Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life...

88
Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device Ulrika Isberg & Karin Nilsson Master of Science Thesis Stockholm 2011

Transcript of Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life...

Page 1: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

Life Cycle Assessment and Sustainability

Aspects of Solvatten, a Water

Cleaning Device

Ulrika Isberg & Karin Nilsson

Master of Science Thesis

Stockholm 2011

Page 2: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device
Page 3: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

Ulrika Isberg & Karin Nilsson

Master of Science Thesis STOCKHOLM 2011

Life Cycle Assessment and Sustainability Aspects

of Solvatten, a Water Cleaning Device

PRESENTED AT

INDUSTRIAL ECOLOGY ROYAL INSTITUTE OF TECHNOLOGY

Supervisor:

Björn Frostell, Industriell ekologi, KTH

Examiner:

Björn Frostell, Industriell ekologi, KTH

Page 4: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

TRITA-IM 2011:42

Industrial Ecology,

Royal Institute of Technology

www.ima.kth.se

Page 5: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

i    

Abstract  

Solvatten   is  a  water  cleaning  device  for  households   in  developing  countries.  As  a  Master  Thesis  for  the   Master   of   Science   in   Engineering   Programme   at   Kungliga   Tekniska   Högskolan   a   Life   Cycle  Assessment  of  Solvatten  has  been  conducted.  The  primary  aim  was  to  investigate  the  environmental  impacts   of   Solvatten   and   compare   it   with   two   other   common   methods   of   accessing   safe   water;  boiling  and  bottled  water.  Information  has  been  gathered  by  contacting  manufacturers  and  suppliers  and  analysed  in  the  computer  software  SimaPro.  The  stand-­‐alone  LCA  of  Solvatten  showed  that  the  product  gives  almost  no   impact  on  ecosystem  quality  and  human  health.  As   the  product  mostly   is  made  of  different  plastic  materials   (i.e.   fossil   fuels),  Solvatten  has   its  highest   impact   in  the  damage  category  of   resources.  Hence,  most  of  Solvatten’s  environmental   impact  comes   from  the  materials  and   production   processes   of   the   black   container   and   the   transparent   lid.   The   disposal   phase   of  Solvatten  has  been  left  out  of  the  data  analysis  as  there  is  a  large  uncertainty  in  waste  scenarios  of  developing   countries.   Instead,   a   comparison   was  made   between   three   different   waste   scenarios;  landfill,   incineration,   and   recycling   with   European   standards.   It   is   clear   that   recycling   is   the   best  alternative,   and  Solvatten  should   show   their   corporate   social   responsibility  by  organizing   this.   The  comparative  studies  conducted  for  Solvatten,  boiling  water  with  firewood  and  buying  bottled  water  indicated  that  due  to  Solvatten’s  long  lifetime,  the  environmental  impact  for  Solvatten  is  lower.  Also  discussed  in  the  report  are  the  economic  and  social  aspects  of  Solvatten,  which  are  a  great  advantage  for   Solvatten   since   both   time   and   money   can   be   saved.   Solvatten   is   concluded   to   be   a   good  alternative  for  accessing  safe  water.  

   

Page 6: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

ii    

Sammanfattning  

Solvatten   är   en   produkt   för   att   rena   vatten   i   hushåll   i   utvecklingsländer.   En   livscykelanalys   av  Solvatten   har   gjorts   som   examensarbete   för   civilingenjörsprogrammet   på   Kungliga   Tekniska  Högskolan.  Det  främsta  målet  med  analysen  var  att  utreda  Solvattens  miljöpåverkan  samt  att  jämföra  den  med  två  andra  sätt  att  få  tag  på  rent  vatten;  kokning  och  flaskvatten.  Information  har  samlats  in  genom   att   kontakta   producenter   och   leverantörer   och   sedan   analyserat   med   datorprogrammet  SimaPro.  Den  fristående  LCA:n  av  Solvatten  visade  att  produkten  nästan  inte  ger  någon  inverkan  på  ekosystem  kvalité  och  hälsa.  Eftersom  produkten  mestadels  är  gjord  utav  olika  plastmaterial   (d.v.s.  fossila  bränslen),  visar  analysen  högst  påverkan  i  kategorin  för  råvaror  (eng:  resources).  Den  största  delen   av   Solvatten’s  miljöpåverkan  kommer   ifrån  materialen  och   produktions  processerna   för   den  svarta   delen   av   dunken   samt   de   genomskinliga   locken.   Avfallshanteringen   för   Solvatten   fick  utelämnas   ur   dataanalysen,   då   osäkerheten   kring   olika   metoder   för   avfallshantering   är   för   stor   i  utvecklingsländer.   Istället   gjordes   en   jämförelse   mellan   tre   olika   avfallsscenarion;   deponering,  förbränning  och  återvinning  med  europeiska  standarder.  Det  är   tydligt  att  återvinning  är  det  bästa  alternativet,   och   att   Solvatten   AB   borde   visa   sitt   samhällsansvar   genom   att   organisera   detta.   Den  jämförande  studien  mellan  Solvatten,  kokning  och  flaskvatten  indikerar  att  Solvatten  har  den  lägsta  miljöpåverkan,   på   grund   av   produktens   långa   livslängd.   Rapporten   diskuterar   även   Solvattens  hållbarhet  ur  ekonomiska  och  sociala  perspektiv.  De  visar  att  Solvatten  har  stora  fördelar  i  att  både  tid  och  pengar  kan  sparas.  Slutsatsen  är  att  Solvatten  är  ett  bra  alternativ  för  att  få  tillgång  till  rent  vatten.  

Page 7: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

iii    

Page 8: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

iv    

Contents  

Abstract  ....................................................................................................................................................  i  

Sammanfattning  .......................................................................................................................................ii  

Contents  ..................................................................................................................................................  iv  

Figures  .....................................................................................................................................................  vi  

Tables  ......................................................................................................................................................  vi  

1   Introduction  .....................................................................................................................................  1  

1.1   Background  ..............................................................................................................................  1  

1.2   Aim  and  Objectives  ..................................................................................................................  1  

1.3   Methodology  ...........................................................................................................................  2  

2   Theory  ..............................................................................................................................................  3  

2.1   Water  and  Sanitation  ..............................................................................................................  3  

2.2   Solvatten  ..................................................................................................................................  4  

2.3   Comparison  with  Other  Methods  of  Accessing  Purified  Water  ..............................................  5  

2.4   Life  Cycle  Assessment  ............................................................................................................  11  

3   Goal  and  Scope  ..............................................................................................................................  15  

3.1   Goal  .......................................................................................................................................  15  

3.2   Scope  of  the  Study  .................................................................................................................  15  

4   Life  Cycle  Inventory  .......................................................................................................................  19  

4.1   Data  Collection  Procedure  .....................................................................................................  19  

4.2   Inventory  Data  .......................................................................................................................  21  

4.3   Data  Sources  ..........................................................................................................................  23  

4.4   Assumptions  and  Missing  Data  .............................................................................................  23  

5   Life  Cycle  Impact  Assessment  ........................................................................................................  25  

5.1   Classification  and  Characterization  .......................................................................................  25  

5.2   Impact  Categories  ..................................................................................................................  26  

5.3   Normalization  ........................................................................................................................  27  

5.4   Weighting  ..............................................................................................................................  28  

5.5   CO2-­‐equivalents  with  ReCiPe  .................................................................................................  28  

6   Interpretation  of  Stand-­‐Alone  LCA  ................................................................................................  29  

6.1   Results  ...................................................................................................................................  29  

6.2   Uncertainty  and  Sensitivity  Analysis  .....................................................................................  49  

6.3   Key  Findings  ...........................................................................................................................  51  

Page 9: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

v    

7   Comparative  Studies  .....................................................................................................................  53  

7.1   Boiling  ....................................................................................................................................  53  

7.2   Water  in  PET-­‐bottles  .............................................................................................................  59  

8   Discussion  ......................................................................................................................................  61  

8.1   Stand-­‐Alone  LCA  of  Solvatten  ................................................................................................  61  

8.2   Comparison  of  Solvatten  with  Other  Sources  of  Purified  Water  ..........................................  63  

8.3   Limitations  to  the  Solvatten  Study  ........................................................................................  65  

8.4   The  Sustainability  of  Solvatten  ..............................................................................................  65  

9   Conclusions  ....................................................................................................................................  67  

10   Acknowledgements  .......................................................................................................................  69  

11   References  .....................................................................................................................................  71  

Personal  Communication  ..................................................................................................................  73  

12   Appendixes  ....................................................................................................................................  74  

 

Page 10: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

vi    

Figures  

Figure  1  The  Solvatten  Unit  .....................................................................................................................  4  Figure  2  Initial  Simplified  Flowchart  of  the  Solvatten  Life  Cycle  from  Cradle  to  Grave  ........................  16  Figure  3  The  Different  Parts  of  Solvatten  Marked  on  a  Solvatten  Unit  ................................................  19  Figure  4  Detailed  Flow  Chart  of  Assembly  of  Solvatten  (without  classified  information)  ....................  20  Figure   5   Characterization   Result,   Showing   the   Impact   from   Different   Parts   of   Solvatten   on   the  Different  Impact  Categories,  in  the  Stand-­‐alone  Solvatten  Study  ........................................................  31  Figure  6  Normalization  Result,  Showing  the  Normalised  Impact  from  Different  Parts  of  Solvatten  on  the  Different  Impact  Categories,  in  the  Stand-­‐alone  Solvatten  Study  ..................................................  33  Figure  7  Normalization  Result,  Showing  the  Normalised  Impact  from  Different  Parts  of  Solvatten  on  the  Different  Damage  Categories,  in  the  Stand-­‐alone  Solvatten  Study  ................................................  34  Figure  8  Weighting  Result   -­‐  Showing  the  Weighted  Impact  from  Different  Parts  of  Solvatten  on  the  Different  Impact  Categories,  in  the  Stand-­‐alone  Solvatten  Study  ........................................................  36  Figure   9   A   Network   of   the   Solvatten   Assembly,   Showing   the   Characterized   Results   of   the   Impact  Category  Fossil  Fuels  .............................................................................................................................  38  Figure  10  Comparison  of  the  Impact  of  Waste  Scenarios  on  the  Impact  Categories  for  Solvatten  ......  42  Figure  11  Characterization  Results  of  Solvatten  with  Waste  Scenario:  Landfill....................................  43  Figure  12  Characterization  Results  of  Solvatten  with  Waste  Scenario:  Incineration  ............................  44  Figure  13  Characterization  Results  of  Solvatten  with  Waste  Scenario:  Recycling  ................................  45  Figure   14  A  Network   of   the   Solvatten  Assembly,   Showing   the   Characterized  Results   of   the   Impact  Category  Climate  Change  [cutoff:  1  %]  .................................................................................................  47  Figure  15  Comparison  of  the  Different  Impact  Categories  of  the  Solvatten  Unit  Using  20  %  and  5  %  Air  Freight  ...................................................................................................................................................  50  Figure  16  Simplified  Flowchart  of  Boiling  Water  ...................................................................................  53  Figure  17  Comparison  of  Solvatten  (Red)  and  Boiling  Water  (Green):  Figure  Showing  Characterisation  Results  Divided  into  the  Impact  Categories  ..........................................................................................  56  Figure   18   Comparison   of   Solvatten   (Red)   and   Boiling   Water   (Green):   The   Figure   Showing  Characterisation  Results  Divided  into  the  Damage  Categories  .............................................................  57  Figure   19   Comparison   Solvatten   (Red)   and   Boiling   Water   (Green):   The   Figure   Shows   Normalized  Results  Divided  into  Impact  Categories  .................................................................................................  58  

Tables  

Table  1  An  Overview  of  Different  Purifying  Methods  by  Comparing  Different  Criteria.  ......................  10  Table  2  Life  Cycle  Inventory  Results,  of  the  Stand-­‐alone  Solvatten  study,  Listing  the  Largest  Emissions  to  Air,  Soil,  and  Water.  ..........................................................................................................................  30  Table  3  Normalised  Results  of  the  Stand-­‐alone  Solvatten  Study,  Listing  the  Normalised  Values  of  the  Impacts  Category  Results.  .....................................................................................................................  32  Table  4  Weighted  Result  –  The  Values  of  the  Impact  Categories  after  Weighting,   in  the  Stand-­‐alone  Solvatten  Study......................................................................................................................................  35  Table   5   Results   from   the   Impact   Category   Climate   Change   Using   the   Impact   Assessment  Method  ReCiPe  ....................................................................................................................................................  48  Table   6   Results   from   the   Impact   Category   Climate   Change   Using   the   Impact   Assessment  Method  ReCiPe,  Including  the  Disposal  phase:  Incineration  ..............................................................................  48  

Page 11: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

vii    

 

Page 12: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

1  

1 Introduction  This  is  the  report  of  a  Life  Cycle  Assessment  of  Solvatten,  a  water  cleaning  device  for  households  in  developing  countries.  The  Life  Cycle  Assessment   is  performed  as  a  Master  Thesis   for  the  Master  of  Science   in   Engineering   Programme   at   Kungliga   Tekniska   Högskolan   in   Stockholm,   Sweden.   The  Master  Thesis  is  conducted  by  Ulrika  Isberg  and  Karin  Nilsson  during  the  spring  of  2011.  The  life  cycle  assessment  is  made  on  behalf  of  the  company  of  Solvatten  AB,  but  is  performed  independently.  The  primary  aim  of  the  life  cycle  assessment  is  to  investigate  the  environmental  impacts  of  Solvatten  and  to  see  how  the  impacts  differ  from  other  common  methods  of  accessing  safe  water.    

A   life   cycle   assessment   regards   many   product   specific   details   that   due   to   confidentiality   reasons  cannot   be   published   officially.   This   report   does   therefore   not   contain   any   specifics   on   materials,  production   processes   or   production   sites.   Such   information   is   reported   in   Appendixes   that   the  company  Solvatten  AB  can  choose  to  publish  to  whom  they  like.  In  the  end  of  this  official  report,  the  Appendixes  are  listed.  

1.1 Background  Today,  almost  a  billion  people  do  not  have  access   to  drinking  water   from  sources  with   safe  water  (World  Health  Organization,  2010).  Different  methods  of  purifying  water  are  hence  very  important,  as  clean  as  well  as  use  of  warm  water  is  a  major  factor  for  a  healthy  life  and  good  hygiene.  The  most  commonly  used  method   is   to  boil  water.  Boiling   is  very  effective   in  killing  pathogens  but  there  are  negative  side  effects  to  the  method;  burn   injuries,  unhealthy  smoke  and  dependency  on  an  energy  source   such   as   wood   fuel   or   gas   (World   Health   Organization,   2002).   Solvatten   is   a   method   that  purifies   and   heats   water   with   solar   energy;   it   is   a   black   plastic   container,   with   hinges   making   it  possible  to  fold  open.  On  the  inside  there  is  a  transparent  plastic  that  can  be  penetrated  by  the  UV-­‐radiation.   The  UV-­‐radiation   from   the   sun   heats   the  water,   yielding   the   same  effect   as   boiling   the  water,  as  well  as  kills  the  microorganisms.  In  about  2-­‐6  hours,  10  litres  of  water  will  be  purified.  The  unit  also  comes  with  an  indicator,  switching  from  a  red  sad  smiley  to  a  green  happy  smiley  when  the  right   temperature   is   reached.   This   indicator   is   very  easy   to  understand,   lowering   the  possibility  of  using   the  water   before   it   is   ready.   Solvatten   is   hence   suitable   for   developing   countries  where   the  availability  of  safe  water  is  small  (Solvatten  AB,  2010).  

As  Solvatten   is  a   technology,  which   is  developed   for  a  better   living  environment   in   the  developing  countries,   it   is   interesting   to   find   out   the   environmental   impacts   of   production   and   usage   of   the  product  itself.  A  Life  Cycle  Assessment  is  a  description  of  all  of  a  product’s  inputs  and  outputs  and  the  environmental  impacts  these  infer.    

1.2 Aim  and  Objectives  The   aim   of   this   thesis   is   to   perform   a   Life   Cycle   Assessment,   LCA,   of   the   product   Solvatten.   The  purpose   is   foremost   to   use   the   LCA   in  marketing   of   Solvatten.   To   finance   production,   and   hence  usage  of  Solvatten,  some  investors  require  an  LCA  showing  the  product’s  full  environmental  impact.  Another  purpose  is  that  Solvatten  AB  is  interested  in  parts  of  the  production  that  can  be  improved  in  terms   of   environmental   impacts.   Also,   a   comparison  will   be  made  with   boiling  water   and   bottled  water,  to  show  advantages  and  disadvantages  of  Solvatten.    

Page 13: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

2  

1.3 Methodology  This   life   cycle   assessment   was   performed   during   five   months,   January   to   June   2011,   involving  literature   review,   data   collection   and   data   analysis.   Data   collection   was   done   by   visiting   the  production   site   in   the   south   of   Sweden   and   contacting   suppliers   of   materials   by   personal  communication.  For  data  which  could  not  be  retrieved  from  suppliers  a  reasonable  assumption  was  made.  The  collected  data  were  then  analysed  with  the  computer  software  SimaPro  7.1.8  developed  by  PRé  Consultants  and   the   impact  assessment  method  Eco-­‐Indicator  99,  which   is   implemented   in  SimaPro.  The  results  were  then  compiled  and  discussed  in  this  report.  

Page 14: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

3  

2 Theory  This   theory   section  describes   the   importance  of  clean  water  and  good  sanitation.  The   invention  of  Solvatten  is  described  together  with  other  common  methods  of  cleaning  water.  One  objective  of  this  report   is   to   compare   Solvatten   with   boiling   water   and   bottled   water,   a  motivation   to   why   these  methods   are   chosen   for   the   comparison   is   included   in   this   theory   section.   Finally,   there   is   a  description  of  Life  Cycle  Assessment,  LCA,  as  a  tool  to  evaluate  the  product’s  environmental  impact.  

2.1 Water  and  Sanitation  One   of   the   United   Nations   Millennium   Development   Goals   (MDG)   concerns   environmental  sustainability   and   access   to   clean   water.   The   MDGs   are   a   strategy   agreed   upon   by   the   world’s  countries   to   reduce   the  poverty   in   the  world   (United  Nations  Millenium  Development  Goals,  n.d.).  Target   C   of   MDG7,   Ensure   Environmental   Sustainability,   declares   that   the   proportion   of   world  population   without   sustainable   access   to   drinking   water   and   basic   sanitation   should   be   halved  between   1990   and   2015   (United   Nations  Millenium   Development   Goals,   2011).   According   to   the  World  Health  Organization,  WHO,  sustainable  access  is  defined  as  having  access  to  protected  wells,  boreholes  or  rainwater  collections,   i.e.  so  called  improved  drinking-­‐water  sources.  In  1990,  23  %  of  the   world   population   lacked   such   access.   According   to   the   2010   prognosis   the   target   is   almost  reached,  as  less  than  13  %  of  the  world  population  lacks  access  to  improved  water  sources  in  2008.  Almost  the  whole  world  is  on  track  to  reach  the  target,  except  for  the  Sub-­‐Saharan  African  countries  that   have   had   a   flat   or   increasing   trend   the   last   20   years.   There   are   also   large   inequalities   when  comparing  urban  and  rural  areas.    Worldwide,  94  %  of  the  population  in  urban  areas  of  developing  countries  has  access  to  improved  drinking-­‐water,  whereas  only  76  %  in  rural  areas.  These  differences  are   especially   distinct   in   the   Sub-­‐Saharan   countries,   where   only   60   %   of   rural   areas   have   access  (World  Health  Organization,  2010).  

Today,   a   total   of   884  million   people   still   do   not   get   their   drinking-­‐water   from   improved   sources.  Almost  all  of  them  live  in  developing  countries  and  the  Sub-­‐Saharan  countries  accounts  for  almost  a  third   (World   Health   Organization,   2010).   In   a   report   summarizing   global   health   risks,   the   WHO  concludes   that   the   top   five   risk   factors   in   causing  disease  are;   childhood  underweight,   unsafe   sex,  alcohol  use,  unsafe  water  and  sanitation,  and  high  blood  pressure.  Together  the  top  five  risk  factors  cause  25  %  of  all  deaths  in  the  world  and  global  life  expectancy  could  be  increased  by  5  years  if  they  were   reduced.   Low-­‐income   countries   as   the   Sub-­‐Saharan   are   especially   affected   by   unsafe  water,  sanitation  and  hygiene.   The   report   states   that   in  2004,  1.9  millions  died  because  of  unsafe  water,  sanitation  and  hygiene.  The  region  with  the  largest  problem  was  Africa  with  47  %  (0.9  million)  of  all  deaths  and  children  age  0-­‐4  is  affected  the  most,  with  almost  81  %  (1.5  million)  of  all  deaths  (World  Health  Organization,  2009).  

Clearly,  improved  water  can  solve  serious  problems.  It  is  the  contamination  of  microorganisms  from  faecal  waste   in  water   that   threatens   the  health.  Therefore  methods  of  purifying  water  need   to  be  able  to  kill  all  types  of  pathogens  (World  Health  Organization,  2002).  The  presence  of  Escherichia  coli  works  as  an  indicator  of  recent  faecal  contamination  and  the  World  Health  Organization,  WHO,  has  therefore  set  the  guideline  to  less  than  1  E.  coli  in  100  ml  of  water  (World  Health  Organization,  2008).  Having  access  to  an  improved  water  source  is  no  guarantee  for  the  water  being  pure.  Faecal  waste  from  humans  and  animals  can  contaminate  groundwater  in  wells  and  boreholes  from  above.  There  

Page 15: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

4  

are   also   problems   with   quantity   as   the   households   might   not   meet   their   daily   needs   when   the  demand  of  groundwater  is  higher  than  the  formation.  (Nordström,  2005).  

In  a  social  perspective,  it  is  the  women  who  are  responsible  of  collecting  water  in  64  %  of  the  cases.  In  12  %  of  the  cases  it  is  children  (age  under  15)  that  are  responsible.  Research  has  shown  that  if  it  takes  longer  than  30  minutes  to  collect  water  (i.e.  walk  to  the  water  source  and  back),  it  is  probable  that  the  amount  of  water  collected  decreases  so  that  the  family’s  daily  minimum  requirement  is  not  met.  The  time  lost  due  to  making  multiple  trips  in  those  cases  is  huge.  In  the  Sub-­‐Saharan  countries  more   than  a  quarter  of   the  populations   spend  more   than  half  an  hour  per  day   to  collect  water.   If  water  collection  takes  too  much  time,  it  will  not  be  prioritized  as  the  women  responsible  have  many  household  activities  to  attend  to.  If  children  are  responsible  for  collecting  water,   it  cannot  take  too  much  time  as  going  to  school  might  suffer.  It  is  hence  not  sustainable  if  the  water  collection  point  is  situated  far  from  home  (World  Health  Organization,  2010).  

2.2 Solvatten  Solvatten  is  an  invention  by  Swedish  Petra  Wadström,  who  is  also   the   CEO   of   the   company   Solvatten   AB.   The   company  Solvatten   AB   is   based   in   Stockholm   in   Sweden,   and   the  production   takes   place   in   Skåne,   in   the   south   of   Sweden.  Solvatten   AB   is   developing,   marketing,   and   selling   the  product   Solvatten.   The   goal   with   the   product   is   to   provide  safe  (drinkable)  and  warm  water  to  people  who  lack  access.  Solvatten   is   not   yet  marketed   commercially,   but   reaches   its  users   by   different   project   funded   by   grants,   Non-­‐Governmental  Organizations,  NGOs,  or  companies  (Solvatten  AB,  2010).  

Solvatten   is   a   water   container,   which   can   be   placed   in   the  sun  for  purification  and  heating  of  water.  The  container  holds  10   litres  of  water  and  when  placed   in   the   sun   for  2-­‐6  hours  the  water  will  be  drinkable.  A  filter,  the  UV-­‐rays  from  the  sun,  and  the  heat  will  in  combination  make  the  water  meet  the  WHO  Guidelines  for  Safe  Water  (<  1  E-­‐coli  /  100  ml  water).  Solvatten  can  be  used  to  clean  water  containing  bacteria,  viruses  and  parasites.  The  only  thing  Solvatten  requires  to  purify  the   water   is   the   sun.   There   is   hence   no   need   for   chemicals   or   electricity.   Solvatten   also   has   an  indicator,  which  shows  when  the  water   is  safe  to  drink.  Solvatten  can  be  used  many  times  without  needing  any  maintenance  or  spare  parts.  Given  the  right  weather  conditions,  Solvatten  can  be  used  up  to  3  times  per  day  (Solvatten  AB,  2010).  

Solvatten   is   specially  designed   for  water  purification.  The   transparent  material  allows   for   the   right  frequency  of  UV-­‐rays  to  get  through  to  the  water  and  inactivate  the  micro-­‐organisms.  The  design  of  the  container   is  maximizing   the   turbulence   in   the  water,  making   sure   that  all  micro-­‐organisms  are  exposed  to  the  UV-­‐light  (Uppfinnaren  och  Konstruktören,  2007).    

The   limitation   of   Solvatten   is   that   it   cannot   improve   chemical   characteristics   of   water,   e.g.  make  saltwater  drinkable  water.  Also,  other  chemical  pollutants  as  for  example  arsenic,  iron,  and  fluorides  cannot  be  removed.  If  the  water  purified  with  Solvatten  is  very  turbid,  it  is  good  to  let  it  sediment  or  

Figure  1  The  Solvatten  Unit  

(with  permission  from  Solvatten  AB)  

Page 16: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

5  

pre-­‐filtrate  the  water  before  using  Solvatten.    Another   limitation   is  that  there  are  cloudy  and  rainy  days  even  in  the  warm  developing  countries.  Solvatten  users  hence  have  to  boil  their  water,  or  use  any  other  purification  method,  sometimes  (Solvatten  AB,  2010).  

2.3 Comparison  with  Other  Methods  of  Accessing  Purified  Water  There  are  plenty  of  methods  for  purifying  water.  To  make  the  Life  Cycle  Assessment  of  Solvatten  and  the   analysis   of   Solvatten’s   environmental   impacts   fair   and   thus   useful,   two   additional   purification  method’s  environmental  aspects  are  evaluated  to  compare  impacts  of  the  different  methods.  For  the  comparative  studies  the  methods  of  bottled  water  and  boiling  of  water  are  chosen.  This  section  aims  to   describe   other  methods   of   purifying  water   as  well   as  motivating   the   choice   of   complementary  environmental  impact  studies.  The  most  widespread  methods  are  described  below  concerning  their  function   and   usage,   limitations   and   environmental   and   social   aspects.   The   section   starts   with   a  description  of  other  aspects  of  accessing  clean  water,  which  is  important  to  take  into  consideration  when  evaluating  a  product’s  sustainability.    

2.3.1 Clean  Water  and  Sustainability  

There   are   other   aspects   than   quality   of   the   purified   water   that   needs   to   be   considered   when  evaluating  a  water  cleaning  device’s  sustainability.  The  method  needs  to  be  integrated  into  daily  life  of  the  users  so  the  device  is  used  after  the  education  period.  The  method  needs  to  be  able  to  clean  enough  water   to   cover   the   household   need.   It   also   has   to   be   able   to   purify   water  with   different  contaminations.   There   are   different   kinds   of   pathogens   and   occurrence   of   turbidity   and   organic  matter.  As  household  duties  take  a  lot  of  time,  it  is  important  that  the  user  only  has  to  spend  a  short  time   to   monitor   the   method.   The   method   needs   to   be   of   low   cost   as   well   as   easily   accessed   if  replacement   parts   are   needed.   A   sudden   income   dip   cannot   cause   the   family   to   stop   using   the  method.  Hence,  the  price  needs  to  be  low  so  the  user  is  willing  to  pay  (Sobseey  et  al.,  2008).    

For   water   not   being   re-­‐contaminated   it   is   important   to   handle   the   water   properly.   It   is   during  transport  and  storage  most  of  the  recontamination  occurs,  therefore  it  is  important  to  use  the  right  containers.  The  best  practice  is  when  the  purifying  and  storing  of  water  could  take  place  in  the  same  container.  Otherwise  it  is  hard  to  make  sure  that  the  storage  container  is  disinfected  correctly.  Other  properties  of  the  container  that  could  be  favourable  are  having  a  tap,  a  handle,  a  lid,  and  being  made  of  a  lightweight,  robust  material.  It  is  also  positive  if  the  container  is  used  for  water  only,  since  this  would  prevent  contamination  from  other  media  (World  Health  Organization,  2002).    

To  make  people  of  the  developing  countries  use  improved  methods  of  cleaning  water  there  is  a  need  for  economic  incentives  and  programs  that  support  the  communities  to  participate.  The  people  also  need  to  be  educated  to  completely  accept  the  new  method.  It  has  been  found  that  if  such  economic  and  social  factors  are  missing  in  the  implementation  of  the  new  method,  usage  will  be  unsuccessful  (World  Health  Organization,  2010).  

With  Solvatten,  water   is  often  treated  and  stored   in  the  same  vessel.   It  has  a  handle  that  makes   it  user   friendly,   and   it   is   made   of   a   plastic   that   is   durable   and   can   withstand   physical   shocks,   high  temperatures  and  UV.  It  is  also  equipped  with  screw-­‐caps,  making  it  difficult  for  re-­‐contamination  to  occur   as   water   in   the   container   cannot   come   in   contact   with   hands   and   kitchen   equipment.   The  instructions  of  how  to  use  Solvatten  is  glued  onto  the  container,  making  them  impossible  to  lose.  The  instructions  are  simple  to  understand  and  do  not  require  reading  skills.    

Page 17: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

6  

One   of   the   problems   with   water   is   that   it   is   not   obvious   if   it   is   safe   or   not.   Contamination   by  pathogens  cannot  be  seen  with  the  eyes.  Therefore,  it  is  good  if  the  method  used  has  some  kind  of  indicator   showing   when   the   water   is   safe   (World   Health   Organization,   2002).   Solvatten   has   an  indicator  showing  a  green  happy  smile  when  the  water  reaches  the  right  temperature  (Solvatten  AB,  2010).  

Safe  water  alone  is  apparently  one  option  for  achieving  better  health.  Sanitation  is  very  important  as  well.   The  Millennium  Development  Goal   7   states   that   the  proportion  of  world  population  without  access   to   drinking   water   and   basic   sanitation   should   be   halved   between   1990   and   2015   (United  Nations  Millenium  Development  Goals,  2011).  The  sanitation  goal  seems  not  to  be  fulfilled  though.  In  1990,  46  %  of  the  world  population  lacked  access  to  improved  sanitation  and  according  to  the  2010  prognosis   36  %  will   still   lack   access   in   2015.   Faecal   contamination   is   a   big   problem  with   growing  populations,  urban  growth  and  global  warming.  Also,  pathogens  transfer  in  other  ways  than  through  water;   person-­‐to-­‐person  or   through   food.  Hygiene   needs   to   be   improved   through  other  measures  than  improved  water  sources  as  well  (World  Health  Organization,  2002).  

2.3.2 Descriptions  of  Other  Alternatives  

There  are   two   types  of  methods   to   clean  water;   physical   and   chemical.   The  most   commonly  used  physical  methods   in  households   in  developing  countries   includes  boiling,  UV  radiation,  filtering  and  settling,  while  the  most  common  chemical  method  is  chlorination.  Other  chemical  methods  include  coagulation-­‐flocculation,  precipitation,  adsorption  and  ion  exchange  but  these  are  not  as  widespread  for   usage   in   households   (World   Health   Organization,   2002).   The   most   widespread   methods   are  described   below   concerning   their   function   and   usage,   limitations   and   environmental   and   social  aspects  of  their  sustainability.  

2.3.2.1 Boiling  

Boiling   is   maybe   the   most   widespread   and   commonly   used   method.   Boiling   effectively   kills   all  pathogens  as  bacteria,  viruses,  protozoa  and  spores.  Most  pathogens  are  killed  at  a  temperature  of  55-­‐60   icator   of   the   pathogens   being  destroyed,   and   therefore   the  WHO   recommendation   is   that   the  water   is   brought   to   a   rolling   boil  

an   important   issue  while   handling   the  water   and   the  recommendation   is   that   the  water   is  used  soon  after  boiling,  or   reheated  when  needed.  The   large  use  of  fuel  is  a  concern  as  wood  is  not  easily  accessed  in  many  of  the  areas  and  therefore  the  method  can   enhance   deforestation   and   soil   erosion.   Even   if   wood   is   a   renewable   energy   resource,   the  concern  is  that  more  wood  is  used  than  allowed  to  grow  back  and  the  cost  of  buying  wood  becomes  very  high.  Also,  smoke  produced  is  a  large  health  concern,  as  many  cook  inside  their  homes  without  chimneys  (World  Health  Organization,  2002).  

2.3.2.2 Solar  Disinfection  with  UV  

To  use  the  radiation  from  the  sun  to  purify  water  is  a  historically  accepted  method.  The  UV-­‐rays  were  used   in   India   as   early   as   2000   B.C.   The   UV-­‐rays   from   the   sun   both   heat   the   water   and   kill  microorganisms  as  bacteria,  viruses  and  protozoa.  Solar  disinfection  is  very  effective,  and  one  of  the  benefits   is  that  the  water  will   taste  good  as  no  additional  chemicals  are  needed.  On  the  downside,  the  volume  treated  needs  to  be  low,  as  the  rays  needs  to  penetrate  the  full  volume.  For  penetration  to  be  possible,   the  vessel  that  water   is  stored   in  needs  to  be  made  of   transparent  material,  which  allows  the  UV  to  penetrate,  and  preferably  be  positioned  on  a  dark  surface.  Solvatten  technology  is  one  example  that  uses  this  method  to  purify  water.  Benefits  with  Solvatten  are  the  large  volume  (10  

Page 18: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

7  

litres),  the  effectiveness  of  the  process  and  the  presence  of  an  indicator.  The  principle  of  using  solar  radiation   to  heat   the  water   also   allows  great   savings  on   fuel.  Disadvantages   are   the  price   and   the  availability.  Another  method   is   SODIS,  which  basically   is   a  PET-­‐bottle   that   is   laid  out   in   the   sun   to  absorb  the  rays.  PET   is  a  plastic  material  that  does  not  release  any  additives  when  heated  which   is  good,  but  the  material  does  not  withstand  UV  in  the  long  run  and  the  bottle  will  be  deformed.  Also,  the   surface  of   the  bottle  only   allows  a   limited   range  of   the  UV   spectra   to  penetrate   and   it   is   also  easily  scratched  and  then  the  UV  radiation  will  not  penetrate  the  bottle  as  effectively.  Therefore  the  bottle   needs   to   be   changed   periodically   resulting   in   large   waste   production   and   large   transport  volumes.   SODIS   advantage   is   the   easy   access,   and   disadvantages   are   the   low   volume,   unreliable  effectiveness  and  the  absence  of  an  indicator.    

When  using  UV-­‐disinfection,  it  is  important  to  let  the  temperature  rise  to  at  least  50-­‐55   C  as  bacteria  and  other  microorganism  often  thrive  in  temperatures  around  40   C.  The  method  would  then  have  the  opposite  effect   than  wished   for.   If   the  container   is  not  penetrated  by   the  UV-­‐rays,   the  energy  from  the  sun  will  heat  the  water,  but  the  temperature  necessary  to  kill  the  microorganisms  will  not  be   reached.   The  advantage  of  utilizing   the  UV-­‐rays   is   that  disinfection   can  be  achieved  at   a   lower  temperature  of  the  water.  Also,  many  plastics  release  additives  at  higher  temperatures,  which  is  not  good  to  consume.  Therefore,   it   is   important  to  choose  which  container  to  use.  Lamps  emitting  UV-­‐rays   could   also   be   used.   This   is   probably   better   suited   as   a   method   for   supplying   water   to   a  community   or  municipality,   as   it   requires   power,   which  will   be   expensive   on   the   household   level  (World  Health  Organization,  2002).    

2.3.2.3 Chlorination  

In   the   middle   of   the   19th   century   when   it   was   understood   that   diseases   were   spread   through  microorganisms,   it  was  also  understood  that  chemical  agents  could   inactivate  the  same  organisms.  That  was   the   start  of   the  usage  of   chlorine,   and   from   the  mid-­‐20th   century   it   is   a  widely   accepted  method  as   it   is  practical  and  relatively  cheap.   It   is  used  both  on  community  and  municipal   level  as  well  as  in  households.  A  low  concentration  (a  few  milligrams  chlorine/litre  water)  for  a  short  period  of  time  (30  minutes)  effectively  kills  all  types  of  pathogens.  The  exception  is  a  few  bacteria  that  are  resistant.  Particles  and  turbidity   in   the  water  can  shield   the  microorganisms   from  the  chlorination,  and  then  the  success  of  the  method  will  be  lowered.  Otherwise,  the  method  is  widely  known  for  its  effectiveness.  An  advantage  of  the  method  is  that  the  water  cannot  become  re-­‐contaminated  and  a  disadvantage  is  that  the  water  will  taste  of  chlorine  after  treatment.  Another  disadvantage  is  that  it  is  important  to  get  the  right  dosage  depending  on  amount  and  type  of  water.  If  the  dosage  is  too  low,  it  is  not  effective.  It  is  also  an  environmental  hazard  because  chlorine  is  often  misused  and  poured  into  the  water   source   resulting   in  no  effect  on  pathogens  but   the  environment   at   large   suffers   (World  Health   Organization,   2002).   Also,   chlorinated   organic   compounds   can   form   if   adding   chlorine   to  water.   These   compounds   are   a   serious   health   hazard   as   they   often   are   carcinogenic   (Nordström,  2005).  

2.3.2.4 Filtering  

There  are  many  types  of  filters  with  different  applications.  Some  are  better  for  community  use,  while  some  are  better   for  household  use.  On  community   level,   sand  or  other   types  of  granular  media   is  common  to  use  in  filter  applications.  There  are  household  versions  available,  including  a  two-­‐bucket  system   with   the   top   one,   holding   the   sand,   having   a   perforated   bottom.   With   this   method   it   is  recommended  that  the  water  is  chlorinated  in  advance  though,  making  the  method  more  expensive  

Page 19: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

8  

and  less  useful.  An  easy  and  ancient  method  is  to  use  cloth  or  paper  as  filter.  The  method  is  simply  to  put  the  fibrous  filter  over  the  top  of  a  clean  vessel,  and  to  pour  the  dirty  water  directly  through  it.  The  pore   size   is   too  big   to   trap   viruses   and  most  bacteria,   and   therefore   fibrous   filters   are  mostly  used   together  with  other  methods.  A   third   type  of   filters   is   the  ceramic,  made  out  of  porous  clay.  They   are   often   designed   as   a   candle,   with   the  water   pouring   from   the   outside-­‐in.   There   are   also  commercial  variants  with  for  example  silver  coatings  to  reduce  bio-­‐film  formation  inside  the  filter.  An  unexpected  benefit  of   the  candles   is   the   fact   that   they  can  be  produced   locally  and  sold   relatively  cheap.  Inhabitants  of  the  developing  countries  could  hence  make  a  business  and  earn  some  money  through   supplying   ceramic   candle   filters.   However,   the   people   producing   have   to   be   trained   and  some   kind   of  manufacturing   facility   has   to   be   set   up.   Quality   controls   are   also   necessary   for   the  business  to  be  reliable.  The  pore  size  of  the  ceramic  filters  can  vary,  but  the  ones  made  in  developing  countries   usually   traps   bacteria   and   some   viruses.   As   they   become   clogged,   the   ability   to   capture  viruses  is  reduced.  It  is  therefore  very  important  that  the  filters  are  cleaned  once  in  a  while.  Due  to  this,  the  ceramic  filter  candles  are  quite  unreliable  and  do  not  last  long  (World  Health  Organization,  2002).  

Water   that   is   dirty   and  muddy   could   cause   extra   trouble   as   some  methods   of   cleaning   the  water  might  be  less  effective  than  with  clear  water.  UV  disinfection  is  reduced  as  the  UV-­‐rays  might  not  get  through   to  all   the  microorganisms.  Chlorination  might  not  work  either  due   to   the   same   reason.   In  cases  where  water  is  muddy,  pre-­‐treatment  with  settling  of  the  particles  might  be  a  good  idea.  The  filter   removes  the  particles  causing  the  turbidity,  making  UV-­‐disinfection  and  chlorination  effective  (World  Health  Organization,  2002).  

2.3.2.5 Sedimentation  

Sedimentation   is  the  process  of  heavy  particles  falling  to  the  bottom  of  a  container  of  water   if   it   is  allowed  to  stand.  Protozoa  and  parasites  settle,  as  they  are   large  enough.  Viruses  and  bacteria  are  too  small  to  be  forced  by  gravity  to  settle,  but  as  these  often  live  in  aggregations  the  result  is  often  better  than  expected.  The  water  has  to  be  left  undisturbed  for  a  long  period  of  time  before  the  clean  water   can   be   transferred   gently   to   another   storage   vessel.   The   sedimentation   vessel   needs   to   be  cleaned  between  usage  occasions  to  remove  the  settled  particles  and  organisms.  This  is,  along  with  boiling   and   UV   disinfection,   a   method   that   has   been   used   for   a   very   long   time   (World   Health  Organization,  2002).  

Page 20: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

9  

2.3.2.6 Large-­‐Scale  Methods  

The  most  sustainable   long-­‐term  method  of  producing  purified  water  might  be   large-­‐scale  methods  on   community   or   municipality   level   (Nordström,   2005).   To   introduce   water   treatment   plant   and  pipelines  in  communities  in  developing  countries  would  mean  easy  access  and  better  surveillance  of  quality.   For   all   villages   in   Africa,   South   America   and   Asia   to   have   the   same   standards   as   the  developed  countries  should  be  seen  as  the  long-­‐term  goal.   It   is  not  possible  in  any  near  future  and  bottled   water   might   be   an   alternative   in   the   meantime.   Bottled   water   is   a   large-­‐scale   method  produced   in   large  plants  giving  the  same  benefits  as  water   treatment  plants.   In  plants   it   is  easy   to  keep  the  quality  high,  and  to  assure  that  the  water  is  completely  purified.  The  large-­‐scale  production  would   also   result   in   a   lower   cost,   as   soon   as   the   plant   is   up   and   running.   The   bottles   could   be  relatively   large   (10   litres)   and   be   equipped   with   a   tap   lowering   the   risk   of   recontamination.   A  disadvantage   of   the   bottled   water   is   that   the   purified   water   itself   requires   transportation,   which  leads  to  many  and  heavy  transportations.  The  current  infrastructure  in  many  developing  countries  is  not   designed   for   large   regular   transports   by   lorries.   This   also   causes   large   emissions   of   carbon  dioxide.  Also,   increased  usages  of  PET-­‐bottles  will  demand  a  disposal  system  where  the  bottles  are  taken  care  of  and  recycled.  The  cost  of  buying  water  might  also  be  too  high  for  the  poor  people  of  developing  countries,  and  they  would  still  use  water  from  unprotected  sources.    

2.3.3 Motivation  of  Comparative  Studies  

As  described  above,  there  are  a  number  of  ways  of  accessing  safe  water  in  developing  countries.  The  result   from   the   LCA  of   Solvatten,   the   environmental   impact,  will   in   this   report   be   compared  with  some  other  ways  of  supplying  clean  water  in  Kenya.  To  decide  what  methods  are  the  most  relevant  to   compare,   a   table  with   comparisons   of   different   characteristics   have   been  made.   Table  1   below  compares  Solvatten  with  boiling,  chlorination,  ceramic  filter  candles,  plain  sedimentation  and  bottled  waters  on  factors  of  water  quality,  taste,  time  of  usage,  cost  and  pros  and  cons  of  each  method.  

The   methods   chosen   for   comparison   are   boiling   with   firewood   as   fuel   and   bottled   water.   The  comparison   is   done   to   put   the   environmental   advantages   and   disadvantages   of   Solvatten   in   a  perspective   of  other  methods   available   today.   Boiling   is   chosen,   as   it   is   the  most   commonly   used  method  in  developing  countries.  As  many  of  the  countries  are  troubled  by  deforestation  due  to  wood  collection,  it  is  interesting  to  see  the  real  environmental  impacts  of  boiling  water  and  compare  it  with  Solvatten.  A  simple  LCA  of  boiling  water  is  therefore  made  to  compare  the  impacts.  The  comparison  with  bottled  water  is  chosen  since  large-­‐scale  methods  is  an  important  long-­‐term  goal.  Bottled  water  has  some  of  the  advantages  like  control  over  quality  and  possibility  to  keep  costs  low.  Bottles  need  an  infrastructure  of  production  facilities  and  roads  for  transportation  as  well  as  a  social  acceptance  among  the  people.  Aspects  of  social  and  economic  impacts  on  sustainability,  not  covered  in  an  LCA,  hence  needs  to  be  examined  in  this  comparison.  To  make  a  simple  LCA  of  bottled  water  would  also  result   in  an  LCA   fully  based  on  assumptions,  and   the  comparison  with   the   results   from  Solvatten’s  LCA   would   thus   be   unreliable.   Instead   the   full   impacts   of   bottled   water   on   sustainability   are  discussed  thoroughly.  

 

Page 21: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

10  

Table  1  An  Overview  of  Different  Purifying  Methods  by  Comparing  Different  Criteria.  

   

 Solvatten

Boiling  with  woodfuels

Chlorination

Ceramic  filter  candle

Plain  sedim

entation

Bottled  water

Quality  of  

water*High

High

High

High

Low  or  u

nsure.

High

TasteGo

odSm

okey

Tastes  of  chlorine

Good

Good

Good

Tim

e  needed  

for  

purification

Hours,  but  no  need  fo

r  special  

attendance  whilst.  

Boiling  ta

kes  minutes,  but  hours  are  

often  needed  to

 collect  wood.

Short  (~30m

in)

Short  (~30m

in)

Long:  preferably  1-­‐2  

days

For  u

ser:  Only  tim

e  to  buy  

water  needed  

Productio

n  &  Transports

:  Long  

(Days/Months?)

If  wood  is  collected,  low

.  

If  wood  is  bought,  high.

ProsSaves  tim

e  and  money.  G

ood  taste.  

Warm  water.

Socially  accepted.  Nothing  is    

needed  except  fire

 and  a  pot  fo

r  holding  the  water.  N

o  problems  with

 turbidity  in  water.  W

arm  water.  

No  re

contam

ination.

Simple,  effe

ctive,  

can  be  made  locally.  

Easy.  N

o  need  fo

r  special  equipment.  

Great  p

retre

atment.  

Can  handle  large  

volumes.  

Large  scale  quality  contro

l.

ConsNo

t  useful  w

ithout  sun.  Turbidity  

can  cause  problems.  

Smoke  produced  indoors  is  

unhealthy.  Possibility  of  burning  

accidents.  Deforestaion.

Bad  taste.  Chlorine  is  

unhealthy.  Possibility  to  

use  to  large  dosages.  

Availiability.  Cold  water.  

Maintainance.  

Availiability.  

Affordability.  C

old  

water

Low  microbial  

efficency.  U

nreliable.    

Cold  water.  

Produces  a  lot  o

f  waste.  

Expensive  for  u

ser.  Co

ld  water

*All  of  th

e  methods  except  P

lain  Sedimentatio

n  are  listed  to  give  a  high  quality  of  water.  This  means  th

at  all  of  th

e  methods  will  give  water  th

at  is  sufficient  fo

r  consuming  and  for  h

ygenic  use.  

However,  the  chemical  content  of  the  water  from

 the  diffe

rent  methods  will  differ,  and  th

e  Quality  of  th

e  water  re

ceived  from

 all  the  methods  will  not  be  equal.

Low

CostHigh  at  start,  but  can  be  used  fo

r  a  

long  time.  

High

Moderate  or  high.  

Relatively  low

Page 22: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

11  

2.4 Life  Cycle  Assessment  To  make   a   full   Life   Cycle  Assessment,   LCA,   is   complex.   The   following   section   describes   the   theory  around  LCA  in  short   including  a  definition,  different  purposes,  how  LCA  was  developed  and  a  short  description  of  the  methodology.  

*All  of  the  methods  except  Plain  Sedimentation  are  listed  to  give  a  high  quality  of  water.  This  means  that  all  of  the  methods  will  give  water  that  is  sufficient  for  consuming  and  for  hygenic  use.  However,  the   chemical   content   of   the  water   from   the   different  methods  will   differ,   and   the   Quality   of   the  water  received  from  all  the  methods  will  not  be  equal.  

2.4.1 Definition  and  Purposes  

A   Life   Cycle   Assessment,   LCA,   is   an   environmental   systems   analysis   tool,   which   is   a   detailed  description  of  a  product’s  inputs  and  outputs  and  the  environmental  impacts  those  infer.  The  phrase  “from   cradle   to   grave”   is   often   used   in   the   context,   as   all   steps   from   production,   via   usage,   to  disposal  of  the  product  are  considered.  The  analysis  could  also  be  “from  cradle  to  gate”,  where  only  the  production  is  considered.  Depending  on  system  boundaries  chosen  for  the  assessment,  focus  can  be  put  on  different  phases  of  the  life  cycle  (Bauman  &  Tillman,  2004).  

As   concerns   for   environmental   issues   grew   in   the   1960s   and   1970s,   these   issues   needed   to   be  assessed   in  some  way.  LCA   is  such  a   tool   to  evaluate  environmental   impact  of  a  product   regarding  resource  use,  human  health  and  ecology.  An  LCA  can  have  different  purposes.  For  characterization  of  the  product  and  identification  of  improvement  possibilities  LCA  can  be  used  as  a  tool  to  learn  more  about  the  product.  LCA  can  be  used  as  a  base  in  decision  making  regarding  design  and  development  of  commercial  products  as  well  as  services  in  communities  and  nations  (for  example  waste  treatment  plans).   Also,   LCAs   can   be   used   in   market   communication   for   eco-­‐labelling,   environmental  declarations  and  benchmarking  (Bauman  &  Tillman,  2004).  

2.4.2 Industry  Use  of  LCA  

The  Coca  Cola  Company  conducted  (with  help  from  the  US  Midwest  Research  Institute)  an  LCA  in  the  late   1960s   as   they   were   considering   to   manufacture   beverages   in   cans   instead   of   glass   bottles.  Historically,  this  is  seen  as  the  first  Life  Cycle  Assessment,  even  though  it  has  been  debated.  The  Coca  Cola   LCA  was   a   comparison   of   two  different   packaging   alternatives,   and   in   fact,  most  of   the  early  LCAs  considered  different  packaging  options.  The  interest  in  products’  life  cycles  were  raised  with  the  oil   crises   in   the  1970s  as   resource  use  and  waste  management  came  to   the  public’s  awareness.   In  Sweden,  TetraPak  were  interested  in  making  a  new  type  of  bottle  from  PVC,  which  initiated  a  “from  cradle   to   grave”   examination   as   the  material   caused   a   large   environmental   debate.   Governments  started   to   become   interested   in   the   assessments   due   to   the   energy   crises   but   the   public   interest  faded.  In  the  1980s  environmental  crises  like  the  Chernobyl  nuclear  reactor  explosion  (1986)  and  the  Exxon  Valdez  oil   spill   (1989)   caused   the  public  awareness  of  environment   rise  again.   It  was   first   in  1991  that  life  cycle  assessment  was  given  its  name.  Before  that  several  names  were  used,  including  ecobalance,   integral   environmental   analysis   and   environmental   profiles.   The   methodology   of   the  assessment  was   not   set,   and   depended   on   the   purpose   and   application   of   the   study   (Bauman   &  Tillman,  2004).  In  1997  the  International  Organization  for  Standardization  released  the  first  standard  for  LCA  methodology,  ISO  14040,  which  made  the  assessment  repetitive  and  comparable.  In  2006  an  updated  version  was  released  (International  Organization  for  Standardization,  2006).  

Page 23: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

12  

2.4.3 Criticisms  and  Limitations  

The  strength  of  a  life  cycle  assessment  is  that  it  reflects  the  whole  system  of  the  product  and  not  only  a   few  processes.  Another  advantage  with  the  LCA  method   is   that   the  results  are  connected  to   the  function  of  the  product  and  not  to  the  product  itself,  making  comparison  possible.  LCA  is  one  of  the  most  commonly  used  environmental   systems  analysis   tools,  but   it  has   received  some  criticism  and  has  its  limitations.  These  will  be  described  in  this  section.  

LCA   for   marketing   purposes   has   been   blamed   for   showing   biased   results   of   the   company’s   best  interest.  To  prevent  this,  an  ISO-­‐standard  was  developed,  but  it  is  always  important  to  keep  in  mind  who  ordered  the  study.  When  making  assumptions  and  deciding  the  system  boundaries,  it  is  possible  to   benefit   the   favoured   results.   Even   though   the   ISO-­‐standard   was   developed   to   achieve   a  more  neutral  assessment,  it  will  always  be  subjective,  due  to  the  required  decisions  of  system  boundaries  and   data   limitation   assumptions.   Also   the   decision   of   which   environmental   impacts   that   will   be  looked   upon,   and   how   much   scientific   proof   that   is   needed   for   a   substance   to   be   considered  hazardous  will  influence  the  study.  The  last  step  of  the  LCA  is  often  weighting,  the  valuing  of  different  impacts  against   each  other.   This   is   also   a   very   subjective  part  of   the  assessment.  Different  people  have  different  values  and  ideologies  which  make  them  weigh  different  categories  differently.  Due  to  these  reasons,  it  is  important  with  high  transparency  to  give  a  comprehensive  view  of  the  study.  

Doing  an  LCA  is  also  very  time  consuming,  which  can  delay  the  change  process.  The  results  are  also  only  applicable  to  the  set  parameters,  and  a  change  somewhere  in  the  process,  will  make  the  results  not  useful  for  the  new  production.  The  data  used  in  the  assessment  reflects  the  current  status  when  it  comes  to  emissions  and  technology.  If  the  disposal  of  the  product  will  be  10  years  from  production,  the   emission   standards   of   the  waste   treatment  might   have   changed   a   lot,   and   the   environmental  impact  of  the  product  will  not  be  accurate.    

The  study  is  also  limited  by  the  available  data.  Data  gaps  require  an  assumption,  and  the  quality  of  the   assumption  will   determine   the   quality   of   the   results.   The   data   collecting   process   is   very   time  consuming,   but   can   be   shortened   by   the   use   of   LCA   databases.   The   databases   include   a   lot   of  different  data  for  materials,  processes,  transport  etc.  The  datasets  are  often  an  average  set  of  data  or  one   example   process   somewhere.   The   dataset   also   has   a   geographical   boundary,   like   Europe   or  Switzerland  where  the  data  is  collected.  The  time  is  a  very  limiting  factor  when  doing  an  LCA  as  there  is  always  more  detailed  data  to  collect.  

A  limitation  of  the  analysis   is  that  it   is  not  site-­‐specific,  resulting  in  that  the  complete  details  of  the  environmental   impacts   cannot   be   indicated.   For   example   some   areas   can   be   more   sensitive   to  emissions  than  others,  and  this  will  not  show  in  an  LCA.  The  system  boundaries  set  in  the  study  will  also   be   a   limitation.   The   environmental   impacts   might   occur   after   the   time   boundary   set.   For  example  a  landfill  might  have  emissions  long  after  the  LCA  study’s  time  boundary  has  been  passed.  Another  limitation  of  the  life  cycle  assessment  is  the  scientific  research.  This  is  not  only  the  case  for  LCA,  but  all  environmental  systems  analysis  tools.  If  a  chemical  for  example  has  a  carcinogen  effect,  and  this  is  not  scientifically  known,  this  can  of  course  not  be  included  in  any  method.  

The  LCA  is  an  environmental  systems  analysis  tool,  which  only  takes  into  account  the  environmental  part  of  the  sustainability  concept.  The  economic  and  social  aspects  are  not   included.  Hence,  based  only  on  an  LCA  study,  the  sustainability  of  the  product  cannot  be  discussed.  The  other  aspects  should  therefore  be  included  in  a  discussion  to  give  a  complete  view  of  the  impacts.    

Page 24: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

13  

2.4.4 Basic  Methodology    

A   life   cycle   assessment   that   follows   the   international   standard   is   roughly  made  up   of   three   parts;  Goal  &  Scope,  Life  Cycle  Inventory  (LCI)  and  Life  Cycle  Impact  Assessment  (LCIA).  The  Goal  &  Scope  defines  the  goal  and  purpose  of  the  study  and  the  context  of  the  study  such  as  intended  audience,  system   boundaries,   assumptions   and   limitations   of   the   study   and   what   environmental   impact  categories  the  study  focuses  on.  In  the  following  inventory  (LCI)  a  model  of  the  system  is  built  as  a  flow   chart   of   all   environmentally   relevant   flows.   Flows   considered   are   from   scarce   resources   in  contrast  to  flows  like  water  vapour  from  combustion,  which  are  usually  ignored  as  they  do  not  affect  the  environment.  Thereafter  data  is  collected  for  all  inputs  and  outputs  in  the  modelled  system  and  the  amount  of  resource  use  and  emissions  can  be  calculated.  In  the  last  part  of  the  LCA,  the  results  from   the   inventory   (i.e.   the   resource   use   and   emissions)   are   turned   into   information   on   what  environmental   impacts   they   imply   by   first   sorting   the   inventory   parameters   according   to   the  environmental   impact   they   contribute   to   and   then   calculating   the   total   environmental   impact  (Bauman  &  Tillman,  2004).    

   

Page 25: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

14  

Page 26: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

15  

3 Goal  and  Scope  In  the  following  section  the  goal  and  scope  of  the  study  will  be  described  in  detail.  The  goal  will  be  specified  along  with  conditions  for  the  assessment  as  intended  audience  and  type  of  LCA.  The  scope  thereafter   includes   information   on   the   functional   unit,   system   boundaries,   data   quality  requirements,  limitations  in  the  study  as  well  as  which  impact  categories  the  study  focuses  on.  

3.1 Goal  The  goal  of  this  study   is  to  show  the  environmental   impact  of  the  product  Solvatten  through  a  Life  Cycle  Assessment  and  compare  it  with  other  methods  of  assessing  purified  water.  The  objectives  of  the  study  are:    

Identify  the  environmental  strengths  of  the  product  for  marketing  purposes.     Identify  environmental  weaknesses,  to  further  look  into  improvements  in  the  life  cycle.   Compare  Solvatten  with  boiling  water  and  bottled  water.   Discuss   the  sustainability  of  Solvatten,   including  a  comparison  with  the  above  solutions   for  

water  treatment.  

The  intended  audience  of  the  LCA  is  the  company  Solvatten  AB.  The  results  might  be  used  internally  to   improve   the  production,  but   foremost   for  marketing.   The   report   is  written   to  make  publication  possible,  with  no  specifics  on  materials  et  cetera.  Confidential  information  is  instead  presented  in  the  Appendixes,  and  Solvatten  AB  can  therefore  control  who  receives  the  information.  

3.1.1 Type  of  LCA  

The  LCA  will  be  conducted  in  two  parts;  the  first  will  be  of  a  stand-­‐alone  type,  meaning  that  only  a  single   product   will   be   assessed.   In   this   part   only   the   product   Solvatten   will   be   looked   upon.   The  stand-­‐alone   type   is   beneficial   for   finding   the   parts   of   the   life   cycle   with   major   and   minor  environmental  impacts.  The  second  part  of  the  LCA  will  be  a  comparative  LCA,  where  the  Solvatten  unit  is  compared  with  the  method  of  boiling  water  over  open  fire  and  a  comparative  discussion  with  purchasing  bottled  water.    

3.2 Scope  of  the  Study  The   scope   of   the   study   gives   information   on   the   choices   of   functional   unit,   system   boundaries,  impact  categories,  and  data  quality  made  to  define  the  study.  

Page 27: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

16  

3.2.1 Initial  Flowchart  

A  simplified  flowchart  of  the  Solvatten  life  cycle  has  been  made  to  show  the  main  focuses,  see  Figure  2.  

 

Figure  2  Initial  Simplified  Flowchart  of  the  Solvatten  Life  Cycle  from  Cradle  to  Grave  

The  life  cycle  of  a  Solvatten  unit   is  simply  described  by  three  phases;  production,  use  and  disposal.  The  production  phase   is   in   Solvatten’s   case,   the  most   complex   regarding  data   collection.   The  data  gathered  mostly  concerned  the  assembly  of  Solvatten  including  materials  used  and  processes  used  to  form   the   subparts  of   Solvatten.   The  data  was   given  by   the  production   site  of   Solvatten,   and   from  their   sub-­‐contractors.   The   data   collected   was   then   connected   to   the   database   Ecoinvent   of   that  contained   information   on   raw  material   acquisition,   processing   and   production   of   materials.   Data  were   also   gathered   on   all   transports   of   materials   from   their   production   site,   via   Solvatten’s  production  site,  to  market  of  use.  These  are  shown  as  arrows  in  the  flow  chart.  The  use  phase  has  no  environmental   impact  as  only  the  UV-­‐rays  from  the  sun  is  needed  to  purify  the  water  and  the  only  waste  produced   is   the  organic  matter,   that   the   filter   catches.   The  disposal   phase   in   the  market  of  use,  Kenya,  is  very  uncertain,  as  the  country  lacks  a  functioning  municipal  waste  system.  Therefore,  the  disposal  phase  was  thoroughly  discussed,  but  not  included  in  the  data  analysis  of  this  LCA.  

3.2.2 Functional  Unit  

An  LCA  connects  the  environmental  impact  to  the  function  of  the  product  rather  than  to  the  product  itself.  Therefore  a  functional  unit  has  to  be  chosen  to  quantify  the  performance  of  the  system  as  a  reference  unit  used  when  comparing  different  products  (Bauman  &  Tillman,  2004).  

The   functional   unit   in   the   stand-­‐alone   study   is   one   Solvatten   unit,   responding   to   the   amount   of  purified  water  a  Solvatten  unit  can  produce  during   its  entire   life   length.   In   the  comparative  boiling  study  the  functional  unit  is  10  litres  of  clean  water  (according  to  the  WHO  definition),  meaning  that  the   environmental   impact   of   boiling   10   litres   of   water   and   using   a   Solvatten   unit   once   will   be  compared.  

3.2.3 System  Boundaries  

Some   limits,   i.e.   system  boundaries,  have   to  be   set   to   the   system  studied.  Otherwise   life  cycles  of  different  products  will  interfere  with  the  one  of  interest  and  the  analysis  will  be  too  complex.  Also,  a  process  in  production  can  result  in  many  different  products  giving  rise  to  an  allocation  problem.    

Page 28: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

17  

The  system  boundaries  used  in  this  LCA  are:    

Geographical   boundary:   Production   of   Solvatten   takes   place   in   Skåne,   Sweden   and   the  market   of   use   is   Kenya.   Kenya   is   the   primary  market  where   Solvatten   already   is   in   use   at  several  sites.  The  place  of  use  is  set  to  be  Nairobi,  Kenya.    

Temporal  boundary:  Life  length  of  Solvatten,  10  years.   Boundaries  in  respect  to  natural  systems:  The  life  cycle  of  Solvatten  starts  with  the  extraction  

of  raw  materials  and  ends  when  the  unit  has  reached  the  place  of  use.  For  an  indication  of  how   the   waste   scenario   will   influence   the   life   cycle,   the   three   different   waste   scenarios,  landfill,  incineration,  and  recycling  will  be  included  with  European  standards.  

3.2.4 Data  Quality  Requirements  

Depending  on  what  requirements  are  demanded  for   the  data,   the  accuracy  and  uncertainty  of   the  assessment  varies.  As  this  is  a  stand-­‐alone  LCA,  the  data  collected  should  be  as  accurate  and  detailed  as   possible.   Producers   of   Solvatten   parts   supplied   contemporary   data   about  materials,   production  processes   and   transportations.   Information   on   all   parts   was   collected.   The   information   was   then  coupled  to  database  inputs  in  SimaPro’s  database  Ecoinvent.  Database  inputs  were  chosen  to  match  location  of  production  as  far  as  possible.  

3.2.5 Limitations  and  Assumptions  

Parts  of  the  Solvatten  product  with  a  weight  less  than  0.1  %  of  the  total  product  weight  are  assumed  to   result   in   an  environmental   impact   that   is   not   significant   and  were   therefore  disregarded   in   the  assessment.  The  weight  of  the  indicator  corresponds  to  1.8  %  of  the  total  weight,  but  is  made  out  of  eleven  sub-­‐parts  of  different  materials  which  each  weighs  less  than  0.1  %  of  the  total  product  weight.  To  not  disregard  the  whole  indicator,  it  is  counted  as  one  part  of  Solvatten,  where  parts  in  indicator  weighing   less   than  0.1  %  of   the   total   indicator  weight   are  disregarded.  A   comprehensive   list  of   all  Solvatten  parts   can  be   found   in  Appendix  1.  Even   though  parts  have  been  disregarded  due   to   low  weight,  material   content  has   been   collected.  None  of   the   disregarded  parts   contain   anything   that  could  result  in  large  environmental  impact  despite  the  low  weight.    

Transports   are   included   for   all   parts   with   a   weight   over   0.1   %   of   Solvatten’s   total   weight.   The  distances  have  been  calculated  as  accurately  as  possible.  The  exact   route  of   transport  might  differ  from  time  to  time,  and  in  some  cases  the  exact  production  location  are  not  known.  Therefore  some  assumptions  are  made  based  on  average  distances  and  most  probable  location.    

3.2.6 Impact  Categories  and  Impact  Assessment  Method  

An   environmental   impact   can   be   a   number   of   different   things,   like   for   example   global   warming,  toxicity,  and  land  occupation.  When  performing  a  Life  Cycle  Assessment  it  has  to  be  specified  what  impacts  that  will  be  looked  upon.  In  the  ISO  standard  it  is  listed  that  three  different  types  of  impact  should  be  taken  into  account.  These  are  resource  use,  ecological  consequences,  and  human  health.  There   are   a   number   of   pre-­‐defined   impact   lists   that   can   be   used   when   deciding   what   impact  categories   that   will   be   included   in   the   study.   These   defined   impact   lists   are   implemented   in   the  computer  software  used   in   this  study,  SimaPro.  One  of   these   is  called  Eco-­‐Indicator  99  and  will  be  used  in  this  study  (Bauman  &  Tillman,  2004).  

   

Page 29: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

18  

   

Page 30: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

19  

4 Life  Cycle  Inventory  This  section  contains  information  about  the  data  used  in  the  assessment;  the  collection,  compilation,  and   grouping.   The   full   data   set   is   shown   in   Appendix   1.   Also   a   description   of   missing   data   and  assumptions  is  included  in  this  section.    

4.1 Data  Collection  Procedure  In  the  initial  state  of  the  data  collection  process,  the  Solvatten  unit  was  divided  into  two  major  parts,  the   container   and   the   indicator.   Most   of   the   information   was   supplied   by   the   two   main  manufacturers.  The  unit  was  divided  further  into  smaller  parts  making  up  the  assembly.  The  weight-­‐%  of  all  the  parts  was  calculated  and  parts  with  less  than  0.1  weight-­‐%  is  considered  to  not  to  have  a  significant  environmental  impact  and  is  therefore  excluded  from  the  LCA.  Materials  used  for  all  parts,  regardless  of  weight-­‐%,  was  collected  to  be  sure  that  no  of  the  disregarded  parts  could  have  a  high  environmental  impact.  The  indicator  is  seen  as  one  part  of  Solvatten,  and  parts  within  the  indicator  with  a  weight-­‐%  of  less  than  0.1  of  the  indicator  will  be  disregarded.    

Below,  in  Figure  3,  Solvatten  and  its  different  parts  are  pictured.  One  advantage  with  the  unit  is  that  many  of  the  parts  can  be  changed  if  broken.  The  lids,  indicator,  filters  et  cetera  could  all  be  replaced  if   function   is   damaged.   The   transparent   lid   and   black   container   are   glued   together,   and   hence  difficult  to  replace.  

 

Figure  3  The  Different  Parts  of  Solvatten  Marked  on  a  Solvatten  Unit  

A   detailed   flow   chart   of   the   assembly   of   Solvatten   is   presented   below   in   Figure   4.   It   shows   the  division  of  Solvatten   into  smaller  parts  and  the  materials  and  forming  processes  used   in  each  part.  Data  was  collected  on  which  materials  and  processes  that   is  used  to  produce  a  Solvatten  unit,  and  SimaPro  and  the  Ecoinvent  database  then  provided  information  on  raw  materials  and  processes  used  to  make  the  final  materials.  

Page 31: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

20  

 

   

Figure  4  Detailed  Flow  Chart  of  Assembly  of  Solvatten  (without  classified  information)  

Page 32: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

21  

4.2 Inventory  Data  The   inventory   is   divided   into   production,   transports,   usage   and   disposal,   which   are   the   life   cycle  phases   shown   in   the  general   flow  chart,   Figure  2.  Production   includes   raw  material  extraction  and  processing,  production  of  materials  and  sub-­‐parts   for  Solvatten  and   the  assembly  of   the   final  unit.  The  data  collected  in  this  phase  only  includes  the  assembly  and  production  of  sub-­‐parts  though.  The  data  on   raw  material  extraction  and  processing   is   supplied  by   the  Ecoinvent  database  of   SimaPro.  Transports  are  shown  as  arrows  in  the  detailed  flow  chart,  Figure  4.  They  include  both  transports  of  materials   from  their  production  site   to  Solvatten  production  site,  and  transport  of   the   final  unit   to  market  of  use.  The  usage  of  Solvatten  is  also  included  in  the  data  analysis,  but  the  only  thing  required  during  this  phase  is  water  and  sun-­‐light  and  therefore  no  data  collection  was  required  for  this  phase.  The  disposal  phase  includes  a  description  of  the  probable  waste  scenarios  for  Solvatten.    

4.2.1 Production    

A  lot  of  information  was  provided  from  the  two  manufacturers,  about  parts  produced  at  their  sites  and   information   about   their   suppliers.   The  materials   needed   for   production   of   the   parts  were,   by  contacting  suppliers  and  producers,  traced  back  to  their  production  site.  A  material  or  process  in  the  SimaPro  database  similar  to  the  information  given  by  the  suppliers  or  producers  was  then  chosen  to  be  used   in   the  assessment.  A   summary  of   the   raw  materials  and  processes  and   the  corresponding  SimaPro   input   is   listed   in  Appendix  2.  For  parts  produced  at  the  main  production  site,  the  material  efficiency   for   production   of   each   part   was   provided.   This   was   not   available   for   parts   produced  elsewhere,  and  therefore  not  included  in  the  assessment.  The  parts  produced  at  the  main  production  site  are  the  biggest  part  of  the  product,  and  therefore  it  can  be  assumed  that  they  have  the  biggest  contribution  of  material  wasted.  

The   process   of   assembling   the   final   Solvatten   unit   is   not   included   in   the   data   analysis,   since   no  comparative   process   could   be   found   in   the   SimaPro   database.   Enough   data   for   inserting   a   new  process   in   SimaPro   could   not   be   supplied   by   the  main  manufacturer,   and   therefore   the   assembly  process  is  not  included  in  the  data  analysis.  A  short  discussion  on  this  process  is  included  in  Appendix  3.  

Packaging  materials  used  for  all  individual  parts  during  transport  to  the  final  producer  of  Solvatten  is  not  included  in  the  analysis.  All  parts  used  are  bought  in  large  quantities,  and  the  packaging  for  each  part  is  assumed  to  be  so  small  that  the  contribution  to  the  total  environmental  impact  per  Solvatten  unit  will  be  too  small  to  give  a  significant  impact.  The  packaging  material  used  when  transporting  the  final  Solvatten  unit  to  the  market  of  use,  is  included  in  the  assessment,  since  the  material  used  per  unit  will  be  bigger.    

The  parts  used  in  Solvatten  are  grouped  to  give  an  overview  of  the  different  parts.  The  groups  are:  Black   container,   Transparent   lid   and   caps,   Indicator,   Small   plastic/Rubber   parts,  Metals,   Glue   and  Packaging.  In  Appendix  1  the  parts  in  Solvatten  are  listed  according  to  group.  

   

Page 33: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

22  

4.2.2 Transports  

The  transports  are  included  for  parts  in  the  final  assembly,  but  for  parts  with  a  weight-­‐%  less  than  0.1  the  transports  are  not  included.  Transports  are  calculated  from  the  material  production  site,  via  the  Solvatten  production  site,  to  the  final  destination  in  Nairobi,  Kenya.  Each  supplier  and  producer  gave  as  detailed  information  as  they  were  able  to  regarding  way  and  means  of  transport.  

In   some  cases   the  only   information  available  about  production  sites  was  a  very   large  geographical  area  (like  Asia  or  Italy),  in  these  cases  an  assumption  was  made  of  either  a  likely  production  site,  or  a  place   in   the   centre   of   the   geographical   area   given.   The   assumption   was   based   on   the   available  information  about  means  of  transport  and  likely  production  sites.    

For  the  transportation  of  the  final  Solvatten  unit  from  Skåne,  Sweden,  to  Nairobi,  Kenya,  the  weight  of   the   pallet,   the   container,   and   the   packaging   material   is   included   in   the   transported   weight.  Solvatten  AB  estimates  that  5  %  of  the  transports  of  the  finished  product  are  performed  by  air  and  95  %   by   sea.   The   estimation   is   done   by   reviewing   the   future   prospect   list   (Claire   Wigg,   Personal  Communication,  2011).  A  sensitivity  analysis  has  been  made  to  see  how  these  assumptions  affect  the  study.  The  final  destination  of  the  product  is  said  to  be  Nairobi,  Kenya.  

For  all  transports  by  lorry,  the  emission  standard  EURO4  has  been  used,  except  for  the  case  where  the   final   product   is   transported   from   the   ship   in  Mombasa   to   the   final   destination   in   Nairobi.   In  Sweden,   23   %   of   trucks   on   the   roads   2010   were   EURO3,   22   %   EURO4   and   only   2,5   %   EURO5  (Trafikanalys,   2010).   The   number   of   Euro4   lorries   are   increasing,   whereas   the   Euro3   number   is  decreasing   and   it   is   assumed   therefore   that   Euro4   is   the   best   representative   of   the   lorries   used  today.   It   is   assumed   that   the   Swedish   statistics   are   fairly   representative   of   Europe.   In   Kenya,   it   is  assumed  that  trucks  used  not  are  subject  to  any  emission  standard.  Therefore,  an  input  of  “average  fleet”  is  used,  combining  trucks  with  EURO0-­‐EURO4.    

4.2.3 Disposal  

The  waste  scenario  for  Solvatten  is  not  known,  partly  due  to  that  it  is  a  relatively  new  product,  and  partly  since  the  waste  management   in  countries  where  Solvatten   is  used   is  normally  unstructured.  Information  about  the  current  waste  situation  in  Kenya  was  supplied  by  Zanrec  Plastics,  a  company  working  with  recycling  on  Zanzibar.  In  the  rural  areas  where  Solvatten  is  mostly  used,  waste  is  mainly  thrown  in  nature  or  incinerated  in  the  proximity  of  the  household  without  any  emission  treatment.  Nairobi   city   is   dependent  on   an   uncontrolled   dumping   site   for   the  waste   produced.   But   since   not  sufficient  data  about  quantities  and  emissions  are  available  about  these  scenarios,  the  data  analysis  of   Solvatten’s   life   cycle   will   not   include   the   disposal   phase.   Different   waste   scenarios   will   be  thoroughly   discussed   instead.   For   comparative   reasons   different   waste   scenarios   with   European  standards  will  be  looked  at.  The  different  waste  scenarios  will  be  incineration,  landfill,  and  recycling.  These   scenarios  are  chosen   to  give  guidance   to  probable   scenarios   in  Kenya,   though   the  effects   in  Kenya   probably   are   a   lot   worse   where   no   controlled   landfills   or   incinerators   are   accessible.   As  Solvatten  AB  would  like  the  unit  to  be  recycled,  this  scenario  is  also  included  in  the  comparison.    

Page 34: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

23  

4.3 Data  Sources  The   Life   Cycle   Inventory   data   used   in   this   assessment   is   accessed   from   the   Ecoinvent   database.  Ecoinvent  is  integrated  in  the  SimaPro  software  and  compatible  with  the  Eco-­‐Indicator  99  Life  Cycle  Impact  Assessment  method.  The  data   in   the  Ecoinvent  database   is   collected  by   research   institutes  and   consultants   and   are   based   on   industrial   data.   Most   of   the   Solvatten   data   used   is   based   on  European  situations,  but  some  production  sites  are  placed   in  Asia,   the  data   is   then  assumed  to  be  relatively  similar  to  the  European  data.  

4.4 Assumptions  and  Missing  Data    Data   collection   regarding   materials   and   production   methods   used   was   possible   for   all   parts   of  Solvatten.  In  a  few  cases  primary  data  supplied  was  general  due  to  confidential  reasons.  This  resulted  in  making   qualified   assumptions.   To  make   this   LCA   as   transparent   as   possible   all   the   assumptions  made  are  described  in  Appendix  3.  

Most  materials   and  processes  have  a   corresponding  data-­‐set   in   the  Ecoinvent  database.   For   some  inputs,  the  corresponding  dataset  is  not  as  obvious,  or  there  is  no  useful  data.  In  these  cases  a  similar  material  or  process  had  to  be  used.  For  the  materials  and  processes  where  it  is  not  self-­‐explanatory  why  the  database  input  were  chosen,  a  description  of  the  choices  made,  along  with  a  motivation  to  why,  is  found  in  Appendix  3.    

For  transports,  there  were  also  cases  where   information  about  production  or  distribution  sites  and  exact   routes   could   not   be   obtained,   and   therefore   assumptions   had   to   be  made.   These   cases   are  described  in  Appendix  3.    

   

Page 35: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

24  

Page 36: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

25  

5 Life  Cycle  Impact  Assessment  In  the  Life  Cycle  Impact  Assessment,  LCIA,  the  results  from  the  inventory  (i.e.  the  resource  use  and  emissions)  are  turned  into  information  on  what  environmental  impacts  they  imply.  This  is  in  this  LCA  done   with   the   computer   software   SimaPro’s   impact   assessment  method   Eco-­‐indicator   99.   In   this  section  Eco-­‐indicator  99  is  described.  

The   Eco-­‐indicator   99   used   for   Life   Cycle   Impact  Assessment   in   this   study   is   an   impact   assessment  method   that   describes   environmental   impact   through   eleven   impact   categories   divided   into   three  damage  categories;  human  health,  ecosystem  quality  and  resources.  Eco-­‐indicator  99  uses  endpoint  impact  categories.  Endpoint  categories  are  effects  in  the  end  of  the  cause-­‐effect  chain,  compared  to  midpoint   categories,   which   are   effects   in   the   middle   of   the   cause-­‐effect   chain.   For   the   impact  category  climate  change,  a  midpoint  effect  is  measured  in  kg  CO2-­‐equivalents,  whereas  the  endpoint  effect   could  be   for   example  Disability  Adjusted   Life  Years,  DALY,   and  hence   reflect  damage   to   the  human  health.  The  endpoints  are  much  more  complex  and  uncertain  to  calculate,  but  are  often  more  useful.  The  impact  categories  will  be  described  in  this  section  (Product  Ecology  Consultants,  2001).  

Three   different   versions   of   the   Eco-­‐Indicator   99   have   been   developed.   The   different   versions   use  different  perspectives  and  hence  values  impacts  differently.  The  perspectives  are  always  value  based  and  cannot  be  set  objective.  Due  to  the  subjectivity  the  three  different  versions  are  developed.  The  versions  contain  perspectives  from  the  Cultural  theory;  Individualist,  Egalitarian,  and  Hierarchist.  The  Individualist   is   interested   in   a   very   short   time   perspective,   and   only   includes   impacts   which   are  scientifically  proven.  The  Egalitarian  looks  at  a  very  long  time  perspective  and  even  an  indication  of  impact  is  enough  to  include.  The  Hierarchist  is  between  the  other  two  and  looks  at  a  more  balanced  time  perspective  and  an  agreement  among  the  scientists  determines  if  the  impact  should  be  included  or   not.   The   version   of   Eco-­‐indicator   99   used   in   this   assessment   is   the   one   with   the   Hierarchist  perspective,  which  is  the  default  version  (Product  Ecology  Consultants,  2001).  

The   impact   assessment   is   divided   into   classification  and   characterization,  which   are   both   required  according   to   the   ISO-­‐standard.   The   impact   assessment   can   also   include   normalization,   ranking,  grouping  and  weighting.  Normalization  and  weighting  is  included  in  this  study  and  will  be  described  in  the  following  section  (Bauman  &  Tillman,  2004).  

5.1 Classification  and  Characterization  In   the  Life  Cycle   Inventory,   there  are  data  of  emissions,   resource  use,   land  use,   radiation  et  cetera  caused   throughout   the   life   cycle   of   Solvatten.   To   be   able   to   analyse   these,   the   emissions   and  resources   are   assigned   to   different   impact   categories,   this   step   is   called   classification.   Different  emissions  can  be  assigned  to  the  same  impact  category,  and  one  emission  can  be  assigned  to  many  different  impact  categories  (Product  Ecology  Consultants,  2010).  

After   the   classification   to   impact   categories,   the   emissions   have   to   be   multiplied   with   a  characterization  factor  to  get  the  same  unit.  For  example,  CH4  has  a  25  times  higher  impact  on  global  warming   than   CO2,   and   therefore   CH4   has   to   be   multiplied   by   a   factor   25   to   get   the   unit   CO2-­‐equivalents.  This  step  is  the  characterization  (Product  Ecology  Consultants,  2010).  

Page 37: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

26  

5.2 Impact  Categories  The   eleven   impact   categories   of   Eco-­‐indicator   99   can   be   divided   into   three   different   damage  categories;  resource  use,  human  health  and  ecosystems.  The   impact  categories,  grouped  according  to  the  damage  categories,  will  be  described  below  (Product  Ecology  Consultants,  2001).  

5.2.1.1 Human  health  

The  damage  from  impacts  in  the  human  health  damage  category  has  the  unit  Disability  Adjusted  Life  Years,  DALY.  The  DALY  unit  has  been  developed  for  the  WHO  and  the  World  Bank.  DALY  combines  the  estimates  of  Years  Lived  Disabled,  YLD,  and  Years  of  Lives  Lost   ,  YLL.  1  DALY   indicates  one  year  lost   for  one   individual,   it   also   can   indicate   for  example  10  years  with  90  %  health  or  2   individuals  loosing  0.5  years  (Product  Ecology  Consultants,  2001).    

5.2.1.1.1 Carcinogens  

Toxic   chemicals   in   the   surrounding   environment   can   cause   cancer.   In   Eco-­‐Indicator   99   the  classification  by  the  International  Agency  for  Research  on  Cancer,   IARC,   is  used  for  a  measurement  on   carcinogenicity,   how   likely   a   substance   is   to   cause   cancer.   From   the   IARC-­‐information   on  carcinogenicity   the   damage  on   human  health   can   be   calculated.   The   carcinogens   are   expressed   in  DALY  per  kg  emission  (Product  Ecology  Consultants,  2001).  

5.2.1.1.2 Respiratory  organics  

Respiratory  organics  are  for  example  Volatile  Organic  Compounds,  VOC.  These  substances  can  cause  problems  with   the   human   respiratory   system.   The   damage   to   the   human   health   from   respiratory  organics  is  expressed  in  DALY  per  kg  emitted  substance  (Product  Ecology  Consultants,  2001).    

5.2.1.1.3 Respiratory  inorganic  

Inorganic  substances  are  for  example  particulate  matter,  SOX,  and  NOX  and  can  also  cause  problems  in  the  respiratory  system.  The  respiratory  inorganics  are  expressed  in  DALY  per  kg  emitted  substance  (Product  Ecology  Consultants,  2001).    

5.2.1.1.4 Climate  change  

The  climate  change   impact   category  measures   the  damage   to  human  health  as  a   result  of   climate  change.   Emissions   contributing   to   the   climate   change   are   for   example   CO2,   CH4,   and   N2O.   The  equivalence   factors   used   in   Eco-­‐Indicator   99   are   from   the   International   Panel   for   Climate   Change,  IPCC,  and  used  after  some  modification.  In  Eco-­‐Indicator  99  the  climate  change  impact  is  included  in  the   human  health   category.   The   human  health   can  be   affected   by   climate   change   in   a   number  of  ways,  for  example  a  change  in  climate  can  lead  to  a  change  in  agricultural  production  which  can  give  malnutrition  and  hunger.  It  is  important  to  keep  in  mind  that  the  climate  change  does  not  only  affect  the  human  health,  but  also  the  ecosystem  quality.  The  damage  from  climate  change  is  expressed  in  DALYs  per  kg  substance  (Product  Ecology  Consultants,  2001).  

5.2.1.1.5 Radiation  

The  radiation  category   is  based  on  data   from  the  French  nuclear   industry.  The  unit   for  damage  on  human  health  from  radiation  is  DALY  per  Becquerel  (Product  Ecology  Consultants,  2001).  

5.2.1.1.6 Ozone  layer  

The  impact  category  ozone  layer  expresses  the  damage  to  human  health  from  ozone  layer  depletion.  This  is  expressed  in  DALY  per  kg  release  of  emission  (Product  Ecology  Consultants,  2001).  

Page 38: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

27  

5.2.1.2 Ecosystem  Quality  

The   damage   to   ecosystem   quality   is   measured   in   the   species   diversity.   This   is   expressed   as   the  “percentage  of  species   that  are   threatened  or   that  disappeared   from  a  given  area  during  a  certain  time”.  The  unit  for  damage  in  these  impact  categories  is  Potentially  Disappeared  Fraction,  PDF.  The  unit   for   damage   to   ecosystem   quality   is   expressed   as   PDF*m2*yr   (Product   Ecology   Consultants,  2001).    

5.2.1.2.1 Ecotoxicity  

The  ecotoxicity  is  measured  by  the  percentage  of  species  living  under  toxic  stress.  The  unit  for  this  is  PDF*m2*yr  per  kg  release  of  emission  (Product  Ecology  Consultants,  2001).    

5.2.1.2.2 Acidification/eutrophication  

Acidification  and  eutrophication  has  been  combined  to  one  category.  The  damage  from  acidification  and  eutrophication  is  measured  by  the  damage  to  vascular  plants.  The  unit  for  this  impact  category  is  PDF*m2*yr  per  kg  emissions  to  air  (Product  Ecology  Consultants,  2001).  

5.2.1.2.3 Land  use  

Land   use   is   divided   into   two   parts   land   occupation   and   land   conversion.   An   example   on   land  occupation  is  for  example  building  a  new  house  in  an  already  existing  urban  area.  The  occupied  area  is  prevented   to   restore   itself   to   the  natural  occurrence  of   the  area  and   this   is   therefore   seen  as  a  damage.  Land  conversion   is   the  conversion  of   land   from  one  type  to  another.   Included   in   the   land  conversion   is   the  restoration  time  of  30  years.  Conversion  data   is  suggested  only   to  be  used  when  natural  areas  are  converted   into  non-­‐natural  area  types.  The   land  use  category   is  also  divided   into  local  and  regional  effect.  The  unit  for  land  use  is  PDF*m2*yr  (Product  Ecology  Consultants,  2001).    

5.2.1.3 Resources  

In   the  damage  category  Resources,   the   indicators  are  calculated   from  the  quality  of   the   remaining  resource.  The  more  mineral  or   fossil   fuel   that  has  been  extracted,  the  more  energy   is   required   for  continued  extraction.  The  damage  is  expressed  in  MJ  surplus  energy.  The  definition  of  the  unit  is  that  “a   damage  of   1  means   that   due   to   a   certain  extraction   further  extraction  of   this   resources   in   the  future  will  require  one  additional  MJ  of  energy”  (Product  Ecology  Consultants,  2001).  

5.2.1.3.1 Minerals  

The  minerals  available  in  the  earth’s  resources  are  divided  into  two  categories;  “in  ore”,  which  is  the  pure  mineral  available,  and  “ore”,  which  is  the  amount  of  ore  available  an  average  amount  of  mineral  is  then  assumed  in  the  ore.  The  use  of  minerals   is  expressed  in  MJ  surplus  energy  per  kg  extracted  material  (Product  Ecology  Consultants,  2001).    

5.2.1.3.2 Fossil  fuels  

The  use  of  fossil  fuels  is  expressed  in  MJ  surplus  energy  per  kg  extracted  fuel,  m3  of  extracted  gas,  or  per  MJ  extracted  energy  (Product  Ecology  Consultants,  2001).    

5.3 Normalization  Normalization  is  used  to  see  the  environmental  impact  compared  to  a  reference  value.  The  reference  in   Eco-­‐Indicator   99   is   the   environmental   impact   of   one   average   European   person   per   year.   The  environmental   impact   is   then   divided   with   a   normalization   factor   to   show   the   relative   impact  (Product  Ecology  Consultants,  2010).  

Page 39: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

28  

5.4 Weighting  Weighting  is  used  to  show  the  relative  importance  of  different  impact  categories,  and  to  produce  a  Single   Score.   The   Single   Score   is   used   to   give   a   total   environmental   impact  which   can   be   used   in  comparative   life   cycle   assessments.   The   impact   categories   are  multiplied  with   a  weighting   factor.  There  are  a  number  of  ways  to  determine  the  weighting  factors,  for  example  a  panel  can  be  asked,  or  monetary  value  can  be  used.   In   the  Eco-­‐Indicator  99  a  written  panel  within   the  Swiss  LCA  group   is  used.   The   weighted   results   are   therefore   not   corresponding   to   the   average   European   (Product  Ecology  Consultants,  2001).    

5.5 CO2-­‐equivalents  with  ReCiPe  Another   Life   Cycle   Impact   Assessment   method   called   ReCiPe   was   used   for   the   amount   of   CO2-­‐eqvivalents   that   Solvatten  produces  during   its   lifetime.  ReCiPe  uses,   like   Eco-­‐Indicator  99   the   IPCC  CO2   equivalence   factors   for   recalculation   of   emissions.   In   ReCiPe   Climate   change   is   a   midpoint  indicator  with  the  unit  CO2-­‐equivalents  (ReCiPe,  2009).  

 

   

Page 40: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

29  

6 Interpretation  of  Stand-­‐Alone  LCA  The   results   of   the   stand-­‐alone   LCA   of   Solvatten   are   presented   in   this   section.   Hence,   the  interpretation   is   only   of   Solvatten’s   environmental   impact,   not   accounting   for   possible   positive  benefits   from  decreased   use   of   other  water   purifying  methods.   The   Interpretation   of   Stand-­‐Alone  LCA  consists  of  three  parts.  The  first  part  is  the  Results  of  the  Life  Cycle  Assessment  of  the  Solvatten  showing  the  main  result  from  the  Life  Cycle  Inventory  (LCI),  Life  Cycle  Impact  Assessment  (LCIA)  and  the   disposal   in   Kenya.   In   the   second   part   an   uncertainty   and   sensitivity   analysis   of   the   results   is  discussed,  to  stress  the  reliability  and  trustworthiness  of  the  results.  The  last  part  is  a  summary  of  the  key  findings  of  the  Life  Cycle  Assessment.    

6.1 Results  Below,   the   results  of   the  Life  Cycle  Assessment   are  presented.   SimaPro   is   used   to   analyze   the   life  cycle   from   cradle   to   when   the   product   is   in   Kenya   ready   to   be   used.   The   use   phase   has   no  environmental   impact  as  only  water  and  sun  energy  are  needed.  The  environmental   impacts   from  the  disposal  phase  were   impossible   to  analyse  correctly   in  SimaPro  due  to  a  very  different   level  of  development   in   Kenya   compared   to   databases   available.   Therefore,   the   LCI   and   LCIA   results   are  presented   first   and   after   that   the   environmental   impacts   from   the   disposal   are   discussed.   The   LCI  result   shows   the   total   amounts   of   different   substances   used   through   the   life   cycle   (cradle   to   use-­‐phase).   In   the   LCIA   results,   the   characterizations   show   the   parts  of   Solvatten   that   give   the   largest  impact   to   the   eleven   environmental   categories   Eco-­‐Indicator   99   studies,   the   normalization   results  show   these   results   compared   to   a   reference   value   and   the   weighting   result   show   the   impact  categories’  relative  importance.    

6.1.1 Life  Cycle  Inventory  Results  

The  Life  Cycle  Inventory  Result  list  contains  720  substances  in  four  different  categories  (raw  material  inputs  and  releases  to  air,  water  and  soil  respectively).  The  inventory  result  does  not  reflect  the  full  life  cycle,  as  the  disposal  phase  is  not  included  in  the  data  analysis.   If  recycling  the  plastics  and  the  metals,  levels  of  substances  would  decrease,  and  if  incineration  would  be  used,  releases  to  air  would  increase  dramatically.  This  is  important  to  keep  in  mind  when  interpreting  the  results.  Table  2  below  shows   the   amounts   released   to   air,   soil   and   water   of   15   substances.   The   15   substances   all   have  relatively  high  normalisation  damage  factors,  and  hence  contribute  to  the  environmental   impact  of  Solvatten.  The  full  Life  Cycle  Inventory  can  be  found  in  Appendix  4.  

Page 41: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

30  

 

 

 

6.1.2 Characterization  Results  

The  results  from  the  characterization  of  the  life  cycle  inventory  are  shown  below  in  Figure  5.  In  Figure  5,  the  bar  for  carcinogens  show  which  parts  of  Solvatten  add  up  to  the  total  environmental  impact  of  carcinogens,  and  so  on  for  the  other  ten  impact  categories.  The  black  container  and  the  transparent  lids  and  caps  give   the   largest   impacts   for  almost  all  of   the   impact   categories.  The  exception   is   the  category  of   land  use,  where  packaging  of   the   finished  product  give  the   largest   impact   transport  by  freight   ship,   transport   by   aircraft   and   the   glue   also   gives   a   relatively   large   impact   in  most   of   the  categories.   The   impact   categories   cannot   be   compared   as   their   units   differ,   as   described   in   5   Life  Cycle  Impact  Assessment.  

Substance Released  to Amount  [kg]

Particulates,  <  2.5  um Air 2,43E-­‐03Particulates,  >  10  um Air 3,84E-­‐03Dinitrogen  monoxide Air 1,94E-­‐04Chromium Air 5,09E-­‐06Hexachlorbenzene Air 5,90E-­‐10Cadmium Air 1,68E-­‐07Benzo(a)pyrene Air 5,00E-­‐08Arsenic Soil 1,35E-­‐08Zinc Soil 4,33E-­‐06Lead Soil 6,27E-­‐08Copper,  ion Water 1,03E-­‐04Cyanide Water 4,75E-­‐06Benzene Water 1,28E-­‐04Nickel,  ion Water 2,51E-­‐04Chloroform Water 1,47E-­‐10

Table  2  Life  Cycle  Inventory  Results,  of  the  Stand-­‐alone  Solvatten  

study,  Listing  the  Largest  Emissions  to  Air,  Soil,  and  Water  

Page 42: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

31  

 

Figure  5  Characterization  Result,  Showing  the  Impact  from  Different  Parts  of  Solvatten  on  the  

Different  Impact  Categories,  in  the  Stand-­‐alone  Solvatten  Study  

Page 43: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

32  

6.1.3 Normalization  Results    

The  normalization   results  show  the  characterization  values  compared   to  a   reference  value.   In  Eco-­‐Indicator  99  the  reference  is  the  environmental  impact  of  one  average  European  person  in  one  year.  As  with  the  characterization  result,  it  is  not  possible  to  compare  the  impact  categories  as  they  have  different  units.  Figure  6  shows  that  Solvatten  raw  material  extraction,  production  and  transport  from  Sweden   to  Kenya  correspond   to   almost  0.5  %  of  one  European  person’s   environmental   impact  on  fossil   fuels   during   a   year.   The   only   other   impact   categories   showing   any   significant   response   are  respiratory   inorganics   (around   0.07   %)   and   climate   change   (almost   0.03   %).   Figure   7   shows   the  results  of  Figure  6  grouped  into  damage  categories.  The  damage  categories  are  simply  made  up  of  impact  categories  with  same  unit.  It  could  be  seen  that  Solvatten’s  life  cycle  from  cradle  to  market-­‐of-­‐use  has  almost  no  impact  on  ecosystem  quality,  a  total  impact  on  human  health  of  0.1  %  and  on  resources  of  0.5  %  (%  of  an  average  European  person’s  environmental   impact  in  one  year).  Table  3  shows  the  result  in  Figure  6  as  a  table.    

Impact  Category      

Carcinogens   0,008%  Resp.  organics   0,000%  Resp.  inorganics   0,068%  Climate  change   0,024%  Radiation   0,000%  Ozone  layer   0,000%  Ecotoxicity   0,004%  Acidification/  Eutrophication   0,007%  Land  use   0,005%  Minerals   0,001%  Fossil  fuels   0,497%  

 

Table  3  Normalised  Results  of  the  Stand-­‐alone  Solvatten  Study,  

Listing  the  Normalised  Values  of  the  Impacts  Category  Results  

Page 44: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

33  

Figure  6  Normalization  Result,  Showing  the  Normalised  Impact  from  Different  Parts  of  Solvatten  on  the  Different  Impact  Categories,  in  the  Stand-­‐alone  

Solvatten  Study  

(y-­‐axis:  a  value

 of  1

 wou

ld  correspon

d  to  th

e  environm

ental  impact  of  a  Europ

ean  pe

rson

 during  on

e  year)  

Page 45: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

34  

 

Figure  7  Normalization  Result,  Showing  the  Normalised  Impact  from  Different  Parts  of  Solvatten  on  the  Different  Damage  Categories,  in  the  

Stand-­‐alone  Solvatten  Study  

(y-­‐axis:  a  value

 of  1

 wou

ld  correspon

d  to  th

e  environm

ental  impact  of  a  Europ

ean  pe

rson

 during  on

e  year)  

Page 46: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

35  

6.1.4 Weighted  Result  

Weighting  of  the  normalized  result  makes  it  possible  to  compare  the  impact  categories  to  each  other.  Figure  8   shows   that   the  environmental   impact   is   largest   in   the   category  of   fossil   fuels.   Fossil   fuels  make  up  80  %  of  Solvatten’s  total  impact  on  the  environment,  see  Table  4.  Respiratory  inorganics  are  responsible   for  11  %  of  Solvatten’s   total   impact,  and  climate  change  account   for  4  %.  Carcinogens,  acidification/   eutrophication   and   land   use   give   just   over   1   %   each.   The   five   resulting   categories  (respiratory   organics,   radiation,   ozone   layer,   minerals   and   ecotoxicity)   account   for   the   last  percentages   together.   From   the   bars   of   fossil   fuels,   respiratory   inorganics   and   climate   change   in  Figure  8  it   is  clear  that  the  black  container  and  the  transparent  lid  and  caps  contribute  most  to  the  environmental  impact  of  Solvatten.  

Impact  category   [Pt] %  

Carcinogens   0,024687   1,33%  Resp.  organics   0,00066   0,04%  Resp.  inorganics   0,204857   11,00%  Climate  change   0,072669   3,90%  Radiation   0,000902   0,05%  Ozone  layer   4,86E-­‐05   0,00%  Ecotoxicity   0,015898   0,85%  Acidification/  Eutrophication   0,027323   1,47%  Land  use   0,021126   1,13%  Minerals   0,003716   0,20%  Fossil  fuels   1,489905   80,03%  Total   1,861792  

   

Table   4   Weighted   Result   –   The   Values   of   the   Impact  

Categories  after  Weighting,  in  the  Stand-­‐alone  Solvatten  

Study  

Page 47: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

36  

 

Figure  8  Weighting  Result,  Showing  the  Weighted  Impact  from  Different  Parts  of  Solvatten  on  the  Different  Impact  Categories,  in  the  Stand-­‐

alone  Solvatten  Study  

Page 48: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

37  

6.1.5 Networks  

In  all  of   the  LCIA  results  shown  above,   it  has  been  the  black  container  and  the  transparent   lid  and  caps   giving   large   contributions   to   the   impacts.   To   examine   the   cause   of   impact   in   each   category,  characterization  networks  have  been  carefully   reviewed.  Characterization   shows  how  the  different  parts  of  Solvatten  add  up  to  the  total   impact   in  each  category.  Figure  9  shows  the  characterization  network  of  the  fossil  fuel  category,  which  in  the  weighting  result  showed  to  correspond  to  80  %  of  Solvatten’s  total  environmental  impact.  The  figure  shows  that  the  material  of  the  transparent  lid  and  the   material   of   the   black   container   stand   for   42.3   %   and   23   %   respectively   of   Solvatten’s   total  environmental  impact  on  the  category  of  fossil  fuels.  The  process  used  to  form  the  plastic  subparts  of  Solvatten  account  for  13.3  %  of  the  impact  in  the  category.  The  networks  of  the  six  impact  categories  yielding  more  than  1  %  of  Solvatten’s  total  impact  respectively  can  be  seen  in  Appendix  5.  Evaluation  of  these  six  impact  categories’  network  gives  that  the  same  materials  and  processes  are  responsible  for  the  largest  impact  in  four  of  the  six  impact  categories.  In  the  fossil  fuels,  respiratory  inorganics,  climate  change  and  acidification  /eutrophication  categories   the  material  of   the  transparent   lid  give  the  highest   impact  (climate  change,  44.5  %;  fossil  fuels,  42.3  %;  respiratory   inorganics,  36.4  %;  and  acidification   /eutrophication,  32.9  %).  Other  materials   and  processes  yielding  high   impacts   are   the  material   of   the   black   container,   the   process   used   to   form   the   plastic   sub-­‐parts,   and   transport   by  freight  ship  and  aircraft.  In  the  impact  category  of  carcinogens,  the  process  used  to  form  the  plastic  sub-­‐parts  account  for  68.7  %  and  one  of  the  metals  in  the   indicator  account  for  12.2  %.   In  the   last  impact   category,   land   use,   the   EU-­‐pallet   used   when   transporting   the   unit   to   its   market   of   use,  account  for  67.1  %  and  the  process  used  to  form  the  plastic  sub-­‐parts  account  for  24.3  %.    

Page 49: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

38  

  Figure  9  A  Network  of  the  Solvatten  Assembly,  Showing  the  Characterized  Results  of  the  Impact  Category  Fossil  Fuels  

Page 50: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

39  

6.1.6 Waste  Scenarios  in  Kenya  

In  this   life  cycle  assessment  of  Solvatten,   it   is  assumed  that  Kenya   in  Africa   is  where  the  product   is  used.  Kenya   is  therefore  also  the  place  where  the  disposal  phase  takes  place.  Kenya  has  no  proper  solid  waste  management,  as  there  are  no  legal  guidelines.  In  the  area  of  Nairobi,  the  city  council   is  responsible  for  waste  management  and  collects  about  40  %  of  the  produced  waste.  There  are  also  private  collectors  (around  60  companies),  that  collect  20  %  of  the  waste.  The  remaining  40  %  is  left  uncollected.  Most  of   the   collecting   is   localized   to   the  middle-­‐income  areas   and   in   the   low-­‐income  areas   there   is   no   collecting   at   all   by   the   city   council.   In   these  areas  burning  of  waste   is   becoming  more  common.  There  is  one  official  dumping  site,  Dandora,  which  has  been  in  use  since  1981  and  is  now  considered  to  be  full.  Many   illegal  sites  have  appeared,  as  there   is  a  fee  to  dump  at  Dandora.  Planning  of  waste  management  includes  a  new,  modern,  landfill.  But  this  is  a  long-­‐term  goal  and  the  city  council  is  now  looking  for  financers  and  engineers  (UN  Environment  Programme,  2007).  

In  the  low-­‐income  areas  open  burning  of  waste  and  dumping  of  waste  at  road  sides  and  river  banks  are  increasing  instead.  There  are  some  recycling  businesses  in  place,  but  this  is  focused  onto  product  areas  with  a  lot  of  waste.  People  collect  plastics  and  transport  it  to  the  recycling  facility,  where  they  get  paid  per  kg.  Examples  of  product  areas  are  bottles   (polyethylene  terephtalate,  PET)  and  plastic  bags   (Nylon,   Polyethylene,  PE,   and  Polypropylene,  PP).  When   considering   the   rural   areas,   no   solid  waste  management  exists.  The  waste  produced  is  either  burned  openly  or  just  dumped  somewhere  in   the  nature.  Also,   the   inhabitants  are  good  at   reusing  things  and  often   find  new  areas  where  old  products   can   come   to   use.   Proper   waste   management’s   largest   problem   is   that   there   are   no  economic   possibilities   or   infrastructure   to   transport   the   waste   to   the   biggest   cities   (Personal  communication,  Fredrik  Alfredsson,  2011).  

The   plastic  materials   of   the   black   container   and   the   transparent   lid   and   caps   account   for   74  %  of  Solvatten’s  total  weight  and  are  therefore  the  main  consideration  if  burning  a  Solvatten  unit  openly.  Complete  incineration  of  the  material  of  the  black  container  would  reduce  the  plastic  to  only  carbon  dioxide   and  water.   Abundance   of   oxygen   is   needed   for   such   complete   combustion   though,   and   if  burning  the  container  openly  there  probably  is  a  shortage.  According  to  Boettner  et.  al.  (1973)  only  30  %  of   the  material   is   combusted   if  air   flow   is  100  cubic   centimetres  and  heating   rate   if  5   °C  per  minute.   70   %   is   hence   put   on   landfill   anyway.   Carbon  monoxide,   carbon   dioxide,   propylene,   1,3-­‐pentadiene  and  methane  are  the  combustion  products  with  highest  concentration.  The  material  of  the  transparent  lid  and  caps  is  burnt  easily  as  volatile  substances  formed  during  combustion  acts  as  extra   fuel  and  speeds  process.  The  combustion  of  the  material   is  also  dependant  on  abundance  of  oxygen,   and   with   open   burning   there   is   no   guarantee   that   enough   oxygen   is   available.     During  combustion,   large   amounts   of   heat,   smoke   and   toxic   substances   are   emitted,   and   therefore  treatment  of  the  incineration  products  should  be  preferred.  The  remaining  26  %  of  the  unit  consists  of  other  plastic  materials,  rubbers  and  metals.  The  plastics  and  rubbers  should  mainly  decompose  to  carbon  dioxide  and  water,  but  as  there  might  be  additives  in  the  materials  by-­‐products  can  form  and  potentially  be  harmful.    

The   disposal   phase   of   Solvatten’s   life   cycle   is   not   included   in   the   assessment   in   SimaPro   as   the  situation  in  Kenya  (and  other  developing  countries)  differs  extensively  from  the  database  information  available.  In  reality,  Kenya  does  not  even  have  waste  treatment  methods;  they  are  dependent  on  an  uncontrolled  dumping  site.  Also,  as  Solvatten  is  in  the  start-­‐up  phase  and  the  estimated  life  length  of  the  product  is  10  years,  the  doubts  about  how  disposal  will  be  taken  care  of  are  many;  How  long  will  

Page 51: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

40  

the   actual   life   length   of   Solvatten   be?  What   options   of   waste   treatment   will   be   available?  What  standards  will  the  Kenyan  facilities  have?    

To   see   how   the   disposal   phase   affects   the   life   cycle   and   to   compare   different   waste   treatment  methods,   three   scenarios   are   made   in   SimaPro   and   compared.   The   three   scenarios   for   waste  treatment  are   landfill,   incineration  and   recycling  and   they  are  all  based  on   the  European  standard  that   the   Ecoinvent   Database   of   SimaPro   contains.   It   is   not   probable   that   Kenya,   or   any   other  developing   country  where   Solvatten  might  be  used,  would  have   facilities  with   the   same   standards  when   it   comes   to   emissions   and   refining   their  waste.  Moreover,   it   is   not   likely   that   this  will   have  changed   when   the   life   of   the   Solvatten   unit   comes   to   its   end   (time   boundary;   10   years).   This  comparison   is   done   to   stress   the   importance  of   taking   care  of   the  product  properly  when   the  use  phase  comes  to  an  end.  

Figure  10  shows  a  comparison  of  the  life  cycle  of  Solvatten  with  the  three  different  waste  scenarios.  Landfill,   which   is   the   most   probable   scenario,   shows   high   impacts   (>   90   %)   in   all   of   the   eleven  categories.  In  a  landfill,  organic  waste  will  be  degraded  to  gaseous  pollutants  and  humus  (Persson  et  al.,   2005).   Also,   rainwater   flow   through   the  masses,   and   the   leachate   formed  will   be   polluted.   To  hinder  leachate  to  mix  with  the  ground  water,  European  standard  landfills  have  sealings  underneath  and  on  top.  There  are  also  systems  to  collect  the  leachate  to  clean  it  separately.  In  Sweden,  landfills  are  used  when  there  is  no  other  option  available,  and  the  landfills  are  controlled  and  fairly  safe.  In  Kenya  and  other  developing   countries   it   is   not  probable   that   the   landfill   facilities  do  not  have   the  same  level  of  sealing  underneath,  and  most  definitely  not  on  top  (United  Nations  Human  Settlements  Programme,  2010).  The  official  landfill  of  Nairobi,  Dandorra,  is  by  UN  referred  to  as  an  uncontrolled  dumping   site,   and   such  are  normally   the  only  waste   scenario  possible   in  developing   countries   like  Kenya.  

Incineration   and   landfill   seem   to   result   in   fairly   equal   environmental   impacts   in   almost   all   of   the  categories,   except   three;   climate   change,   carcinogens   and   ecotoxicity.   Incineration   affects   the  climate  change  environmental   impact  factor  more  than  both  landfill  and  recycling.  This  is  of  course  expected   as   burning   of   plastics   release   emissions   of   carbon   dioxide   and   other   volatile   organic  compounds.  The  impact  in  the  category  of  ecotoxicity  is  reduced  to  about  80  %  of  landfills  level  and  in  the  category  to  only  15  %  if  incineration  is  used  instead.  

Recycling  is  clearly  the  best  option,  showing  the  lowest  bars  in  nine  of  the  eleven  categories.  It  is  only  in   the   category   of   radiation   that   recycling   is   worse   than   both   landfill   and   incineration   and   in   the  category  of   carcinogens   that   recycling   seems   to  have  a   slightly  higher   impact  on   carcinogens   than  incineration.  What  is  more  notable  is  that  the  environmental  impact  is  decreased  to  less  than  60  %  of  landfill’s  or  incineration’s  impact  if  recycling  is  used.    

Figure   11,   Figure   12   and   Figure   13   show   the   characterization   of   the   life   cycle   of   Solvatten   with  disposal   phase   landfill,   incineration   and   recycling   respectively.   For   both   landfill,   Figure   11,   and  incineration,   Figure   12,   it   is   the   three   impact   categories   of   carcinogens,   climate   change   and  ecotoxicity   that   show   an   increased   impact   due   to   the   waste   scenario.   It   is   only   incineration   that  shows   any   significant   impact   on   climate   change.   However,   incineration’s   largest   environmental  impact  is  in  the  category  of  ecotoxicity,  while  landfill’s  largest  impact  is  in  carcinogens.  Incineration  gives   small   increases   (less   than   5   %-­‐points)   in   respiratory   inorganics,   radiation,   acidification/  eutrophication  and  minerals.  Not  included  in  the  incineration  scenario,  is  the  avoided  emissions  from  

Page 52: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

41  

production  of  energy,  which  would  lead  to  a  decrease  in  the  environmental  impact  of  this  scenario.  Landfill   shows   smaller   impacts   in   land   use   and  minerals   (less   than   5   %-­‐points)   as   well.   Figure   13  clearly   shows   the   benefits   of   recycling.   In   six   of   the   eleven   categories,   recycling   decreases   the  environmental  impact  of  Solvatten  as  less  raw  materials  have  to  be  extracted  when  recycling.  When  recycling,   extraction   becomes   an   avoided   process   as   the   old   material   can   be   used   again.   This   is  clearly  positive  for  the  environment  as  resources  most  often  are  scarce.  Carcinogens,  radiation  and  ecotoxicity  are  the  only  categories  where  recycling  yields  an  increased  impact.  

Page 53: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

42  

Figure  10  Comparison  of  the  Impact  of  Waste  Scenarios  on  the  Impact  Categories  for  Solvatten  

Page 54: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

43  

 

Figure  11  Characterization  Results  of  Solvatten  with  Waste  Scenario:  Landfill    

Page 55: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

44  

 

Figure  12  Characterization  Results  of  Solvatten  with  Waste  Scenario:  Incineration  

Page 56: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

45  

 

Figure  13  Characterization  Results  of  Solvatten  with  Waste  Scenario:  Recycling  

Page 57: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

46  

6.1.7 Carbon  Dioxide  Equivalents  

There   is  a   range  of  gases  affecting  the  climate  and  their  ability   to  absorb  heat   radiation  as  well  as  their  life-­‐times  in  the  atmosphere  varies.  Hence,  different  gases  affect  the  climate  differently.  Each  of  the  gases   affecting   the  climate  has   a   global  warming  potential   (GWP)   factor   comparing   the  gas   to  carbon  dioxides  warming  potential.  For  a  100  year  long  period,  the  GWP-­‐factor  of  carbon  dioxide  is  set  to  1.  For  methane  it  is  25,  meaning  that  methane  affects  the  climate  25  times  more  than  carbon  dioxide.   Dinitrogen   oxide   has   a   GWP-­‐factor   of   298   and   so   on   for   all   of   the   greenhouse   gases.  Therefore,  it  is  possible  to  recalculate  a  particular  amount  of  one  emission’s  effect  on  global  warming  in   relation   to   carbon   dioxide’s   effect.   This   is   called   to   calculate   an   emission’s   carbon   dioxide  equivalents.  This  has  become  a  popular  tool  to  compare  different  products  effect  on  global  warming  (Bernes,  2007).    

The  total  emission  of  CO2  equivalents  can  be  calculated  by  using  a  ReCiPe,  another  methodology  for  impact   assessments   in   SimaPro.   The   climate   change   impact   category   in   ReCiPe   is   a   midpoint  category,  with  a  unit  of  kg  CO2  equivalents.  If  analyzing  the  Solvatten  LCI  with  ReCiPe,  instead  of  Eco-­‐Indicator  99,  it  is  found  that  the  Solvatten  raw  material  extraction,  production  and  transport  down  to  Kenya  correspond  to  18  kg  of  CO2  equivalents.  This  can  be  seen  in  Table  5,  together  with  a  summary  of  how  many  CO2  equivalents  each  part  of  Solvatten  is  responsible  for.  Figure  14  shows  a  network  of  parts  of  Solvatten  contributing  to  more  than  1  %  of  the  total  environmental  impact  of  climate  change  in  ReCiPe.  It  is  clear  that  the  material  of  the  transparent  lid  and  caps  and  the  black  container  as  well  as  the  process  used  to  form  these  give  the  most  impact.    

If   ReCiPe   is   used   to   calculate   the   environmental   impact   of   Solvatten   with   the   waste   scenario   of  European  standard   incineration  used  above   in  the  comparison,  the  total  release  would  be  24  kg  of  CO2  equivalents,  which  can  be  seen  in  Table  6.  Incineration  would  hence  increase  the  release  of  CO2  equivalents  with  33  %.  

Table  5  states  that  one  Solvatten  unit’s  production  and  transportation  down  to  Kenya  produce  18  kg  of  CO2  equivalents.  This  can  be  compared  to  a  Sony  Ericsson  cell  phone  that  has  been  reported  to  produce  23.8  kg  of  CO2  equivalents  during  its  expected  life  length  of  3.5  years  (Sony  Ericsson  ,  n.d.).  The  23.8  kg  include  all  phases  of  life,  including  waste  scenario,  and  3.6  %  of  the  impact  is  reported  to  be   overhead   impacts   from   Sony   Ericsson’s   offices   and   travel.   The   number   has   been   calculated  through   an   LCA,   but   it   is   not   stated  which   phone  model   that   is   used   in   the   study.   The   computer  producer  Dell  reports  that  a  typical  business  laptop  produces  350  kg  of  CO2  equivalents  (Dell,  2010).  This  calculation  was  also  done  through  an  LCA  and  the  lifespan  of  the  computer  was  estimated  to  4  years.  Further,  it  was  assumed  that  75  %  of  the  device  was  recycled  and  the  rest  was  incinerated.  The  British  newspaper  The  Guardian  has  a  section  on  their  web  page  stating  carbon  dioxide  equivalent  productions  from  various  products.  In  August  2010,  they  stated  that  the  internet  releases  300  million  tonnes  of  CO2  equivalents  each  year,  being  equal   to   the   fossil   fuels  burnt   in  Turkey   in  a  year   (The  Guardian,  2010).  And  in  November  2010  they  said  that  a  load  of  laundry  washed  at  40  °C  and  dried  on  the  line  produces  0.7  kg  of  CO2  (The  Guardian,  2010).  

Page 58: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

47  

 

Figure  14  A  Network  of  the  Solvatten  Assembly,  Showing  the  Characterized  Results  of  the  Impact  Category  Climate  Change  [cutoff:  1  %]  

 

Page 59: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

48  

 

Climate  change   kg  CO2  eq  

Total   18,03  Indicator   0,47  

Black  Container   4,56  Transparent  Lid  and  Caps   9,70  Small  Plastic/Rubber  Parts   0,44  

Metals   0,01  Glue   0,41  

Packaging  of  finished  Solvatten   0,18  Transport,  lorry  16-­‐32t,  EURO4/RER  U   0,09  

Transport,  transoceanic  freight  ship/OCE  U   0,71  Transport,  lorry  >28t,  fleet  average/CH  U   0,21  

Transport,  aircraft,  freight,  intercontinental/RER  U   1,23    

 

Table  6  Results  from  the  Impact  Category  Climate  Change  Using  the  Impact  Assessment  Method  ReCiPe,  

Including  the  Disposal  phase:  Incineration  

kg CO2 eq

Solvatten 18,03 raw material, production, transport to place of use, use phase Incineration 6,13 disposal phase (no transports from place of use included)

Total 24,15  

Table  5  Results  from  the  Impact  Category  Climate  Change  Using  the  Impact  

Assessment  Method  ReCiPe  

Page 60: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

49  

6.2 Uncertainty  and  Sensitivity  Analysis  Uncertainties  can  appear  in  both  the  model  and  the  data  collected.  As  these  uncertainties  affect  the  reliability   of   the   results,   it   is   important   to   analyze   and   keep   them   in  mind  when   interpreting   the  results.  

Model  uncertainties  typically  include  uncertainties  that  the  future  holds,  emissions  from  production  processes  and  waste  treatments  can  for  example  be  very  different  when  the  analysis   is  carried  out  compared   to   when   the   emissions   actually   take   place.   Uncertainties   can   also   arise   if   a   database  process   or  material   in   SimaPro   is   for   a   country   other   than  where   the   actual   process   takes   place.  Other   model   uncertainties   concern   the   choice   of   functional   units   and   allocation   basis.   Data  uncertainties  is  for  example  inconsistencies  in  the  collected  data,  as  all  information  can  be  difficult  to  gather  and  system  boundaries   set   in   the   scope  of   the   study  can  be   stretched.  Also,  data   inputs   in  SimaPro  that  are  not  connected  to  a  characterization  factor  will  not  show  in  the  impact  assessment.  An  important  reason  for  data  uncertainties  is  the  fact  that  the  production  processes  differ  depending  on  the  specific  plant’s  condition.  When  using  databases  SimaPro  withhold,  the  data  will  be  inexact  as  the  data  for  material  or  process  varies  (Product  Ecology  Consultants,  2010).  

In  4  Life  Cycle  Inventory,  data  uncertainties  resulting  in  incompleteness  in  the  data  set  are  described,  as  well   as  model   uncertainties   of   SimaPro   not   holding   database   inputs   from   the   right   country,   or  exactly  right  material  or  process.  In  this  section  sensitivity  analysis  is  carried  out  to  see  the  impacts  of  some  of  the  assumptions  made.  The  sensitivity  analysis  tells  the  difference  in  impacts  when  the  value  assumed  is  varied  (Product  Ecology  Consultants,  2010).  In  this  LCA,  the  assumptions  that  are  possible  to   vary   include   freight   from   Sweden   to   Kenya   with   airplane   or   ship.   This   sensitivity   analysis   is  presented  below.    

6.2.1.1 Transport  to  Market  of  Use  –  Kenya  

Today,   Solvatten   is   transported   mainly   by   freight   ship   from   Gothenburg,   Sweden   to   Mombasa,  Kenya.  Solvatten  AB  estimates  that  around  95  %  of  all  transports  down  to  Kenya  are  by  ship,  and  the  remaining  5  %  is  transported  by  airplane.  But,  as  there  are  many  start-­‐up  projects  right  now,  maybe  a  larger  part  will  be  transported  by  air  the  next  months  or  even  years.  This  is  also  due  to  the  insecurity  about  when   freight   ships  will   arrive   in   the   port   in   Kenya   (Personal   communication,   Johanna   Felix,  2011).  Due  to  this  a  sensitivity  analysis  of  how  the  environmental  impact  will  change  if  as  much  as  20  %  of   the  transports  down  to  Kenya  will  be  by  airplane   instead.  The   increased   level  of  air   freight   is  chosen  after  a  discussion  with  Johanna  Felix,  Solvatten  AB.  The  result  is  presented  below  in  Figure  15  below.   It   is   clear   that   the  environmental   impact   increase   in  every  single   impact   category,  with   the  largest   increases   in   acidification/eutrophication,   climate   change,   ozone   layer,   fossil   fuels   and  respiratory  inorganics.  Overall,  the  difference  is  quite  small  though.  No  category  shows  more  than  a  20  %  increase.    

6.2.1.2 Standard  of  Lorry  Transports  

In  this  LCA  it  is  assumed  that  lorry  transports  are  of  EURO  4  standard  in  Europe  and  of  average  fleet  in  Kenya.  As  the  quality  of  lorries  varies  through  Europe,  the  standard  might  be  lower.  The  average  fleet  is  probably  better  in  Europe  than  in  Kenya,  but  as  the  input  contains  EURO0-­‐EURO4  it  is  the  best  option  available  since  EURO3  is  the  lowest  single  standard  in  SimaPro.  It  is  hence  not  possible  to  vary  the  inputs  of  lorry  transports  in  a  way  that  would  provide  any  interesting  results.    

Page 61: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

50  

 

Figure  15  Comparison  of  the  Different  Impact  Categories  of  the  Solvatten  Unit  Using  20  %  and  5  %  Air  Freight  

Page 62: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

51  

6.3 Key  Findings  Key  findings  is  basically  a  summary  of  the  most  important  results  described  above.    

The   SimaPro  analysis  of   Solvatten   shows   that   it   is   the  black   container  and   the   transparent   lid   and  caps   that   give   the   largest   environmental   impact   through   the   life   cycle   from   cradle   to   end-­‐of-­‐use  phase  in  Kenya.  The  process  used  to  form  these  (and  other  plastic  sub-­‐parts  of  Solvatten)  is  a  large  part  of  the  environmental  impact  as  well  as  the  materials  per  se.  When  weighting  the  results  it  shows  that   only   six   of   the   eleven   impact   categories   correspond   to   99   %   of   a   Solvatten   unit’s   total  environmental  impact.  It  is  the  impact  categories  of  fossil  fuels  (80  %),  respiratory  inorganics  (11  %)  and   climate   change   (4   %)   that   contributes   most   to   the   total.   When   interpreting   characterization  networks  the  six   impact  categories  yielding  99  %  of  Solvatten’s  total   impact,  the  plastic  material  of  the   transparent   lid   contributes   mostly   to   four   of   the   six   impact   categories.   In   the   other   two  categories  it  is  the  process  used  to  form  the  plastics  and  the  EU-­‐pallet  used  when  freighting  the  unit  down  to  Kenya  that  are  responsible  for  the  largest  contributions.  Overall,   it   is  the  plastic  materials,  the  process  used  to  form  these  and  the  transports  by  freight  ship  and  aircraft  that  contributes  mostly  to  Solvatten’s  total  environmental  impact.    

When   normalizing   the   characterization   results,   it   is   only   the   category   fossil   fuels   that   have   any  noteworthy  impact.  Solvatten’s  impact  on  fossil  fuels  is  comparable  to  0.5  %  of  an  average  European  person’s   impact  of   fossil   fuels   during   one   year.  On   the   other   hand,   this   is   a   positive   result   as   the  environmental   impact  of  Solvatten  seen  to  all   the  other  categories   is  very   low.  When  grouping  the  impact  categories   into  damage  categories,  the   impact  on  fossil   fuels  make  up  the  whole   impact  on  resources,   as  minerals   and   land   use   barely   have   any   impact.   In   the  other   two  damage   categories,  Solvatten  has  0.1  %   impact  of  an  average  European  during  a  year  on  human  health  and  almost  no  impact  (<0.02  %)  on  ecosystem  quality.  The  impact  on  human  health  is  made  up  from  the  impact  of  respiratory  inorganic  and  climate  change  as  the  other  impact  categories  in  the  damage  category  has  barely  any  impact.  

The   production   and   transport   of   a   final   unit   down   to   Kenya   produces   18   kg   of   CO2   equivalents  according   to   the   ReCiPe   methodology   of   SimaPro,   and   if   incinerated   in   a   plant   with   European  standards,   the   number   goes   up   to   24   kg.   This   is   comparable   to   a   cell   phone   produced   by   Sony  Ericsson  (23.8  kg  CO2  equivalents  with  disposal  included).    

A  major  finding  when  analyzing  Solvatten’s  life  cycle  is  that  attention  has  to  be  paid  to  the  disposal  of  the  product.  This   is  a  problem  that  will  rise   in  the  future,  as  more  Solvatten  units  will  come  to  the  end  of  their  life.  In  Kenya  there  is  no  properly  functioning  solid  waste  management  and  disposal  rely  on  a   landfill   from  1981.  Unorganized  dumping  of  waste  has   started   to   increase  on   riverbanks   and  road  sides  as  well  as  burning  of  waste  with  no  control  of  the  emissions.  It  is  important  for  Solvatten  AB  as  a  company  to  take  their  responsibility  as  a  producer  to  make  sure  that  the  disposal  phase  of  their  product  does  not  cause  any  serious  damage  to  the  environment.  

   

Page 63: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

52  

Page 64: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

53  

7 Comparative  Studies  In   this   section   of   the   report   the   environmental   impacts   of   two   other  methods   of   assessing   clean  water  will  be  compared  with  Solvatten.  The  first  method  is  boiling  of  water,  the  most  commonly  used  method  for  purifying  water.  A  simple  LCA  of  boiling  water   is   therefore  made,  and  the  method  and  results  of   this   is  described  below.  The  second  method   in   this   comparison   is  bottled  water.  Bottled  water  represents  a  large-­‐scale  method  with  benefits  of  control  over  both  costs  and  quality.  A  simple  LCA  of  bottled  water  would  be  based  on  assumptions   and   simplifications,   and  will   be   scientifically  unreliable   if   done  within   the   framework   of   a  master   thesis   project.   Therefore,   the   environmental  impacts  of  bottled  water  are  discussed  thoroughly.    

7.1 Boiling    In  this  section  the  comparative  LCA  between  Solvatten  and  boiling  water  is  described.  It  contains  a  Life   Cycle   Inventory  with   a   description   of   the   data   used,   as   well   as   assumptions   and   calculations  made.  The  functional  unit  for  this  comparative  study  is  10  litres  of  clean  water.  That  implies  that  the  environmental   impact   of   purifying   10   litres   of   water   with   Solvatten   (i.e.   using   Solvatten   once)   is  compared  to  boiling  10  litres  of  water.  

7.1.1 Flowchart  

Figure  16  shows  a  flowchart  of  the  process  of  boiling  water.    

 

Figure  16  Simplified  Flowchart  of  Boiling  Water  

7.1.2 Life  Cycle  Inventory  

Data  collection  for  the  process  of  boiling  water  was  performed  by  published  articles  on  combustion  emissions   and   discussion   with   Johanna   Felix,   Solvatten   AB.   Solvatten   AB   have   performed   many  studies   in   Kenya   which   show   the   current   habits   concerning   Solvatten,   boiling   and   firewood   use.  Below  is  a  description  of  the  data  used  and  the  assumptions  made.  

When  boiling  water   in  Kenya,  only   an  aluminium  pot,   firewood  and   three   stones   are  needed.   The  water   is   heated   by   putting   the   three   stones   in   the   form  of   a   triangle   and   the   firewood  placed   in-­‐between  them  with  the  pot  on  top.  An  aluminium  pot  bought  in  Kenya  was  used  to  determine  the  weight   of   the   pots   used.   The   pot   contained   2.5   litres   and   the   weight   is   180   grams.   The   most  commonly  used  pot  contains  10  litres.  If  a  linear  relationship  of  weight  and  volume  is  assumed,  the  10  litre  pot  would  weigh  720  grams,  four  times  as  much.  The  aluminium  pot  is  punched  out  from  a  metal   sheet,   and   therefore   it  must   be   assumed   that   some  material   is   lost  within   production.   The  material  required  for  the  production  is  hence  assumed  to  be  800  grams.  Due  to  the  label  on  the  pot  

Page 65: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

54  

bought   in   Kenya,   listing   place   of   production   to   be   Kenya,   the   aluminium   pot   is   assumed   to   be  produced  in  Nairobi.  In  the  stand-­‐alone  LCA  of  Solvatten,  no  transport  outside  Nairobi  is  included  in  the   assessment.   Since   this   LCA   of   boiling   water   is   a   comparative   assessment,   no   transports   are  included  for  the  aluminium  pot  either.  

A   study   performed   by   Vi-­‐Skogen   showed   that   0.36   kg   firewood  was   used   to   boil   1   litre   of   water  (Åhman,  2010).  It  is  assumed  that  all  firewood  is  collected  in  the  proximity  of  the  household,  and  that  no   transportation  of   the   firewood   takes  place.   If   the   firewood  has   to  be  bought,   there  might  be  a  transportation   of   the   wood.   For   burning   the   firewood,   a   new   process   was   added   in   SimaPro.  Emissions   used   in   the   process   are   published   by   the   European   Environment   Agency,   EEA,   in   the  EMEP/EEA  Air  Pollutant  Emission  Inventory  Guidebook.  A  complete  list  of  the  emissions  used  can  be  found  in  Appendix  6.  The  final  waste  flow  in  the  burning  process  is  set  to  be  wood  ashes  which  can  be  found  in  the  substance  list  in  SimaPro.    

The   life   length   of   the   aluminium   pot,   according   to   the   ViSkogen   study,   is   6-­‐12  months.   Since   the  aluminium   pot   might   have   other   applications   than   just   heating   water,   like   heating   food,   an  assumption   has   been  made   that   the   aluminium   pot  would   last   12  months   if   just   used   for   boiling  water.  The  Vi-­‐Skogen  study  also  shows  that  37   litres  of  water   is  heated  per  day,  meaning  that  one  aluminium  pot  can  boil  13,505  litres  of  water  during  its  lifetime  (ViSkogen,  2010).  The  functional  unit  used   for   the  comparative  LCA   is  10   litres  of  clean  water.  The  10   litres   is  divided  by  the  amount  of  water  that  the  aluminium  pot  can  produce  during  its  lifetime  to  give  the  environmental  impact  of  the  functional  unit.  The  Solvatten  unit  is  expected  to  have  a  lifetime  of  10  years.  One  unit  can  produce  on  average   14   litres/day   which   means   that   Solvatten   can   produce   51100   litres   of   water   during   its  lifetime  (Åhman,  2010).  As  done  for  the  aluminium  pot,  10  litres  is  divided  with  the  amount  of  water  that  Solvatten  can  purify  during  its  lifetime,  to  give  the  environmental  impact  for  the  functional  unit.  

7.1.3 LCIA  Results  

In  this  section  the  results  from  the  comparative  LCA  of  Solvatten  and  boiling  water  is  listed.    

The  comparison  between  Solvatten  and  Boiling  water  in  the  11  impact  categories  is  shown  in  Figure  18.  Solvatten  has  a  lower  environmental  impact  in  nine  of  the  eleven  impact  categories.  Only  in  the  categories  Ozone   layer  and  Fossil   fuels,  Solvatten  have  a  higher   impact   than  boiling  water.  For  the  categories  Land  use,  Radiation,  and  Minerals  the  environmental  impact  of  Solvatten  is  shown  in  the  figure.  In  the  remaining  six  categories  the  environmental   impact  is  so  much  larger  for  boiling  water  than  for  Solvatten,  that  Solvatten’s  impact  is  not  even  visible.  Figure  18  shows  the  impacts  categories  grouped  together  into  the  damage  categories.  It  is  visible  here  that  Solvatten  has  a  larger  impact  on  Resources,   even   though   the   impact   from   Boiling  water   is   almost   the   same.   Boiling  water   has   the  highest   impact  on  Human  health  and  Ecosystem  Quality,  where   the  Solvatten   results  are  not  even  visible.   Figure   19   shows   the  weighted   values   of   the   comparison.   It   clearly   shows   that   the   impact  category  of  Respiratory  Organics   from  Boiling  water  have  the  highest   impact.  The  Solvatten  values  are  not  visible  in  the  weighted  diagram.  

Wood  is  considered  a  renewable  resource  under  certain  conditions.  Burning  of  wood  is  seen  to  have  no  CO2  emissions  to  the  atmosphere,  since  one  tree  that  grows  absorbs  the  same  amount  of  carbon  dioxide  when   growing,   as   is   released  when   combusted.   However,   the   harvest   of   firewood   can   be  unsustainable  if  a  larger  amount  of  wood  is  combusted  than  allowed  to  grow  back.  Then  there  will  be  an   emission   of   carbon   dioxide   to   the   atmosphere.   Unsustainable   firewood   harvesting   leads   to  

Page 66: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

55  

deforestation.   The   deforestation   is   a   problem   in  many   developing   countries,   and   Kenya   is   one   of  them.   Except   for   the   emission   of   carbon   dioxide,   the   deforestation   can   also   lead   to   a   loss   of  biodiversity  (FAO,  2010).  Deforestation  is  not  shown  in  SimaPro  as  LCAs  are  not  site  specific  (Bauman  &   Tillman,   2004).   This   is   a   disadvantage   to   the   assessment.   Another   is   that   social   and   economic  impacts  of  a  product  are  not  shown.  

Page 67: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

56  

 

Figure  17  Comparison  of  Solvatten  (Red)  and  Boiling  Water  (Green):  Figure  Showing  Characterisation  Results  Divided  into  the  Impact  Categories  

Page 68: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

57  

 

Figure  18  Comparison  of  Solvatten  (Red)  and  Boiling  Water  (Green):  The  Figure  Showing  Characterisation  Results  Divided  into  the  Damage  Categories  

Page 69: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

58  

 

Figure  19  Comparison  Solvatten  (Red)  and  Boiling  Water  (Green):  The  Figure  Shows  Normalized  Results  Divided  into  Impact  Categories  

Page 70: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

59  

7.1.4 Disposal  

The  disposal  scenarios  are  not  included  in  the  comparison  between  Solvatten  and  boiling  water  due  to   the  uncertain  circumstances   in  Kenya.  The  waste  produced  from  boiling  water   is   the  aluminium  pot  and  wood  ashes.  The  wood  ashes  can  be  used  as  a   fertilizer   if   spread   in  nature,  and  does  not  need  any  waste  treatment  There  are  some  small-­‐scale  recycling  for  aluminium  in  Kenya,  hence  one  option   for   the  disposal   is   that   the  pot   is   recycled   into  a  new  pot   (Karanja  et  al.,  2004).  The  waste  treatment  of  Solvatten  is  discussed  in  section  8  Discussion.  Since  the  waste  treatment  for  Solvatten  is  unknown,  it  is  hard  to  make  a  comparison  with  the  one  of  boiling  water.    

7.2 Water  in  PET-­‐bottles  Purified  water  in  a  PET-­‐bottle  is  common  in  many  places  in  the  world.  It  is  a  safe  way  to  get  access  to  drinking  water.  A  large  manufacturing  facility  can  more  easily  provide  a  high  quality  control,  than  a  small   scale  purifying  method   like  boiling  water   and   the  use  of   Solvatten.   For   the   comparison  with  bottled  water  the  study  will  not  be  performed  as  a  data  analysis.  Instead  a  comparative  discussion  is  done.   This   section   explains   the   material   flow   for   PET-­‐bottles   through   production,   use   phase   and  disposal  compared  to  Solvatten.  

PET-­‐bottles  are  produced  from  polyethylene  terephthalate  plastic  that  is  blow-­‐moulded  into  bottles.  The  same  raw  material,  crude  oil,  is  used  when  producing  PET-­‐bottles  as  when  producing  the  plastic  used  in  Solvatten.  One  PET-­‐bottle  containing  1.5  litres  of  water  weighs  40-­‐45  grams  (PlasticsEurope,  2010).   As   previously   calculated   the   Solvatten   unit   can   produce   51,100   litres   of   water   during   its  lifetime.  The  amount  of  plastic  needed  for  the  same  volume  of  water  is  hence  almost  1,400  kg.    

The  Solvatten  unit  only  requires  sunlight  to  purify  the  water.  If  establishing  a  facility  for  bottled  water  there  has   to  be  a  production   facility   for   the  bottles  as  well   as   a   facility   for   the  purification  of   the  water.   All   of   this  will   require  material   and  energy   in   the   building   process   and   in   the  maintenance  process.    

If   produced   locally,   the   transportation   for  one  bottled  of  water  most  probably   is   lower   than   for  a  Solvatten  unit.  As  stated  above,  the  amount  of  bottles  required  during  one   lifecycle  of  Solvatten   is  large,  and  it  can  be  assumed  that  the  total  transportation  required  for  bottled  water  is  significantly  higher  than  for  one  Solvatten  unit.    

In  Kenya  there  are  some  recycling  programs  in  place  for  PET-­‐bottles.  All  of  the  PET-­‐bottles  will  not  be  recycled,  and  the  remaining  bottles  will  be  put  on  landfills  (Karanja  et  al.,  2004).  As  describe  above,  the  plastics  used  in  the  Solvatten  have  no  recycling  program  in  place  in  Kenya.    

   

Page 71: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

60  

Page 72: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

61  

8 Discussion  In  the  Discussion  the  results  and  questions  raised  during  the  analysis  are  discussed  more  extensively.    

8.1 Stand-­‐Alone  LCA  of  Solvatten  This  section  will  discuss  the  study  which  has  assessed  the  Solvatten  unit  alone.    

8.1.1 Cradle  to  end-­‐of-­‐use-­‐phase  LCA  of  Solvatten  

The  purpose  of  this  LCA  was  to  find  both  environmental  strengths  and  weaknesses.  The  strengths  can  be  used  in  marketing  of  the  product,  while  weaknesses  are  areas  of  improvement.    

The  most  clear  environmental  strength  shown  by  the  life  cycle  assessment  is  that  a  Solvatten  unit  has  barely  any   impact  on  the  damage  category  of  ecosystem  quality.  The  normalized  result  shows  that  Solvatten  give   less   than  0.02  %   the  ecosystem  quality   compared   to   an  average  European  person’s  yearly  impact.  Ecosystem  quality  is  measured  in  the  unit  of  percentage  of  species  that  are  threatened  or  that  disappeared  from  a  given  area  during  a  certain  time.  The   impact  categories   included  in  the  damage   category   are   ecotoxicity,   acidification/eutrophication,   and   land   use.   It   is   the   acidification  /eutrophication   category   that   shows   the   largest   impact   of   the   three   and   it   is   the  material   of   the  transparent   lid   and   caps   as   well   as   the   transportation   by   freight   ship   that   contributes   the   most.  Overall,  it  is  apparent  that  the  usage  of  Solvatten  means  almost  no  harm  for  species  diversity.    

Also,  the  damage  category  of  human  health  has  a  low  impact.  Human  health  consists  of  the  impact  categories  of  carcinogens,  respiratory  organics,  respiratory  inorganics,  climate  change,  radiation  and  ozone  layer.  Human  health  is  measured  in  disability  adjusted  life  years.  A  Solvatten  unit  corresponds  to   0.1   %   of   an   average   European   person’s   yearly   impact,   and   it   is   the   categories   of   respiratory  inorganics   and   climate   change   that   contribute   mostly.   Respiratory   inorganics   include   particulate  matter  as  well  as  SOX  and  NOX  compounds  and  the  climate  change  category  measures  how  emissions  contributing  to  climate  change  affect  the  human  health.  In  both  of  the  categories,  it  is  the  material  of  the   transparent   lid   and   caps   that   contributes   mostly.   The   process   of   forming   the   plastics   and  transportation   by   freight   ship   and   airplane   also   give   significant   contributions   to   the   impact  categories.  Most   of   the   impact   categories   in   the   human   health   damage   category   (four   out   of   six)  show  almost  no  impact  at  all,  which  must  be  considered  a  strength  of  Solvatten.  

If  the  damage  categories  of  ecosystem  quality  and  human  health  can  be  considered  as  strengths  of  Solvatten,   the   category   of   resources  must   be   seen   as   the  weak   category   for   Solvatten.   Resources  consist  of   the   impact   categories  of   land  use,  minerals  and   fossil   fuels.  The  categories  measure   the  quality   of   the   remaining   resource,   and   it   is   the   fossil   fuel   impact   category   that   yields   the   major  contribution  in  this  damage  category.    The  impact  of  course  comes  from  the  main  plastic  materials  of  Solvatten,  i.e.  the  materials  of  the  black  container  and  the  transparent  lid.    

8.1.1.1 Disregarded  Materials  and  Process  

In  the  goal  and  scope  of  this  LCA,  a  weight  boundary  was  set  to  not   include  parts  with  weight   less  than   0.1   %   of   Solvatten’s   total   weight.   After   collection   of   all   data,   it   was   decided   that   the  masterbatches  used  to  colour  the  plastics  and  the  solvents  of  the  glue  used  to  attach  the  transparent  lid   to   the   black   container  was   to   be   disregarded   as  well.   This   was   due   to   the   vagueness   of   their  specific  contents.  A  discussion  of  the  environmental  impact  of  the  contents  that  is  known  is  included  in  Appendix  3.  Assembly  processes  of  Solvatten  are  also  disregarded.  Most  of  the  assembly  is  done  

Page 73: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

62  

by  hand,  but  the  facility  in  Skåne,  Sweden,  producing  Solvatten  has  built  a  special  device  to  apply  the  glue.  This  assembly  process  is  also  discussed  in  Appendix  3.  

8.1.1.2 Use  Phase  

The  use  phase  of   Solvatten  has  no  environmental   impact   at   all.   To  use   Solvatten,  potentially  dirty  water  and  solar  energy  is  the  only  inputs,  and  purified  water  is  the  output.  Some  organic  waste  can  gather  on  the  filter  when  pouring  the  water  into  the  container.  Hence,  when  considering  the  stand-­‐alone  LCA,  Solvatten  has  no  environmental  impact  in  the  use  phase  at  all.  Of  course,  using  Solvatten  avoids  the  process  of  boiling  or  chlorinating  water  (i.e.  using  other  purifying  methods).  The  use  phase  of  Solvatten  hence  has  potential  environmental  benefits  of  less  fuel  burnt,   less  chlorine  spread  and  so   on.   This   is   important   to   keep   in   mind   (further   discussed   below),   but   for   the   stand-­‐alone   LCA  performed  of  Solvatten,  the  use  phase  has  zero  impact  on  the  environment.  

8.1.2 Disposal  Phase  of  Solvatten  in  Kenya  

As   the   population   increase   in   Kenya   and   the   country   becomes   more   and   more   pronounced,   the  amount  of  waste  produced  is  also  increasing.  Today,  the  capital  Nairobi  only  has  one  official  landfill,  which  has  been   in  use   for   thirty   years   and   is   now  considered   to  be   full.   Both   the   city   council   and  private  companies  are  collecting  waste,  but  only  middle-­‐  and  high-­‐income  areas  are  reached.  In  the  low-­‐income  areas  open  burning  of  waste  and  dumping  of  waste  at   road   sides  and   river  banks   are  increasing  instead.  Recycling  businesses  are  up-­‐and-­‐coming,  but  only  for  materials  with  a  lot  of  waste  like  bottles  and  plastic  bags.  When  considering  the  rural  areas,  no  solid  waste  management  exists.  The  waste   produced   is   either   burned  openly   or   just   dumped   somewhere   in   the   nature.   If   enough  oxygen  is  available  for  the  combustion  process,  mostly  water  and  carbon  dioxide  should  be  formed.  This   is  hard  to  achieve  during  open  burning  though  and  toxic  and  harmful  emissions  can  thus  form  and  be  emitted  during  the  combustion  process.  Open  burning  of  plastic  materials  are  therefore  not  such  a  good  idea  (UN  Environment  Programme,  2007).    

The   comparison  of   European   standard  waste   treatment   scenarios   clearly   shows   that   landfill   is   the  worst   option.   As   the   situation   is   in   Kenya   right   now,   landfill   is   the   most   probable   scenario.   The  European  standard  of   landfills  has  sealings  underneath  and  on  top,  which   is  unlikely   in  Kenya.  The  environmental  impact  by  landfills  shown  in  SimaPro  is  therefore  probable  to  be  even  worse  in  Kenya.  UN  refers  to  the  official  landfill  of  Nairobi  as  an  uncontrolled  dumping  site,  which  in  the  same  time  is  the  only  option  available.  Recycling  of  Solvatten  would  be  the  best  option  as  resources  as  fossil  fuels  are   ending,   and   it   is   desired   to   reuse   the   already   extracted   resources   as   far   as   possible   (UN  Environment   Programme,   2007).   The   up-­‐and-­‐coming   recycling   businesses   in   Kenya,   that   have   the  granulation  equipment  in  place,  could  be  an  option.  It  is  important  to  remember  that  the  quantities  of  plastics  produced  by  Solvatten,  might  be  too  small   for   these  businesses  to  gain  any  profit   from;  there  has  to  be  a  demand  for  the  specific  plastic  material  that  Solvatten  is  made  of.  

In   rural   areas   in   developing   countries   the   traditional   waste   produced   often   is   organic   and   hence  recycled.   When   introducing   plastic   products   like   Solvatten   to   these   areas,   it   is   important   to  remember   that   there   is   no   well-­‐functioning   municipal   waste   program.   The   increase   in   waste  produced  in  Kenya  is  also  due  to  progress  of  many  small  business.  The  amount  of  waste  produced  by  each   business  might   be   small   but   all   together   the   amounts   are   increasing   quickly.   This   is   an   area  where  Solvatten  as  a   company  needs  to   show  their  corporate   responsibility.  The  amount  of  waste  produced   from  Solvatten   is   low,   and   it  will   not  be  profitable   to   create  a   facility   just   to  be  able   to  

Page 74: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

63  

recycle  and  take  care  of  the  product.  Therefore  the  company  needs  to  look  into  solutions  of  forming  some  kind  of  agreement  with  a  waste  treatment  facility  to  take  care  of  the  product  when  its   life  is  over.  Maybe  some  kind  of  deposit  can  be  repaid  when  a  user  returns  an  old  or  broken  unit,  as  with  PET-­‐bottles  in  Sweden,  to  make  sure  that  no  units  are  burned  openly  or  just  left  in  the  environment.  

8.2 Comparison  of  Solvatten  with  Other  Sources  of  Purified  Water  In   this   section   the   results   from   the   comparative   studies   with   boiling   and   bottled   water   will   be  discussed.    

8.2.1 Boiling  Water  

In   the   comparison   between   Solvatten   and   boiling   water,   boiling   had   the   highest   impact   in   the  majority  of  the  impact  categories.  In  only  two  of  the  impact  categories,  Solvatten  had  a  higher  value,  these  were  fossil  fuels  and  ozone  layer.    

The  reason  for   the  higher  value  on   fossil   fuels   is  due  to   the  plastic  materials   in   the  Solvatten  unit,  which  are  produced  from  oil.  Also  the  transports  throughout  the  Solvatten  lifecycle  have  an  impact  on   the   fossil   fuel   resources   and  no   transports   are   included   in   the  water  boiling.   This   is   not   a   very  likely  scenario  even  though  the  transports  are  probably  not  as  many  and  long  as  in  the  Solvatten  LCA,  since  both  access  to  raw  material  and  production  is  assumed  to  take  place  locally  in  Africa.    

In   the   remaining   nine   impact   categories   boiling   water   have   a   higher   impact.   If   the   values   are  normalized,   the   respiratory   organics   have   the   absolute   highest   relative   impact.   This   is   due   to   the  burning  of  wood  indoors,  which   is  common  in  Kenya.  The  burning  produces  particulate  matter  and  volatile  organic  compounds,  which  have  a  big  negative  impact  on  the  respiratory  system.  

The  disposal  scenarios  are  not  included  in  the  comparative  study,  this  is  due  to  the  reason  discussed  previously  in  the  report  of  the  unknown  scenario.  The  only  waste  produced  from  boiling  water  is  the  aluminium  pot,  which  probably  is  recycled  as  Kenya  has  production  facilities  for  aluminium.  

The  carbon  dioxide  emissions  from  burning  firewood  are  carbon  neutral,  since  the  tree  absorbed  CO2  while  growing.  After  using  the  tree  for  firewood,  a  new  tree  can  grow  and  absorb  the  CO2  emitted  from   the   burning.   However,   Kenya   has   a   problem  with   deforestation   and   if   a   new   tree   does   not  absorb  the  CO2,  there  will  an  increase  of  CO2  available  in  the  atmosphere.  The  increase  in  CO2  in  the  atmosphere  will  in  the  end  probably  lead  to  climate  change.  

There  are  some  differences  between  Solvatten  and  Boiling  water  which  does  not  show   in   the  LCA,  but   still   worth   discussing.   If   not   handled   correctly   hot   water   and   fire   can   have   impacts   on   both  human  health  and  the  ecosystem.  Hot  water  and  fire  can  cause  burns.  A  fire  can,   if  not  contained,  cause  big  destruction  in  both  rural  and  urban  areas.  The  non-­‐environmental  factors  do  not  show  in  the   computer   analysis   either.   Hours   spent   on   collecting   firewood   can   be   saved   by   the   use   of  Solvatten,  since  it  does  not  require  any  special  attendance  after  it  is  filled  with  water.  As  mentioned  earlier   it   is  the  women  in  the  households  that  are  mostly  in  charge  of  collecting  the  wood,  and  the  use  of  Solvatten  will  give  the  women  time  that  they  can  put  on  more  important  things.  

8.2.2 Water  in  PET-­‐bottles  

No   LCA   of   PET-­‐bottles   was   performed   due   to   large   uncertainties.   It   can   be   concluded   that   the  amount  of  plastic  required  to  produce  the  plastic  bottles  containing  the  same  amount  of  water  that  one  Solvatten  unit  can  produce  during   its   lifetime   is  enormous  though.  The  bottled  water   requires  

Page 75: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

64  

1,400   kg   of   plastic,  which   is   a   lot  more   than   the   3   kg   required   to   produce   one   Solvatten   unit.   As  already   discussed,   the   largest   environmental   impact   from   the   Solvatten   unit   originates   from   the  production  of  the  plastic  materials  and  the  forming  process  of  the  plastic.  It  is  hence  likely  that  the  impact  from  PET  is  large  as  well.      

The   water   produced   in   the   Solvatten   unit   does   only   require   sun   light,   and   there   is   hence   no  environmental  impact  from  the  purification  process  stage  in  the  Solvatten  lifecycle.  The  water  for  the  bottles  needs  to  go  through  a  purification  process  and  be  filled  into  bottles.  The  facilities  where  this  can  be  done,  needs  to  be  established  and  after  establishment  the  processes  requires  energy.  All  of  this  will  have  impact  on  the  environment.    

The   transports   related   to   the   Solvatten   unit   are   substantial,   but   the   unit   only   is   required   to   be  transported  once.  The  transports  for  bottled  water  might  be  short,  but  they  are  many  instead  as  the  amount  of  PET-­‐bottles   is   large.  Also,   the  bottled  water  has   to  be   transported  to   the  user,  and   the  waste  has  to  be  transported  to  the  recycling  facility  or  landfill.    

In  Kenya  there  are  some  recycling  facilities  in  place  for  PET,  and  some  bottles  will  therefore  probably  be   recycled   into   new   bottles.   It   is   very   unlikely,   though,   that   all   bottles   will   be   recycled.   If   the  Solvatten  unit  is  put  on  landfill  or  in  the  nature,  it  is  3  kg  compared  to  the  1400  kg  of  plastics  required  for  the  plastic  bottles.  The  ratio  of  PET-­‐bottles  that  has  to  be  recycled  to  give  less  plastic  (crude  oil)  extracted  for  bottles  than  for  Solvatten  is  unlikely.    

The  Solvatten  unit   is  expensive  when  bought,  but  since  it   is  a  onetime  cost,   less  money  have  to  be  spent  on  water  during  the  near  10  years.  For  the  bottled  water  the  amount  of  money  required  to  put  on  water  will  be  a  lot  higher  than  the  cost  of  Solvatten.  

   

Page 76: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

65  

8.3 Limitations  to  the  Solvatten  Study  In  the  theory  section,  some  limitations  to   life  cycle  assessments  were   introduced.  After  performing  the  LCA  of  Solvatten,  some  of  these  can  be  applied  to  this  study.  This  is  discussed  below.  

The  LCA  is  not  site-­‐specific  and  does  not  take  into  account  if  the  wood  used  as  firewood  is  taken  from  an  area  with  deforestation  problems.  This  is  often  the  case  in  Kenya  and  this  problem  is  difficult  to  implement  in  the  assessment.  The  water  used  in  the  Solvatten  unit  might  similarly  be  taken  from  an  area  with  water  shortage;  this  would  not  be  included  in  the  study.  The  water  used  in  Solvatten  would  probably  have  been  used  anyway,  and  this  might  therefore  be  considered  irrelevant  for  the  study.  

The  database   inputs   in  SimaPro  used   in   the   study  might  not   completely   correspond   to   the  correct  process  used  in  the  production  of  Solvatten.  With  the  time  limit  and  difficulty  to  collect  detailed  data,  the   SimaPro   databases   have   been   used   as   a   similar   equivalent.   Also   some   processes   (e.g.   the  assembly   process)   could   not   be   found   in   the   databases   and   detailed   information   could   not   be  gathered.  

The  comparison  with  other  methods  of  purifying  water  is  made  difficult,  since  for  Solvatten  a  lot  of  data  is  available.  The  study  of  boiling  water  and  bottled  water  is  mainly  based  on  assumptions.  This  makes  the  comparison  difficult  and  this  should  be  kept  in  mind  when  interpreting  the  results.    

The   economical   and   social   aspects   are   not   included   in   the   LCA   study.   The   social   aspect   is   very  important   in   the  use  of   Solvatten.   This  will   be   included   in   the  discussion   to   give   a   comprehensive  view  of  the  use  of  Solvatten.    

8.4 The  Sustainability  of  Solvatten  The   concept   of   sustainability   includes   environmental,   economic   and   social   factors.   The   LCA   is   an  analysis   of   Solvatten’s   environmental   impacts.   In   this   section   the   economic   and   social   factors   are  discussed  to  put  the  product  of  Solvatten  in  the  context  of  sustainability.  When  using  Solvatten,  the  stand-­‐alone  LCA  concluded  that  there  are  no  environmental  impacts  as  only  solar  energy  is  the  input  and   some   organic   waste   the   only   output   except   for   the   water.   Usage   of   other   water   purifying  methods  normally  uses  energy  or  chemicals  that  impact  the  environment  negatively.  This  is  of  course  a  large  benefit  for  Solvatten.    

None  of  the  common  methods  can  change  chemical  content  of  water,  e.g.  high  sulphur  or  fluoride  contents.  Such  reductions  only  expensive  methods  like  adsorption  and  ion  exchange  can  manage.  In  a   health   aspect   this   is   of   course   negative   for   Solvatten   and   all   of   the   common  methods   as  water  available  might  be  polluted  with  chemicals  that  are  no  good  for  the  human  body.    

As   described   in   7   Comparative   Studies   boiling   releases   a   lot   of   emissions   that   are   avoided   by  Solvatten  as  the  water  is  about  55-­‐70  °C  when  ready.  For  washing  dishes  or  clothes  and  for  hygiene  purposes   that   temperature   often   is   sufficient.   Even   for   some   foods   like   corn   porridge   the  temperature   is  enough.   It   is  hence  only  for  some  cooking,  the  water  needs  to  be  boiled  to  reach  a  higher   temperature.   This   saves   a   lot   of  money   that  would   have   been   used   for   fuels,   as  well   as   it  improves  health  as  cooking  normally  takes  place  inside  and  the  emissions  are  toxic.  Other  purifying  methods   (e.g.   chlorination,   sedimentation,   filtering)  does  not   achieve  a  higher   temperature  of   the  water  either.  This  is  an  advantage  of  UV-­‐disinfection.  Also,  a  Solvatten  unit  can  be  left  in  the  sun,  and  

Page 77: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

66  

does  not  need  any   special  attendance   to  work  properly.  This   saves  a   lot  of   time,  and   further   time  saving  is  achieved  with  Solvatten  as  described  below.  

It   is   often   women   and   children   who   are   responsible   for   the   household   work,   including   collecting  firewood   and   water.   Household   work   is   time   consuming,   and   to   reduce   pressure   from   this,   is  welcomed.   The   money   and   time   saved   by   Solvatten   can   be   used   for   all   sorts   of   things.   The  households   can   buy   clothes   and   foods   that   they   before   could   not   afford.  One   family   in   Kenya   for  example  bought  a  cow  (giving  them  milk)  for  the  money  saved.  Children  can  go  to  school  and  have  a  basic   education   and  women  might   have   the   time   to   produce   something   they   can   sell   at   the   local  market  or  even  take  on  a  part  time  job  giving  the  household  an  extra  income.    

Households  in  Kenya  that  used  Solvatten  for  a  while  have  reported  that  they  save  about  75  %  of  their  costs   on   fuels,   and   about   100   %   of   their   costs   on   doctor   appointments.   Solvatten   improves   the  hygiene  of   the  people,   and   they   really   start   to  understand   the   importance  of   clean  water.  A   large  part  of  the  low  quality  water  in  Kenya  is  due  to  no  waste  treatment.  It  is  easy  for  water  to  become  contaminated   from   faecal   waste.   The   millennium   goal   7,   Ensure   Environmental   Sustainability,  declares   that   the  proportion  of  world  population  without  sustainable  access   to  drinking  water  and  basic  sanitation  should  be  halved  between  1990  and  2015.  The  drinking  water  target  is  very  close  to  being  reached,  while  the  sanitation  part  has  lacked  behind.  It  is  important  to  remember  that  they  are  closely  intertwined;  that  improving  sanitation  will  make  drinking  water  more  easily  available.    

The  positive  economic   and  health  benefits  of   clean  water   through  usage  of   Solvatten  are   large.   It  would  be  very  interesting  to  weight  the  negative  environmental  impacts  of  production  and  disposal  found   in   the   stand-­‐alone   LCA   against   these   positive   benefits.   In   a   life   cycle   assessment   it   is   not  possible  to  do  so  though.  

   

Page 78: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

67  

9 Conclusions  From  the  stand-­‐alone  LCA  of  Solvatten  it  can  be  concluded  that  the  product  has  a  low  impact  on  the  environment   during   production   and   transports.   Both   the   normalized   and   weighted   results   show  almost   no   impact   in   eight   of   the   eleven   impact   categories   evaluated.   This   is   very   positive   for  Solvatten  from  an  environmental  point  of  view.  The  weighted  results  show  that  the  category  of  fossil  fuels  corresponds  to  80  %  of  Solvatten’s  total  environmental  impact.  As  the  unit  is  made  mostly  out  of   different   plastic  materials,   this   is   expected.   The   other   two   categories   showing   any   noteworthy  impact   is   respiratory   inorganics   (11  %)   and   climate   change   (4  %).  When  evaluating  which   parts   of  Solvatten  contribute  to  these  two  categories,  the  material  of  the  black  container  and  transparent  lid  as  well  as  the  forming  process  used  to  form  the  plastics  turn  out  to  be  the  most  important.  It  should  be  remembered  though,  that  the  assembly  process  used  to  attach  the  container  and  lid  to  each  other  is  not  included  in  the  analysis,  but  could  be  very  energy  consuming  as  conditions  include  both  high  temperature  and  high  external  pressure.  The  impact  in  the  fossil  fuel  category  corresponds  to  0.5  %  of   an   average   European’s   yearly   impact   according   to   the   normalized   results.   As   the   use   phase   of  Solvatten   has   no   environmental   impact,   and   the   life   length   of   one   unit   is   ten   years,   the   total  environmental  impact  of  Solvatten  during  its  entire  lifetime  is  very  low.    

The  local  conditions  in  Kenya  made  it  very  difficult  to  include  a  waste  scenario  in  the  data  analysis.  Kenya  has  no  proper  solid  waste  management  and  they  are  dependent  on  an  uncontrolled   landfill  that  has  been   in  use  since  the  beginning  of   the  1980’s.  When  comparing   landfills,   incineration  and  recycling,  the  latter  is  the  superior  alternative.  During  the  first  phases  of  Solvatten’s  life  cycle,  the  use  of  fossil  fuels  is  the  main  concern.  If  such  resource  use  could  be  lowered  by  reusing  materials  instead  of  extracting  more  from  the  non-­‐renewable  source   it  would  be  preferred.   In  Kenya,  small  recycling  businesses  are  growing  at  the  moment.  Private  collectors  gather  material  like  PET-­‐bottles  and  plastic-­‐bags,  which   are   available   in   abundance,   and   get   paid   by   kilo.   For   Solvatten,   this   is   positive   as   the  option  of  recycling  is  possible  in  place  in  Kenya.  But  to  recycle  a  unit  every  now  and  then,  would  not  yield   any   quantities   that   would   be   profitable   for   a   recycling   business   to   accept.   Therefore,   the  disposal   of   Solvatten   has   to   be   systemized   in   some  way.   Here   Solvatten   AB   needs   to   show   their  corporate  social  responsibility  and  come  up  with  a  liable,  organized  solution.    

The  comparative  analysis  with  boiling  of  water  and  PET-­‐bottles  indicates  that  with  the  assumptions  made  in  the  study  and  if  the  standard  of  the  water  achieved  with  Solvatten  is  sufficient,  Solvatten  is  environmentally  better  than  both  those  alternatives.  The  chemical  contents  and  temperature  of  the  water   from   the   different  methods   differs   and   in   the   study   it   is   only   the   amount   of   water   that   is  considered.   In   Kenya   and  many   developing   countries,   deforestation   is   a   problem,   and   the   use   of  wood  fuel  is  therefore  not  sustainable.  Also,  a  lot  of  particles  are  released,  from  the  burning  of  wood,  causing  health  problems.  For  PET-­‐bottles,  a  very  general  view  has  been  included  and  indicates  that  with   the   situation   today   enormous   amounts   of   plastics   are   needed   to   reach   the   same   volume   as  Solvatten  can  produce  during   its   life  time.  As   it   is  the  plastic  materials  and  their   forming  processes  that  cause  the  greatest  environmental  impacts  for  Solvatten,  it  is  most  certainly  the  same  for  PET.  If  however,  the  conditions  in  Kenya  change,  and  they  no  longer  have  problems  with  deforestation  and  implement  a  functioning  recycling  system  for  their  PET-­‐bottles,  the  results  may  change  as  well.    

When  talking  about  sustainability  social,  economic  and  environmental  factors  should  be  included.  An  LCA  shows  the  environmental  impacts  of  a  product  or  service,  but  has  difficulties  with  incorporating  social   and  economic   aspects.  During   the  use-­‐phase,  Solvatten  has  many  positive   impacts  on   these  

Page 79: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

68  

two.  The  purification  with  Solvatten  takes  2-­‐6  hours,  but  the  unit  can  be  left  unattended,  freeing  a  lot  of  time  for  other  house  hold  duties.  Also,  as  the  water  is  around  55-­‐70  °C  after  the  purification,  it  is  only  a  few  possible  uses  that  needs  further  heating.  For  washing  and  hygiene  purposes  and  drinking  the  temperature  often  is  enough.  In  the  end,  a  lot  less  wood  fuel   is  needed,  saving  both  time  from  collecting  fuels  and  boiling  the  water.  If  buying  wood  fuels,  a  large  share  of  the  money  spent  can  be  saved.  Also,  families  using  Solvatten  have  reported  saving  money  from  not  having  the  need  to  visit  the  doctor.  

The  production  which  today  takes  place  in  Sweden  could  be  moved  closer  to  the  user,  which  would  save   the   transportation   of   the   unit   from   Sweden   to   Kenya.   However   as   described   in   this   report,  Kenya  does  not  even  have  a  working  waste  management,  and  to  set  up  a  production  facility  with  the  same   conditions   for   workers   and   environmental   standards   as   in   Sweden   could   be   difficult.   Also,  Solvatten  is  not  only  designed  for  Kenya,  but  for  many  countries  that  lack  clean  water.  Therefore,  it  is  of  smaller  value  where  the  production  actually  takes  place  as  raw  materials  has  to  be  imported  and  units  exported  anyways.  A  good  idea  might  be  to  set  up  offices  where  assembly  of  the  unit  can  take  place  in  the  countries  where  Solvatten  could  be  bought  commercially  in  the  future.  In  that  case,  the  production   facility   in   Sweden   can   ensure   the   quality   of   the   different   subparts,   while   working  possibilities  can  be  created  in  the  countries  developing  countries.    

Clean   water   and   sustainable   access   is   one   of   the   targets   in   the   United   Nation’s   Millennium  Development  Goals  to  reduce  poverty.  For  further  development  of  the  concerned  countries  through  poverty  reduction,  a  small  environmental  impact  has  to  be  allowed.  Therefore,  Solvatten  seems  to  be  a  good  solution  bringing  clean  water  to  a  very  small  impact  per  unit  compared  to  a  European’s  yearly  impact.    

The  total  environmental  impact  of  the  Solvatten  unit  compared  to  the  boiling  of  water  with  fire  wood  and  bottled  water  is  low.  Also,  one  Solvatten  unit  is  expected  to  last  10  years,  and  in  such  long  time  period   two   alternative   methods   will   have   a   very   high   environmental   impact.   The   conclusion   is  therefore  that  the  Solvatten  unit  is  a  good  alternative  for  purification  of  water.  

Page 80: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

69  

10 Acknowledgements  We   would   like   to   thank   Solvatten   AB,   and   especially   Petra   Wadström   (CEO)   and   Johanna   Felix  (project  manager),  for  giving  us  the  possibility  to  do  this  life  cycle  assessment.  We  also  would  like  to  thank  Björn  Frostell  (Associate  professor  at  KTH)  for  making  us  think  twice  about  the  big  perspective  and  Hanna  Hillerström   (Research   engineer   at  KTH)   for   all   the   help   and   keeping   us   positive   and   in  good   spirit.   A   special   thanks   goes   to   Lennart   Seger   at   the  main   production   site   of   Solvatten   for   a  great  visit,  where  we   learned  a   lot  about  plastics  and   forming  of  such,  and  for  patiently  answering  our   questions   and   putting   us   in   contact   with   subcontractors.   And   at   last,   thanks   to   all   the  subcontractors  of  parts  and  materials  that  helpfully  answered  all  of  our  questions.    

 

Page 81: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

70  

   

Page 82: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

71  

11 References  Bauman,  H.  &  Tillman,  A.-­‐M.,  2004.  The  Hitch  Hiker's  Guide  to  LCA.  Lund:  Studentlitteratur.  

Bernes,  C.,   2007.  En  ännu   varmare   värld   -­‐  Växthuseffekten  och   klimatets   förändringar.   Stockholm:  Naturvårdsverket.  

Boettner,   E.A.,   Ball,   G.L.  &  Weiss,   B.,   1973.  Combustion   Products   from   the   Incineration   of  Plastics.  [Online]   Available   at:   deepblue.lib.umich.edu/bitstream/2027.42/3702/5/anh0435.0001.001.pdf  [Accessed  February  2011].  

Dell,   2010.   Carbon   Footprint   of   a   Typical   Business   Laptop   from   Dell.   [Online]   Available   at:  http://i.dell.com/sites/content/corporate/corp-­‐comm/en/Documents/dell-­‐laptop-­‐carbon-­‐footprint-­‐whitepaper.pdf  [Accessed  May  2011].  

FAO,  2010.  What  woodfuels  can  do  to  mitigate  climate  change.  Rome:  FAO.  

International   Organization   for   Standardization,   2006.   ISO   standards   for   life   cycle   assessment   to  promote   sustainable   development.   [Online]   Available   at:  http://www.iso.org/iso/pressrelease.htm?refid=Ref1019  [Accessed  February  2011].  

Karanja,  A.M.,  Ikiara,  M.M.  &  Davies,  T.C.,  2004.  Reuse,  recover  and  recycling  of  Urban  inorganic  solid  waste   in   Nairobi.   In   B.e.   al.,   ed.   Solid   Waste   Management   and   Recycling.   Netherlands:   Kluwer  Academic  Publishers.  pp.161-­‐94.  

Nordström,  A.,  2005.  Dricksvatten  för  en  hållbarutveckling.  Lund:  Studentlitteratur.  

Persson,   P.O.   et   al.,   2005.  Miljöskyddsteknik   -­‐   Strategier   och   teknik   för   ett   hållbart   miljöskydd.  Stockholm:  Industriell  Ekologi,  KTH.  

PlasticsEurope,   2010.   PlasticsEurope   -­‐   PET   bottles.   [Online]   Available   at:  http://www.plasticseurope.org/what-­‐is-­‐plastic/types-­‐of-­‐plastics/pet/pet-­‐bottles.aspx   [Accessed   5  Maj  2011].  

Product  Ecology  Consultants,  2001.  Eco-­‐indicator  99  -­‐  Methodology  Report.  

Product   Ecology   Consultants,   2010.   SimaPro7   -­‐   Introduction   to   LCA.   [Online]   Available   at:  http://www.pre.nl/content/manuals  [Accessed  February  2011].  

ReCiPe,   2009.   A   life   cycle   impact   assessment   method   which   comprises   harmonised   category  indicators  at   the  midpoint  and   the  endpoint   level.   [Online]  Available   at:   http://www.lcia-­‐recipe.net  [Accessed  15  Maj  2011].  

Sobseey,   M.D.S.C.E.,   Casanova,   L.M.,   Brown,   J.M.   &   Elliot,   M.A.,   2008.   Point   of   Use   Household  Drinking   Water   Filtration:   A   Practical   Effective   Solution   for   Providing   Sustained   Access   to   Safe  Drinking  Water  in  the  Developing  World.  Envrionmental  Science  and  Engineering,  42(12),  pp.4261-­‐67.  

Solvatten   AB,   2010.   Solvatten   Official   Website.   [Online]   Available   at:   www.solvatten.se   [Accessed  February  2011].  

Page 83: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

72  

Sony   Ericsson   ,   n.d.   Carbon   footprint   -­‐   Approach.   [Online]   Available   at:  http://www.sonyericsson.com/cws/company-­‐press-­‐and-­‐jobs/sustainability/carbonfootprint?cc=gb&lc=en#tab-­‐2  [Accessed  May  2011].  

The   Guardian,   2010.  What's   the   carbon   footprint   of   …   a   load   of   laundry?   [Online]   Available   at:  http://www.guardian.co.uk/environment/green-­‐living-­‐blog/2010/nov/25/carbon-­‐footprint-­‐load-­‐laundry  [Accessed  May  2011].  

The   Guardian,   2010.   What's   the   carbon   footprint   of   …   the   internet?   [Online]   Available   at:  http://www.guardian.co.uk/environment/2010/aug/12/carbon-­‐footprint-­‐internet   [Accessed   May  2011].  

Trafikanalys,  2010.  Trafikanalys  -­‐  Fordon  -­‐  Fordon  2010  -­‐  Tabell  LB8  Lastbilar  i  trafik  efter  miljöklass,  årsvis   2001-­‐2010.   [Online]   Available   at:   http://www.trafa.se/Statistik/Vagtrafik/Fordon/   [Accessed  May  2011].  

UN   Environment   Programme,   2007.   City   of   Nairobi   Envrionmental   Outlook.   [Online]   Available   at:  http://www.unep.org/DEWA/Africa/docs/en/NCEO_Report_FF_New_Text.pdf  [Accessed  May  2011].  

United  Nations  Human  Settlements  Programme,  2010.  Solid  Waste  Management  in  the  World's  Cities  -­‐  Water  and  Sanitation  in  the  World's  Cities  2010.  London:  Earthscan,  on  behalf  of  UN-­‐HABITAT.  

United   Nations  Millenium   Development   Goals,   2011.   Fact   Sheet   on   Goal   7.   [Online]   Available   at:  www.un.org/millenniumgoals/pdf/MDG_FS_7_EN.pdf  [Accessed  February  2011].  

United   Nations   Millenium   Development   Goals,   n.d.   MDG   Background.   [Online]   Available   at:  www.un.org/milleniumgoals/bkgd.shtml  [Accessed  February  2011].  

Uppfinnaren   och   Konstruktören,   2007.   Strålande   innovation   renar   dricksvatten   med   solenergi.  [Online]   Available   at:   http://www.uppfinnaren.com/2007/nr3_08/petra.htm   [Accessed   February  2011].  

ViSkogen,  2010.  Final  Report  on  Solvatten  Pilot  Market  Project  in  Kenya.  

World   Health   Organization,   2002.  Managing   Water   in   the   Home:   Accelerated   Health   Gains   from  Improved  Water  Supply.  Geneva:  WHO  Press.  

World  Health  Organization,  2008.  Guidelines   for  Drinking-­‐water  Quality,  3rd  edition.  Geneva:  WHO  Press.  

World   Health   Organization,   2009.  Global   Health   Risks   Summary   Tables   -­‐   Attributable   Deaths;   risk  factors:   age   and   sex.   [Online]   Available   at:  http://www.who.int/healthinfo/global_burden_disease/risk_factors/en/index.html   [Accessed  February  2011].  

World  Health  Organization,  2010.  Progress  on  Sanitation  and  Drinking-­‐Water:  2010  Update.  Geneva:  WHO  Press.  

Åhman,  J.,  2010.  Final  Report  on  Solvatten  Pilot  Market  Project  in  Kenya.  Stockholm:  Solvatten  AB.  

Page 84: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

73  

 

Personal  Communication  

Fredrik  Alfredsson,  Zanrec  Plastics,  Email,  14  April  2011  Information  on  the  reality  of  plastic  waste  management  in  Zanzibar  and  Kenya.  

Johanna  Felix,  Solvatten  AB,  E-­‐mail,  21  February  2011  Information  regarding  future  prospects  of  delivery  of  Solvatten  to  market-­‐of-­‐use.  

Page 85: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

74  

12  Appendixes  Confidential   information   on   materials,   production   processes   and   production   sites   cannot   be  published   officially.   Therefore,   such   information   is   reported   in   appendices   that   Solvatten   AB   can  choose  to  publish  independently.  Here  follows  a  list  of  the  Appendixes  belonging  to  this  report.    

Appendix  1  Grouping  of  Solvatten  parts  and  weight-­‐%  of  parts   Appendix  2  SimaPro  inputs   Appendix  3  Assumptions  and  Missing  Data   Appendix  4  Life  Cycle  Inventory  Results   Appendix  5  Characterization  Networks   Appendix  6  Emissions  from  burning  firewood    

 

Page 86: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device
Page 87: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device
Page 88: Life Cycle Assessment and Sustainability Aspects of Solvatten, a …645248/FULLTEXT01.pdf · Life Cycle Assessment and Sustainability Aspects of Solvatten, a Water Cleaning Device

TRITA-IM 2011:42

Industrial Ecology,

Royal Institute of Technology

www.ima.kth.se