LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26,...

29
LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002

Transcript of LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26,...

Page 1: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

LIGO-G020276-00-D

Fused Silica Suspensions

Phil Willems

LIGO/Caltech

Elba GWADW Meeting

May 19-26, 2002

Page 2: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

2LIGO-G020276-00-D

Page 3: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

3LIGO-G020276-00-D

Justification for Silica

Metal wire suspension thermal noise dominates in the low audio frequency range

Best metal wires get about Q=105-106 for violin modes (Niobium flexures approach 107)

Very high intrinsic Q of fused silica, plus other nice mechanical properties, allow far lower thermal noise

Estimates are that suspension noise will drop below radiation pressure noise in AdLIGO

Page 4: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

4LIGO-G020276-00-D

Thermal noise, metal vs. silica

0.1 1 10 100frequency HHzL

1. ´ 10- 21

1. ´ 10- 19

1. ´ 10- 17

1. ´ 10- 15

1. ´ 10- 13

tnemecalpsid

HmtrqsHzHL

Red: metal Black: silica

Page 5: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

5LIGO-G020276-00-D

What’s so nice about silica

Intrinsic Q is very high (8x107 and climbing) Surface losses limit this, but still to very high values Thermal expansion low, giving small thermoelastic

damping Young’s modulus increases with temperature,

allowing cancellation of nonlinear thermoelastic damping

Silica is strong (same yield load as same diameter steel)

But has lower elastic modulus, so less bending stiffness, higher dilution

Page 6: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

6LIGO-G020276-00-D

Size Dependence of Fiber Loss

Loss inversely

proportional to

volume/surface

ratio

Data from Syracuse group

Page 7: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

7LIGO-G020276-00-D

Q of Typical Silica Fiber

K/109.3α 7

8106.7φ intrinsic loss,

thermoelastic loss,

Page 8: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

8LIGO-G020276-00-D

Nonlinear Thermoelastic Damping

Loss function :

2

2

NTEωτ1

ωτα

ρ

E

u

dT

dE

C

TE

V

k

rCVfiber 4

0737. 2 k

Ct Vribbon

2

2

Note: true only for u large compared to oscillation strain

Page 9: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

9LIGO-G020276-00-D

Typical silica fiber strengths

Page 10: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

10LIGO-G020276-00-D

Some Notable Results

Intrinsic Q=8x10^7 for thick annealed rod (Syracuse) Pendulum Q=2.5x10^8 for bifilar torsional pendulum

(Moscow/Glasgow) Violin Q=5.2x10^8 (Caltech) Vertical Bounce Q=1.2x10^7 (Caltech)

Page 11: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

11LIGO-G020276-00-D

Alternative Suspension Geometries

Fiber- easy to make, low thermal noise, diameter fixed by NTE

Ribbon- somewhat harder to make, but aspect ratio can be chosen to push increased NTE damping to higher frequency, allowing cross section choice to set vertical bounce frequency

Dumbbell fiber- somewhat harder to make, optimizes end diameters for NTE and middle diameter for lower vertical bounce frequency

Page 12: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

12LIGO-G020276-00-D

1 5 10 50 100 500frequency , Hz

1. ´ 10- 21

1. ´ 10- 19

1. ´ 10- 17

1. ´ 10- 15tnemecalpsid

esion

,mtrqsH

zHL

Thermal noise of fibers and ribbons

Note: assumes AdLIGO suspension parameters

Red: fiber

Blue: ribbon

Black: dumbbell

fiber

Page 13: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

13LIGO-G020276-00-D

Difficulties, Peculiarities, and Work To Be Done

Quartz suspensions are very brittle, need tender loving care.

Silica fibers are welded, not clamped, into suspension. Effects of welding attachments and tapered ends must be considered.

Demonstration of expected high Q’s still elusive. Stress dependence of loss not yet known. Excess noise in fused silica not yet known. Violin modes have such high Q that they interfere

with interferometer control and must be damped.

Page 14: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

14LIGO-G020276-00-D

Influence of Welded Pins on Suspension Q

The program that models dumbbell fibers can easily model the welded pins on the ends of suspension fibers (good approximation if pins are relatively long and thin)

Used this analysis to confirm Mitrofanov and Tokmakov’s estimate of Q limit due to lossy pins

Our result: this is substantially correct, although for thicker fibers the torque also plays a significant role. Basic result:

A reasonably good, reasonably short pin will not unduly influence Q or thermal noise.

2

11

ω

4

pp

pv

Lm

MgQQ

Page 15: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

15LIGO-G020276-00-D

Influence of Taper Ends on Suspension Loss

Suspension fibers drawn from rod stock often retain thick rod ends for ease in welding. The tapered transition from fiber to end increases the effective thickness of the fiber and reduces the dissipation dilution.

Assuming diameter-independent loss (not strictly true), finite-element models show factor of two reduction of violin mode Q for typical suspension experimental parameters due to tapers.

Page 16: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

LIGO-G020276-00-D

Silica Suspension Research at Caltech

P. Willems, V. Sannibale, V. Mitrofanov, J. Weel, M. Thattai, A. Heptonstall, J. Johnson, D. Berns

Page 17: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

17LIGO-G020276-00-D

Suspensions Research 2,600 Years Ago

Page 18: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

18LIGO-G020276-00-D

Suspensions Research Today

Automated fiber pulling lathe

Q-measurement rig

Page 19: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

19LIGO-G020276-00-D

Page 20: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

20LIGO-G020276-00-D

Welded Fiber End

Page 21: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

21LIGO-G020276-00-D

Measurement of (dE/dT)/E from Temperature Shift of Unloaded Fiber Mode Frequencies

K/1052.1

/2

/

4

f

dTdf

E

dTdE

Page 22: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

22LIGO-G020276-00-D

Mode Frequencies: theory vs. experiment

779

780

781

782

783

784

785

786

787

0 1 2 3 4 5 6 7

mode number

freq

uen

cy/m

od

e n

um

ber

data

theory

Page 23: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

23LIGO-G020276-00-D

Temperature Shift of the Violin Modes Yields the Dilution Factor

)2/(1

)(2

1/00 ββuα

Dβuα

f

dTdf

nn

n

nn

n

D

β

f

dTdf

2

/

For this suspension,

In general,

Page 24: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

24LIGO-G020276-00-D

Good Agreement with Theory

datao theory

Page 25: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

25LIGO-G020276-00-D

Q of Typical Silica Fiber

K/109.3α 7

8106.7φ intrinsic loss,

thermoelastic loss,

Page 26: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

26LIGO-G020276-00-D

Q’s of the Violin Modes

theory, with NTE

theory, w/o NTE

theory, w/o NTE

and x10-7/K

data

Page 27: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

27LIGO-G020276-00-D

Vertical Bounce Apparatus

isolation mass

test mass

tensioner

Page 28: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

28LIGO-G020276-00-D

0 5000 10000 15000 20000 25000TimeHsL-4

-3

-2

-1

0

1

nl

edutilpma

Vertical Bounce Ringdown(first result)

Q=1.25e7

Note: this fiber under the same stress planned for AdLIGO

Page 29: LIGO-G020276-00-D Fused Silica Suspensions Phil Willems LIGO/Caltech Elba GWADW Meeting May 19-26, 2002.

29LIGO-G020276-00-D

Q of Typical Silica Fiber