Li Yanping 20130728

27
Li Yanping 20130728 讨讨讨讨讨讨讨讨讨讨讨 CuO/TiO 2 讨讨讨讨讨

description

讨论制备方法对 光催化剂 CuO /TiO 2 活性的 影响. Li Yanping 20130728. Other researchers’ reports. Fabrication and comparison of highly efficient Cu incorporated TiO 2 photocatalyst for hydrogen generation from water - PowerPoint PPT Presentation

Transcript of Li Yanping 20130728

Page 1: Li  Yanping 20130728

Li Yanping20130728

讨论制备方法对光催化剂CuO/TiO2活性的影响

Page 2: Li  Yanping 20130728

Recent experimental summary

Other researchers’ reports

Page 3: Li  Yanping 20130728

Other researchers’ reports

Page 4: Li  Yanping 20130728

1.Fabrication and comparison of highly efficient Cu incorporated TiO2 photocatalyst for hydrogen generation from water

Efficient Cu incorporated TiO2 photocatalysts for hydrogen generation were fabricated by four methods: in situ sol-gel, wet impregnation, chemical reduction of Cu salt, and in situ photo-deposition.

Page 5: Li  Yanping 20130728

Characteristics:

different chemical states of Cu

different distribution ratio of Cu between surface and bulk phases of the photocatalyst

the Cu content in the photocatalyst play a significant role in hydrogen generation

Conclusion:situ sol-gel method exhibited the highest stability

Page 6: Li  Yanping 20130728

It was discovered that the fabrication methods determined: the chemical state of Cu,

distribution ratio of Cu within the photocatalyst, BET surface area of thecatalyst,

crystal structure of the TiO2support.

Page 7: Li  Yanping 20130728
Page 8: Li  Yanping 20130728
Page 9: Li  Yanping 20130728

2. Wu and Lee reported that Cu doping within the TiO2

lattice had a negative effect on photocatalytic hydrogen generation as opposed to Cu deposition.

Wu NL, Lee MS. Enhanced TiO2photocatalysis by Cu in hydrogen production from aqueous methanol solution. Int J Hydrog Energy 2004;29:1601-5.

Page 10: Li  Yanping 20130728

3. Boccuzzi et al. compared properties and activity ofCu-TiO2 prepared by wet impregnation and chemisorption hydrolysis methods, and found that samples with the samechemical composition exhibited a marked difference of up to 100 times in the hydrogenation of 1,3-cyclooctadiene.

Boccuzzi F, Chiorino A, Gargano M, Ravasio N. Preparation,characterization, and activity of Cu/TiO2catalysts. 2. Effect of the catalyst morphology on the hydrogenation of 1,3-cyclooctadiene and the CO-NO reaction on Cu/TiO2 catalysts. J Catal 1997;165:140-9.

Boccuzzi F, Chiorino A, Martra G, Gargano M, Ravasio N,Carrozzini B. Preparation, characterization, and activity of Cu/TiO2catalysts. 1. Influence of the preparation method onthe dispersion of copper in Cu/TiO2. J Catal 1997;165:129-39.

Page 11: Li  Yanping 20130728

Recent experimental summary

Page 12: Li  Yanping 20130728

1.Different preparation methods of CuO/TiO2catalysts

1.1 The activity of catalyst

3155.72667

2353.47316

1996.899771827.82203 1821.91958

1280.63688

355.77204

Chemical adsorption Composite precipitation Ethanol immersion Simple wet impregnation Second impregnation Sol-gel Pure P25

0

500

1000

1500

2000

2500

3000

Hyd

roge

n P

rodu

ctio

n ra

te (μ

mol

/(g.h

))

different methods of CuO-TiO2 photocatalyst (15)

Page 13: Li  Yanping 20130728

0 2 4 6 8 10 12 14 160

500

1000

1500

2000

2500

3000

Hyd

roge

n P

rodu

ctio

n ra

te (μ

mol

/(g.h

))

Time (h)

Chemical adsorption2674.44

1460.30

1.2The stability of the catalystsThe stability of the chemical adsorption

54.6%

Page 14: Li  Yanping 20130728

Ethanol immersion

0 2 4 6 8 10 12 14 16 180

200

400

600

800

1000

1200

1400

1600

1800

2000H

ydro

gen

Pro

duct

ion

rate

(μm

ol/(g

.h))

Time (h)

1609.41

1125.29

69.9%

The stability of the ethanol impregnation

Page 15: Li  Yanping 20130728

0 2 4 6 8 10 12 14 16 18-0.50

-0.45

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

activ

ity d

eclin

e (%

)

Time (h)

Chemical adsorption

0 2 4 6 8 10 12 14 16 18-0.50

-0.45

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

activ

ity d

eclin

e (%

)

Time (h)

Ethanol immersion

-0.45

-0.3

Activity decline: x-initial initial

活性 1.34倍,下降 1.5倍

Page 16: Li  Yanping 20130728

0 200 400 600 800 1000

0.01

0.00

-0.01

-0.02

-0.03

-0.04

Con

sum

ptio

n of

H2

(a.u

.)

temperature ( )℃

Ethanol impregnation

0 200 400 600 800 10000.01

0.00

-0.01

-0.02

-0.03

-0.04

-0.05

-0.06

-0.07

Con

sum

ptio

n of

H2

(a.u

.)

temperature ( )℃

chemical adsorption decomposition

H2-TPR

Page 17: Li  Yanping 20130728

1.3BET data of the catalystsPore distribution of the catalyst

1 10 100-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

dV/dD (c

m3/(g

.nm))

Pore Diameter (nm)

simple wet impregnation

1 10 100

0.000

0.002

0.004

0.006

0.008

0.010

dV/dD (c

m3/(g

.nm))

Pore Diameter (nm)

Second impregnation

1 10 100

0.000

0.001

0.002

0.003

0.004

0.005

0.006

dV/dD (c

m3/(g

.nm))

Pore Diameter (nm)

Ethanol impregnation

26nm 2nm,31nm

Page 18: Li  Yanping 20130728

1 10 100

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

dV/dD (c

m3/(g

.nm))

Pore Diameter (nm)

Composite precipitation

1 10 100

0.00

0.02

0.04

0.06

0.08

0.10

0.12

dV/dD (cm

3/(g

.nm))

Pore Diameter (nm)

sol-gel

1 10 100

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

dV/dD (c

m3/(g

.nm))

Pore Diameter (nm)

chemical adsorption

3.9nm

3nm,33nm

Page 19: Li  Yanping 20130728

2% CuO/TiO2 SBET

(m2/g)Pore

diameter(nm)

Pore volume(cm3/g)

Chemical adsorption

46.8 29.0 0.326Composite deposition

47.2 33.3 0.372Ethanol

impregnation46.9 31.8 0.370

Sol-gel 92.0 3.9 0.137Simple wet

impregnation45.6 26.3 0.344

Second impregnation

44.9 25.9 0.322

Specific surface area,pore diameter and pore volume of the catalysts

Page 20: Li  Yanping 20130728

0.0 0.2 0.4 0.6 0.8 1.0

0

50

100

150

200

250

Vol

une

Ads

orbe

d (c

m3 S

TP/g

)

Relative Pressure (P/PO)

chemical adsorption

0.0 0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

60

70

80

90

Vol

une

Ads

orbe

d (c

m3 S

TP/g

)

Relative Pressure (P/PO)

sol-gel

N2 adsorption stripping curve

Page 21: Li  Yanping 20130728

H2-TPR

0 200 400 600 800 1000

0.01

0.00

-0.01

-0.02

-0.03

-0.04

Con

sumption of H2 (a.u.)

temperature ( )℃

simple wet impregnation

0 200 400 600 800

0.000

-0.005

-0.010

-0.015

-0.020

-0.025

-0.030

Consumption of H2 (a.u.)

temperature ( )℃

second impregnation

0 200 400 600 800 1000

0.01

0.00

-0.01

-0.02

-0.03

-0.04

Con

sumption of H

2 (a.u.)

temperature ( )℃

Ethanol impregnation

Page 22: Li  Yanping 20130728

0 200 400 600 800 1000

0.02

0.00

-0.02

-0.04

-0.06

-0.08

-0.10

-0.12

Consumption of H2 (a.u.)

temperature ( )℃

composite precipitation

0 200 400 600 800 10000.005

0.000

-0.005

-0.010

-0.015

-0.020

-0.025

Con

sumption of H2 (a.u.)

temperature ( )℃

sol-gel

0 200 400 600 800 10000.01

0.00

-0.01

-0.02

-0.03

-0.04

-0.05

-0.06

-0.07

Con

sumption of H2 (a.u.)

temperature ( )℃

chemical adsorption decomposition

Page 23: Li  Yanping 20130728

200 300 400 500 600 700 800-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Abs

orbe

nce

(a.u

.)

Wavalength (nm)

P25 simple wet impregnation second impregnation ethanol impregnation composite precipitation chemical adsorption sol-gel

Uv-vis

Page 24: Li  Yanping 20130728

Plasmonic photocatalysis(Ag/SiO2core –shell, TiO2)Reason:TiO2,3.2eV, near UV irradiation can excite pairs of electrons and holes Ag NPs , a very intense LSP absorption band in the near-UV a considerable enhancement of the electric near-field in the vicinity of the Ag NPsenhanced near-field could boost the excitation of electron –hole pairsBut, Ag NPs, would be oxidized at direct contactwith TiO2

A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide

Page 25: Li  Yanping 20130728

To prevent this oxidation, Ag NPs have to be coated with a passive material, such as SiO2, to separate them from TiO2.

Page 26: Li  Yanping 20130728
Page 27: Li  Yanping 20130728

Thanks