heading toward a feeder for 11 m

north. It then travels east for 8 m and lands on a perch. The whole trip takes 25 s. What is the bird’s average velocity?

Page 23: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

• The slope of the line on a position versus time graph is equal to the velocity of the object.

• Check Your Understanding: Determine the velocity (i.e., slope) ofthe object as portrayed by the graph.

Position – Time Graphs

xf – xi

tf - ti

Page 24: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Position – Time Graphs

Page 25: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Position – Time GraphsConstant Velocity

Slow, Positive

Constant Velocity

Fast, Negative

Constant Velocity

Slow, Negative

Constant Velocity

Fast, Positive

Page 26: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Acceleration• Acceleration is a vector quantity which is defined

as the rate at which an object changes its velocity.– An object is accelerating if it is changing its velocity.

• For objects with a constant acceleration, the distance of travel is directly proportional to the square of the time of travel.

Page 27: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Acceleration

Page 28: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Acceleration• The direction of the acceleration vector depends

on two things:whether the object is speeding up or slowing

down whether the object is moving in the + or -

direction • The general RULE OF THUMB is:

If an object is slowing down, then its acceleration is in the opposite direction of its motion.

Page 29: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Animation

Page 30: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Average AccelerationCheck Your Understanding:1. Use the equation for acceleration to determine

the acceleration for the following two motions.

• Acceleration A = _________ m/s/s or m/s2

• Acceleration B = _________ m/s/s or m/s2

Page 31: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Average Acceleration

Check Your Understanding:

2. A roller coaster car rapidly picks up speed as it rolls down a slope. As it starts down the slope, its speed is 4 m/s. Three seconds later, at the bottom of the slope, its speed is 22 m/s. What is its average acceleration?

Page 32: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Average Acceleration

Check Your Understanding:

3. You are traveling in a car that is moving at a velocity of 20 m/s. Suddenly, a car 10 meters in front of you slams on its brakes. At that moment, you also slam on your brakes and slow to 5 m/s. Calculate the acceleration if it took 2 seconds to slow your car down.

Page 33: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

More Problems4. Drag racers are able to accelerate at 12.5 m/s2 from

rest to 100 m/s before crossing the finish line. How much time elapses during the run?

5. A bus decelerates at -8.3 m/s for 3.0 s to pick up passengers. What is the bus’s velocity change?

6. You ride for 2 hours on cruise control at 70 mi/hr. What is your average acceleration?

Page 34: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Kinematic Equations

Δx – displacement (how far?)t – time (how long?)a – accelerationvi – initial velocity

vf – final velocity

v = Δx a = Δv vf = vi + at vf2 = vi

2 + 2aΔx t t

Δx = vit + ½at2

Page 35: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Kinematic Example

Ima Hurryin is approaching a stoplight moving with a velocity of +30.0 m/s. The light turns yellow, and Ima applies the brakes and skids to a stop. If Ima's acceleration is -8.00 m/s2, then determine the displacement of the car during the skidding process.

Page 36: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Free Fall and Gravitational Acceleration

• A free-falling object is one which is falling under the sole influence of gravity. This definition of free fall leads to two important characteristics about a free-falling object:Free-falling objects do not encounter air

resistanceAll free-falling objects (on Earth) accelerate

downwards at a rate of -9.8 m/s2

This rate is commonly referred to as g

Page 37: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Free Fall and Gravitational Acceleration

• All of the equations that work for HORIZONTAL (x-direction) motion ALSO work for VERTICAL (y-direction) motion.

• Simply substitute g for a and Δy for Δx

• Generally, free falling objects start falling from rest, so it tends to simplify the equations by eliminating vi

Page 38: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

The Big Misconception • The acceleration of gravity, g, is the same for all free-

falling objects regardless of how long they have been falling, or whether they were initially dropped from rest or thrown up into the air.

• BUT "Wouldn't an elephant free-fall faster than a mouse?" NO!!• WHY?

• All objects free fall at the same rate of acceleration, regardless of their mass.

Page 39: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

• Recall that the slope of the line on a position versus time graph is equal to the velocity of the object.

• This is really easy to calculate for objects moving at a constant velocity (i.e. having NO acceleration)

Position – Time Graphs

Page 40: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

• However, for objects WITH accelerated motion, the graphs look quite different:

Position – Time Graphs

Changing VelocityPositive

Changing VelocitySlow to Fast,

Negative

Changing VelocityFast to Slow,

Negative

Page 41: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

• Calculating the slope of those curved lines requires calculus, so we won’t be doing that…so, how do we determine the value of acceleration from a graph?

• We use VELOCITY-TIME graphs!• The slope of the line on a velocity-time graph is

acceleration:

Acceleration Graphs

vf – vi

tf - ti

Page 42: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Velocity – Time GraphsPositive Velocity

Zero Acceleration

Page 43: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Check Your UnderstandingThe velocity-time graph for a two-stage rocket is shown below. Use the graph and your understanding of slope calculations to determine the acceleration of the rocket during the identified time intervals.

Velocity – Time Graphs

Page 44: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Ticker Tape Diagrams• A common way of analyzing the motion of objects

in physics labs is to perform a ticker tape analysis. • A long paper tape is attached to a moving object

and threaded through a device that places a mark on the tape at regular intervals of time - say every 0.10 second.

• As the object moves, it drags the tape through the "ticker," thus leaving a trail of dots. The trail of dots provides a history of the object's motion and therefore a representation of the object's motion.

Page 45: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Ticker Tape Diagrams

Page 46: Linear Motion or One Dimensional Kinematics SP1. Students will analyze the relationships between force, mass, gravity, and the motion of objects. a. Calculate.

Ticker Tape DiagramsCheck Your Understanding:

Imagine a car with a leaky engine that drips oil at a regular rate. As the car travels through town, it would leave a trace of oil on the street that would reveal information about the motion of the car. Analyze the three traces of Renatta Oyle's car as shown below.

1.

2.

3.