L’evoluzione stellare: l’orologio

19
June 2006 Lectures on Stellar Popul ations Evoluzione di stelle di massa piccola, intermedia e alta Features sul HRD particolarmente importanti per il problema Sistematica con la metallicita’ Caveats L’evoluzione stellare: l’orologio

description

L’evoluzione stellare: l’orologio. Evoluzione di stelle di massa piccola, intermedia e alta Features sul HRD particolarmente importanti per il problema Sistematica con la metallicita’ Caveats. 100 M O. ZAMS. 2.5 M O. 20 M O. PAGB0.6 M O. PN. 5 M O. 5 M O. 2.5 M O. 2.5 M O. - PowerPoint PPT Presentation

Transcript of L’evoluzione stellare: l’orologio

Page 1: L’evoluzione stellare: l’orologio

June 2006 Lectures on Stellar Populations

• Evoluzione di stelle di massa piccola, intermedia e alta •Features sul HRD particolarmente importanti per il problema•Sistematica con la metallicita’•Caveats

L’evoluzione stellare: l’orologio

Page 2: L’evoluzione stellare: l’orologio

June 2006 Lectures on Stellar Populations

Evolutionary Tracks

Padova 94 set

Z=Zo Y=0.28

1MO

2.5 MO

2.5 MO

5 MO

20 MO

1 MO

100 MO

PAGB0.6 MO

2.5 MO

5 MO

To WD

ZAHB

ZAMS

RGB

PN

Lines of constant radii: R=1,10,100,1000 RoR=0.008,0.013,0.014 Ro (MWD=1,0.6,0.5 Mo)

Page 3: L’evoluzione stellare: l’orologio

June 2006 Lectures on Stellar Populations

RGB evolution

RGB Bump

0.8 Mo

2 Mo

100Ro

10 Ro

Back to HRD

Page 4: L’evoluzione stellare: l’orologio

June 2006 Lectures on Stellar Populations

RGB : bump and LFBack to HRD

1.2 Mo

1 Mo

Page 5: L’evoluzione stellare: l’orologio

June 2006 Lectures on Stellar Populations

Flash and After

M tr

RGB tip

RGB base

RGB tip

10 Ro1 Ro

P-EAGB

100 Ro

0.030.07

0.12

Back to HRD

Page 6: L’evoluzione stellare: l’orologio

June 2006 Lectures on Stellar Populations

Clump and LoopsBack to HRD

TRGB

ZAHB

2.2 Mo

9 Mo

4

7

6

5

3

15

10 Ro

Age indicator

Distan

ce

ind Lmax,He

Lmin,He

Page 7: L’evoluzione stellare: l’orologio

June 2006 Lectures on Stellar Populations

AGB Bump

2.2 Mo

5 Mo

4 Mo

3 Mo

1 Mo with cost=-1

1.5 Mo with cost=-0.5

BUMP

BUMP

RGB

RGB

Page 8: L’evoluzione stellare: l’orologio

June 2006 Lectures on Stellar Populations

PMS LF

RGB

HB

AGB

Bump

Clump

Bump

Bump

Clump

Page 9: L’evoluzione stellare: l’orologio

June 2006 Lectures on Stellar Populations

A Field in the Halo of Centaurus A(Rejkuba et al 2005)

Page 10: L’evoluzione stellare: l’orologio

June 2006 Lectures on Stellar Populations

First Pulse and TAGB

TAGB

Ist Pulse

TRGB

Page 11: L’evoluzione stellare: l’orologio

June 2006 Lectures on Stellar Populations

Massive Stars

Chiosi and Maeder 1986

Evolution affected by MASS LOSS OVERSHOOTING

Page 12: L’evoluzione stellare: l’orologio

June 2006 Lectures on Stellar Populations

Where the Stars are

WR

C stars

Miras

Clump

Ceph

HB

RRLyrWD

BSG

RSG

Back to HRD

Dots are equally spaced in

evol

There are 1000 dots alongeach track

Page 13: L’evoluzione stellare: l’orologio

June 2006 Lectures on Stellar Populations

Dependence on Metallicity

30 Mo

15 Mo

5 Mo

3 Mo

0.9 Mo

Clumps

0.5 Mo

0.55 Mo

0.6 Mo

AGB Manque’

Post E-AGBClumps

Page 14: L’evoluzione stellare: l’orologio

June 2006 Lectures on Stellar Populations

Evolutionary Lifetimes

tot

MS

overshooting

RGB phase transition

rgb

He burning

Page 15: L’evoluzione stellare: l’orologio

June 2006 Lectures on Stellar Populations

RGB Luminosities

Base

TIP

Page 16: L’evoluzione stellare: l’orologio

June 2006 Lectures on Stellar Populations

Helium Burning and beyond

Ist Pulse

He burn L-band

RGB trans

Page 17: L’evoluzione stellare: l’orologio

June 2006 Lectures on Stellar Populations

Isochrones Girardi et al. 2002

As Z increases:

• isochrones get fainter and redder

• loops get shorter

• WR stars are more easily produced

Page 18: L’evoluzione stellare: l’orologio

June 2006 Lectures on Stellar Populations

Uncertainties and wish list

Core Convection: affects star’s luminosity H and He lifetimes shape of tracks around Mhook

first H shell burning and runway for intermediate mass stars MS width location of RGB bump values of Mtr and Mup ratios N(HB)/N(AGB) loops extension Mass Loss: on the RGB affects Temperature extension of HB on the AGB affects value of Mup and TAGB for massive stars affects surface abundances, upper limit of Red SGs, productions of WR ..

Mixing Length, rotation, diffusion, meridional circulation, nuclear reactions…

Separate dependence on Y and Z is important

Opacity: affects MS width occurrence and extension of loops Blue to Red ratio

Page 19: L’evoluzione stellare: l’orologio

June 2006 Lectures on Stellar Populations

What have we learnt

To place on the HRD whatever mass at whatever age we want to pay attention to:

• Mtr Mup Mhook : lifetimes and tracks discontinuities

• Place correctly RGB Tip (as distance indicator)

• Describe accurately the evolution in core He burning close to RGB transition (Lum extension during evolution)

• Allow spread of envelope masses for HB stars

• Describe extension of the loops, location of BSG, Back-to-the-Blue evolution of high mass stars

• ………….

AND if we include a metallicity spread

Correctly describe all these systematics as a function of Metallicity