Light Radio-isotopes Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

59
July 4, 2022 1 Light Radio-isotopes Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions O. Aviv 1 , D. Berkovits 2 , M. Hass 1 , O. Heber 1 , T. Hirsh 1,2 , V. Kumar 2 , M. Lewitowicz 3 , F. de-Oliveira 3 , G. Ron 4 , S. Vaintraub 1,2 1. The Weizmann Institute of Science, Rehovot, ISRAEL 2. Soreq Nuclear Research Center, Yavne, ISRAEL 3. GANIL, Caen, FRANCE 4. LBL, Berkeley, USA

description

Light Radio-isotopes Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions. O. Aviv 1 , D. Berkovits 2 , M. Hass 1 , O. Heber 1 , T. Hirsh 1,2 , V. Kumar 2 , M. Lewitowicz 3 , F. de-Oliveira 3 , G. Ron 4 , S. Vaintraub 1,2. - PowerPoint PPT Presentation

Transcript of Light Radio-isotopes Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

Page 1: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 1

Light Radio-isotopes

Nuclear Astrophysics, Neutrino Physics

and

Fundamental Interactions

O. Aviv1, D. Berkovits2, M. Hass1, O. Heber1, T. Hirsh1,2,

V. Kumar2, M. Lewitowicz3, F. de-Oliveira3, G. Ron4,

S. Vaintraub1,21. The Weizmann Institute of Science, Rehovot, ISRAEL

2. Soreq Nuclear Research Center, Yavne, ISRAEL

3. GANIL, Caen, FRANCE

4. LBL, Berkeley, USA

Page 2: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 2

Or

A glance at current Experimental Nuclear Physics

at the Weizmann Institute

Nuclear Structure Far-From-Stability – Radioactive Beams

Nuclear Astrophysics

Fundamental Interactions

Page 3: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

21/04/23 22:34

Page 4: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 4

Secondary neutrons + fission

BUT

Also light RIB’s

Page 5: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

14 UD Pelletron Accelerator at the WI

April 21, 2023 5

“20th Century”

Page 6: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 6

ECR Ion Source, RFQ and 1st cryo-module in situ

“21st Century”

The SARAF accelerator

at Soreq, Israel.

Summer 2009

Final Commissioning of Phase –I

Nov. 2009 –

1 mA p @ 3.5 MeV

Page 7: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 7

Two-stage production scheme

Also with a 14 MeV d+t

“neutron generator” at the WI

Page 8: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

8

6He and 8Li beams in WIS6He and 8Li beams in WIS

~1010 n/sec 14.1 MeV

WIS d-t NG

Heated Porous BeO or B4C target Extractio

n by diffusion

Ionization

~6∙107 6He/s ~2∙107 8Li/s

High efficiency

Efficiency ?

Page 9: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 9

6He production (n,) cross section

0

20

40

60

80

100

120

0 2 4 6 8 10

neutron energy (MeV)

Cro

ss s

ecti

on

(m

b) Bass 1961

Savilev 1958Stelson 1957Stelson 1957MCNP

9Be(n,)6He

0

100

200

300

400

500

600

700

0 5 10 15 20

n energy (MeV)

Cro

ss s

ectio

n (m

b)

0.0E+00

5.0E+11

1.0E+12

1.5E+12

2.0E+12

2.5E+12

3.0E+12

3.5E+12

n flu

x pe

r 2

mA

d (

s-1)

9Be(n,2n)

9Be(n,)6He

n in Be target

Production yield of the order of 5∙1012 6He per 1 mA d@40 MeV

Remember also 11B(n,)8Li

Page 10: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

10

SARAF/SPIRAL2 d-Li neutron flux is more suitable for 6He production than 8Li

6He vs. 8Li Production using SARAF/SPIRAL2 40 MeV d on

Lithium neutrons

9Be(n,α)6He6He β- t0.5= 807 ms

8Li β- t0.5= 838 ms

11B(n,α)8Li

Page 11: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

11

Extraction of RIBExtraction of RIB

ISOLDE Exp. T. Stora at al. 17.4.2009

BeO

BN

Page 12: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 12

Preliminary results of ISOLDE BeO run – April 2009

See talk by Thierry Stora – this WORKSHOP

Page 13: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

21/04/23 22:34מיכאל הס - מפגשים

2009בחזית המדע

Fusion Reactions in the Sun:

The main p-p chain

WI

Page 14: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

21/04/23 22:34מיכאל הס - מפגשים

2009בחזית המדע

Theory vs. Experiment for the 3 solar-neutrino experiments

Cl

Ar + e-

E> 0.81 MeV

Ga

Ge + e-

E> 0.23 MeV

SNU SNUSNU

Page 15: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

21/04/23 22:34מיכאל הס - מפגשים

2009בחזית המדע

The SNO (Sudbury Neutrino Observatory) Experiment

A D2O Detector

Neutral currents vs Charge Currents

Page 16: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

21/04/23 22:34מיכאל הס - מפגשים

2009בחזית המדע

The “Standard Model” of Particle Physics

Page 17: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 17

The -beam ConceptProduction of an intense collimated neutrino (anti neutrino) beam directed at neutrino detectors via decay of accelerated radioactive ions

Decay

Ring

ISOL target & Ion source

SPL

CyclotronsStorage ring and fast cycling synchrotron

6He 6Li + e- +18Ne 18F + e+ + Li 8Be + e- + v

PS

SPSTo the French Alps

Page 18: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 18

Mass accretion from a companion into a neutron star (black hole).

Role of 14O, 15O and 18Ne in the physics

of x-ray bursts

4He(15O,)19NEM. Wiescher et al. Erice Conference, 2007

J.L. Fisker et al., arXiv:astro-ph/070241

Page 19: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 19

g.s.

‘2000

Type II Supernovae 8Li(,n)11B

Page 20: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

Example: 6He beta decaySee, e.g, Flechard et al, PRL (2008)

6Li

daughter nucleuse- Electron

eElectron

anti-neutrino

New physics beyond the Standard Model’s

V-A structure

eeLiHe 66

20

cos3

1)(

cos

6

e

eSM

e

e

E

pHedW

E

padW

Pure Gamow-Teller

Page 21: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

β-Decay Physics

Transition rate W (inverse lifetime) In case of nonoriented nuclei

In case of oriented nuclei ( - nuclear polarization)

J. D. Jackson, S. B. Treiman and H. W. Wyld, Nucl. Phys. 4, 206 (1957)

...1

ee

e

E

mb

EE

ppadW

...

)()(1

e

ee

e

e

e

e

E

pJR

EE

ppJDJ

E

pAdW

J

Beta-neutrino correlation coefficient

21

Page 22: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

Why RNB’s in Traps?

No possibility for detection of neutrinos

Small effects measurements - low energy of ions, multiple scattering, angle resolution

Atoms/Ions - “point source” in a trap

Increase of accuracy in measurements: Angular correlations

Energy

22

Page 23: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

Current Status on 6He

April 21, 2023 23

~2 % limit on any possible deviation – hence improve limit

Statistics + systematic limitations

Flechard et al: Paul trap, but “….MOT (Magneto Optical Trap)”

But He is noble gas – metastable state for MOT. LOW EFFICIENCY.

Statistics

Page 24: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

Optical resonator Particle resonator

Trapping of fast ion beams using electrostatic field

L

M

V V

Ek, q

V>Ek/q

Page 25: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

L=407 mm

Entrance mirror

Exit mirror

Fi

eld

free

regi

on

Page 26: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

V1

V4

V2V3

Vz

V1

V4

V2V3

Vz

Field free region

Trapping ion beams at keV energies

• No magnetic fields

• No RF fields

• No mass limit

• Large field free region

• Simple to operate

• Directionality

• External ion source

• Easy beam detection

Why is this trap different

from the other traps?

Detector (MCP)Ek

Neutrals

Page 27: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 27

Fig. 2 A schematic view of the EST for -decay studies. The radioactive ion, like 6He, moves with Ek-4.2 keV between the reflecting electrodes. The electrons are detected in position sensitive counters while the recoiling ions, due to kinematic focusing, are detected with very high efficiency in either one (determined by the instantaneous direction) of the annular MCP counters.

MPI – HD Participation

Page 28: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

)Very (preliminary simulations

April 21, 2023 28

Page 29: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

“In- House” Research! R&D steps at the WI

April 21, 2023 29

6He (+ ions) and 8Li (neutrals) production and extractions

EIBT parameters (bunching (pre-trapping),bunch size, timing

(with 4He) --- Re-use hardware from the 14 UD Pelletron

RNB in Trap and detection system

First measurements

SARAF…

Page 30: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

http://www.weizmann.ac.il/conferences/NPA5.

Page 31: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 31

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81

Alpha Energy (MeV)

Cro

ss S

ectio

n (m

b)

0.0E+00

5.0E+09

1.0E+10

1.5E+10

2.0E+10

2.5E+10

3.0E+10

Yie

ld (a

tom

s/se

c) (I

nten

sity

0.1

mA

) Alice Yield [at/s]

O16(a,2n)18Ne

0.0

0.5

1.0

1.5

2.0

2.5

15 17 19 21 23 25 27 29 31 33 35 37 39 41

Proton Energy (MeV)

Cro

ss S

ectio

n (m

b)

0.0E+00

1.0E+11

2.0E+11

3.0E+11

4.0E+11

5.0E+11

6.0E+11

7.0E+11

8.0E+11

9.0E+11

Yie

ld (ato

ms/s

ec) (In

ten

sity 2

mA

)

Alice Yield [at/s]

F19(p,2n)18Ne

Tentative results

Lower yield, but, better extraction..

Page 32: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 32

8Li energies of interestE(8Li [MeV])

3

6

Page 33: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 33

R&D Steps

Via neutron converter – 6He, 8Li, ..

Simulations – Geant4, MCNP – PRODUCTION rate of ~1013/mA!!!

Converter design

Target design – Diffusion & Extraction (BeO fibers,

Boron Nitrite fibers)

Direct production – 14,15O, 18Ne,..

Design of targets (heat) for direct production (O and Ne);

materials (gas?), …

Extraction. Nitrogen is “bad”. Perhaps C02? M. Loiselet, LLN

12C(3He,n)14O and 12C(4He,n)15O Experiment: Beam, Team, Detectors (RMS-like, Si ball, EXOGAM..)…

Page 34: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 34

Page 35: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 35

Towards a full proposal – objectives and milestones.

2007-2009 FP7 (Task 7.1) . Towards establishing a true collaboration.

Initial target design. R&D studies of both n-converter and direct production.

Test runs:

Soreq neutron generator

Soreq Phase I

GANIL (neutrons from C+C)

ISOLDE (neutrons from 1 GeV spallation)

2009-2011 Target (s) manufacturing. Parameters for experimental setup, synergy with

detector (particle, gamma, separator) projects

2012-……. SPIRAL-II

2012-……. SARAF??...

Page 36: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

B4C

April 21, 2023 36

01000

20003000

40005000

6000 400500

600700

800900

10001100

12000.0

2.0x10-6

4.0x10-6

6.0x10-6

8.0x10-6

1.0x10-5

1.2x10-5

1.4x10-5

1.6x10-5

1.8x10-5

2.0x10-5

Va

cuu

m

temp. (celsius)

time (min.)

0 1000 2000 3000 4000 5000 6000400

500

600

700

800

900

1000

1100

1200

Te

mp

. (C

)

Time (min)

B

We initiated the heating for Boron Carbide with temperature ~2000 C.

During the first few stages (T=200-5000 C), the heating was put off in between,

as the vacuum deteriorated beyond the limits. But then after it reached 500o C,

the process was continued in steps, so that vacuum may not deteriorate beyond 10 -5.

We initiated the heating for Boron Carbide with temperature ~2000 C.

During the first few stages (T=200-5000 C), the heating was put off in between,

as the vacuum deteriorated beyond the limits. But then after it reached 500o C,

the process was continued in steps, so that vacuum may not deteriorate beyond 10 -5.

GANIL 2010 – test of diffusion-effusion of porous B4C (?)

Page 37: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 37

The Astrophysical Journal, 650 (2006) 332J.L. Fisker et al.The Importance of 15O() 19Ne to X-Ray Bursts and Superbursts

Arxive-ph/0702412 Feb. 2007

J.L. Fisker et al.

Experimental measurements of the 15O( )19Ne reaction rate vs.

observations of type I X-ray bursts

Nuclear Physics A 718, (2003)  605

B. Davids et al.

Alpha-decay branching ratios of near-threshold states in 19Ne and the

astrophysical rate of 15O(α,γ)19NePRC 67 065809 (2003)

K. E. Rehm et al.

Branching ration of the 4.033 MeV 3/2+ state in 19Ne

Nuclear Physics A 688 (2001)465c.

S. Cherubini et al.

The 15O()19Ne reaction using a 18Ne radioactive beam

Partial sample of representative papers

Page 38: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 38

SUMMARY

Scientific Case

Calculations and simulations exist – but much more R&D needed

Presented at several recent scientific conferences .

Funds: EC (infrastructure), Local

“Road Map” towards a full experiment – test experiments!

OPEN COLLABORATION – participation welcome!!

Page 39: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

β-Decay PhysicsFor pure Fermi or pure Gamow-Teller (GT) transitions

the correlations coefficients become independent of the nuclear matrix elements

The correlations coefficients depends on scalar, vector, axial-vector and tensor coefficients in β-decay

Hamiltonian

For example, 6He β-decay (pure GT) beta-neutrino correlation coefficient can be measured in order to

check the presence of tensor interactions

...1

ee

e

E

mb

EE

ppadW

2'2'22ATAT CCCCa

..])(ˆ[ˆ,,,,

5' chCCOenOpH

TAVPSieiiii

39

Page 40: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 40

X-Ray Bursts and the “rp” process

The rp process and x-ray bursts - site of nucleo-synthesis

These movies simulate an x-ray burst and the rapid-proton capture (“rp”) process. The calculation begins at T9=T/10^9 K=40 with only neutrons and protons. As time progresses and the temperature drops below T9=10, nucleons assemble into 4He nuclei then into heavier mass nuclides. Once T9 falls below about 4, the QSE among the heavy nuclei begins to break down. Charged-particle reactions freeze out, and flow to higher mass number occurs via nuclear beta decay. This is the classical r-process phase.

Page 41: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

A new class of ion trapping devices: The Electrostatic Linear Ion Beam Trap

Physical Principle:

Photon Optics and Ion Optics

are Equivalent

Photons can be Trapped in an

Optical Resonator

Ions can be Trapped in an

Electrical Resonator?

R R

L

V1 V2

V1<V2

V V

Ek, q

V>Ek/q

Page 42: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 42

Typical X-ray bursts:

• 1036-1038 erg/s• duration 10 s – 100s• recurrence: hours-days• regular or irregular

Frequent and very brightphenomenon !

(stars 1033-1035 erg/s)

Page 43: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 43

A first experimental approach to the 15O + elastic scattering - Eur. Phys. J. A27, 183 (2006)

F. Vanderbist, P. Leleux, C. Angulo, E. Casarejos, M. Couder, M. Loiselet, G. Ryckewaert,

P. Descouvemont, M. Aliotta, T. Davinson, Z. Liu, and P.J. Woods

Recent experiments have determined (or put limits to ) for levels in 19Ne up to 5.092 MeV excitation energy. A conclusion is that a direct measurement of the 15O(, )19Ne

reaction in the region of astrophysical interest is currently impossible: 15O beams of intensity larger than 1011 pps on target would be required indeed to measure the 15O(a, )19Ne

cross-section in inverse kinematics in the energy region surrounding the first state above threshold, at 4.033 MeV….

Page 44: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 44

Examples of Reactions with RNB’s for Astrophysics

• 8B(p,)9C

• 8B(,p)11C

• 9C(,p)12N

• 11C(p,)12N

Page 45: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 45

ISOLDE experiment IS424 (Sept. ’07): (in collaboration with P.J. Woods et al.).

Recent Experiments (in progress)

The use of a 17F beam from the upgraded REX-ISOLDE facility to study the astrophysically important 14O(α,p)17F reaction in time reverse kinematics.

• REX-ISOLDE + MINIBALL• Only ~ 103 17F/s

On-line data of p- coincidences –

Indicating the 1st excited state of 17F

Page 46: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 46

EURISOL INTERNATIONAL ADVISORY PANEL :…“ .no progress has been made with the study of alternative production schemes

of 6He and 18Ne using low energy beams and strongly recommends that this study be completed…. The outcome of this study is an essential ingredient for the analysis whether it is technically feasible to decouple EURISOL and the beta-beams completely

Page 47: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 47

GANIL experiment – accepted by GANIL PAC : (in collaboration with Marialuisa Aliotta et al.)

Plan to investigate the direct 14O(,p)17F reaction at four different energies

in the energy region Ecm = 1.0-2.5 MeV

Calculated total S(E) factor.

Constructive (+) and destructive (-)

interference between the Jpp=1-

6.15 MeV state and the direct l=1

partial wave contribution are shown.

Page 48: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 48

Accelerator artist view

176 MHz 3.8 m 1.5 MeV/u

M/q2

1st cryostat 6 SC HWR 176 MHz 0=0.09

2nd – 6th cryostats 40 SC HWR 176

MHz 0=0.15

40 MeV x 2 mA p / d RF SC linac

Page 49: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 49

d beam C

β

β

β

β

n

n

6He or 8Li production measurements by betas

9Be or 11Bfoils

Or other pulsed neutron source

√ Easy experiment

√ Calibration of production for future extraction experiments

x All cross sections are already known

x Measuring 6He and 8Li betas is hard

x Only very thin targets are possible

20 sec

3 sec3 sec

20 sec

3 sec

Extra material for)n,2n ,(maybe Pb

Page 50: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 50

11BN

SEM picture of BN

√ High Melting Point

√ Exists in fibers and nanotubes forms

√ Could be bought in any shape and form.

Page 51: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 51

9BeO

√ High Melting Point

√ Could be made in fibers form.

√ No need of enrichmentx Very toxic.

ZrO2

Page 52: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 52

Model dependence of the neutrino-deuteron disintegration cross sections at

low energieshttp://il.arxiv.org/abs/nucl-th/0702073v1

Page 53: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 53

sm = 3•10-19 [/eV], but…..

Page 54: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

54

8Li Production Experiment8Li Production Experiment

time

irradiationmeasurement

3 sec 3 sec 0.1 sec

Page 55: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 55

Schematics and pictures of ISOLDE setup

Together with Tierry Stora and the ISOLDE Ion-Source group

Page 56: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

Neutrino oscillations “101”

April 21, 2023 56

Page 57: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

B4C

April 21, 2023 57

PropertyDensity (g.cm-3) 2.52Melting Point (°C) 2445Hardness (Knoop 100g) (kg.mm-2) 2900-3580Fracture Toughness (MPa.m-½) 2.9 - 3.7 Young's Modulus (GPa) 450 - 470 Electrical Conductivity (at 25°C) (S) 140Thermal Conductivity (at 25°C) (W/m.K) 30 - 42Thermal Expansion Co-eff. x10-6 (°C) 5Thermal neutron capture cross section (barn)

600

Typical properties of boron carbide.Typical properties of boron carbide.

Particle Size 3 100% < 10 microns after one stage grinding

Composition of Particles: Typical Values as           % of weight

Crystal Whiskers 3, 5 > 20 Platelet single crystals3, 5 > 10 Isometric crystals3, 5 Remainder to 100%Thickness of Crystal Whiskers and Platelets5

< 2 microns

Surface Area 4      2 - 9 m2/g

Page 58: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 58

Fusion Reactions in the Sun:The CNO cycle

14O

17F

(,p)

…..

Proposed at GANIL

Page 59: Light Radio-isotopes  Nuclear Astrophysics, Neutrino Physics and Fundamental Interactions

April 21, 2023 59

14N(d,2n)14O cross section and yield 14N(d,n)15O cross section and yield for a 2 mA deuteron beam for a 2 mA

deuterons beam

But, extraction of atomic oxygen…

Long-learned lesson:

“orders-of-magnitude improvement in sensitivity of measurement –

enhanced understanding and possibilities”.