Lesson05 Step by Step - Pennsylvania State University · 2017. 2. 1. ·...

21
GEOG 487 Lesson 5: StepbyStep Activity; Author: Rachel Kornak, GISP. Updated 2/1/2017. Page 1 of 21 © 19992017 The Pennsylvania State University. © 19992017 The Pennsylvania State University. GEOG 487 Lesson 5: StepbyStep Activity Part I: Create Shapefile from Field Data Tables In Part I, we will create the shapefile we will use to interpolate our data (a point shapefile of plots with the total carbon as an attribute). To create this, we will use the two starting Excel tables "GPS" and "Tree _Measurements". 1. Familiarize Yourself with the Study Area a. Create a new map, set your workspace to your L5 folder and save it in your L5 folder. b. Add the parcel boundary and forest boundary from your L5Data folder to your map. c. Change the parcel and forest boundaries to hollow outlines. d. Set your output coordinates to "Same as Layer – Forest Boundary." Note the projection information that self populates. e. Add the "OpenStreetMap" and “Imagery with Labels” ArcGIS base maps to your map. f. Use the zoom and pan tools to explore the surrounding area. Notice how the imagery shows that only the southern portion of the parcel is forested. How far is the study forest from the city of Ann Arbor? What is the surrounding land used for (commercial, agriculture, residential, etc.)? g. Confirm the coordinate system of the data frame is set to “NAD 1983 UTM Zone 16N.” If yours does not match, right click on the "Layers" in the Table of Contents > Properties > Coordinate System > Projected Coordinate Systems Folder > UTM > NAD 83 > NAD 1983 UTM Zone 16N. Save your map to lock in the settings. 2. Create Plot Shapefile from GPS Data Table a. Add the "GPS$" Excel worksheet from your L5Data folder to your map and explore the attributes. Since excel files can have multiple worksheets, you have to select the specific worksheet within the .xls file to add to your map. ArcGIS will automatically add a "$" character to the end of Excel worksheet names. You will only see this if you view the Excel files in ArcCatalog or ArcMap.

Transcript of Lesson05 Step by Step - Pennsylvania State University · 2017. 2. 1. ·...

Page 1: Lesson05 Step by Step - Pennsylvania State University · 2017. 2. 1. · GEOG487$Lesson$5:$Step2by2Step$Activity;$Author:$Rachel$Kornak,GISP.Updated$2/1/2017.$ $Page$1$of$21$ ©199922017$The$PennsylvaniaState$University.$!

GEOG  487  Lesson  5:  Step-­‐by-­‐Step  Activity;  Author:  Rachel  Kornak,  GISP.  Updated  2/1/2017.    Page  1  of  21  ©  1999-­‐2017  The  Pennsylvania  State  University.  ©  1999-­‐2017  The  Pennsylvania  State  University.    

GEOG  487  Lesson  5:  Step-­‐by-­‐Step  Activity  

Part  I:  Create  Shapefile  from  Field  Data  Tables  

In  Part  I,  we  will  create  the  shapefile  we  will  use  to  interpolate  our  data  (a  point  shapefile  of  plots  with  the  total  carbon  as  an  attribute).    To  create  this,  we  will  use  the  two  starting  Excel  tables  "GPS"  and  "Tree  _Measurements".              

1. Familiarize  Yourself  with  the  Study  Area    

a. Create  a  new  map,  set  your  workspace  to  your  L5  folder  and  save  it  in  your  L5  folder.    b. Add  the  parcel  boundary  and  forest  boundary  from  your  L5Data  folder  to  your  map.      c. Change  the  parcel  and  forest  boundaries  to  hollow  outlines.  d. Set  your  output  coordinates  to  "Same  as  Layer  –  Forest  Boundary."    Note  the  projection  

information  that  self  populates.  e. Add  the  "OpenStreetMap"  and  “Imagery  with  Labels”  ArcGIS  base  maps  to  your  map.        f. Use  the  zoom  and  pan  tools  to  explore  the  surrounding  area.    Notice  how  the  imagery  

shows  that  only  the  southern  portion  of  the  parcel  is  forested.        

 

 

How  far  is  the  study  forest  from  the  city  of  Ann  Arbor?    What  is  the  surrounding  land  used  for  (commercial,  agriculture,  residential,  etc.)?  

 

 g. Confirm  the  coordinate  system  of  the  data  frame  is  set  to  “NAD  1983  UTM  Zone  16N.”    

If  yours  does  not  match,  right  click  on  the  "Layers"  in  the  Table  of  Contents  >  Properties  >  Coordinate  System  >  Projected  Coordinate  Systems  Folder  >  UTM  >  NAD  83  >  NAD  1983  UTM  Zone  16N.    Save  your  map  to  lock  in  the  settings.          

 2. Create  Plot  Shapefile  from  GPS  Data  Table    

 a. Add  the  "GPS$"  Excel  worksheet  from  your  L5Data  folder  to  your  map  and  explore  the  

attributes.    Since  excel  files  can  have  multiple  worksheets,  you  have  to  select  the  specific  worksheet  within  the  .xls  file  to  add  to  your  map.  

 

 

ArcGIS  will  automatically  add  a  "$"  character  to  the  end  of  Excel  worksheet  names.    You  will  only  see  this  if  you  view  the  Excel  files  in  ArcCatalog  or  ArcMap.  

 

Page 2: Lesson05 Step by Step - Pennsylvania State University · 2017. 2. 1. · GEOG487$Lesson$5:$Step2by2Step$Activity;$Author:$Rachel$Kornak,GISP.Updated$2/1/2017.$ $Page$1$of$21$ ©199922017$The$PennsylvaniaState$University.$!

GEOG  487  Lesson  5:  Step-­‐by-­‐Step  Activity;  Author:  Rachel  Kornak,  GISP.  Updated  2/1/2017.    Page  2  of  21  ©  1999-­‐2017  The  Pennsylvania  State  University.  ©  1999-­‐2017  The  Pennsylvania  State  University.    

b. Open  the  table  and  explore  the  attributes.    What  spatial  reference  do  you  think  the  x  and  y  coordinates  refer  to?  

c. Right  click  on  the  GPS  table  in  the  Table  of  Contents  >  Display  XY  Data  i. X  Field:  LONGITUDE  ii. Y  Field:  LATITUDE  iii. Z  Field:  <None>  (since  we  are  not  interested  in  height)  iv. Coordinate  System:  Edit  >  Geographic  Coordinate  Systems  Folder  >  World  >  

WGS  1984.  

 d. Read  the  warning  message  that  comes  up.    It  should  say,  "The  table  you  specified  does  

not  have  an  Object-­‐ID  …"  Click  OK.    Notice  the  new  point  file  that  appears  in  your  Table  of  Contents.  

e. Right  click  on  the  "GPS$  Events"  file  and  export  it  to  a  new  shapefile  in  your  L5  folder.    Name  it  "Plots."    Make  sure  you  choose  the  coordinate  system  of  the  data  frame  to  project  your  data  from  GCS  to  UTM.    

f. Add  the  "Plots"  shapefile  to  your  map,  remove  the  GPS$  Events  file  and  the  GPS$  table  from  your  map  and  save.    Hint  -­‐  look  on  the  Source  Tab  of  the  Table  of  Contents.  

 

Make  sure  you  have  the  correct  answer  before  moving  on  to  the  next  step.  

 • Check  the  Properties  >  Source  Tab  to  make  sure  the  Plot  shapefile  was  

projected  correctly.    If  your  projection  doesn’t  match,  make  sure  you  removed  the  base  maps,  reset  your  coordinate  system,  and  choose  the  coordinate  system  of  the  data  frame.  

 

 

Page 3: Lesson05 Step by Step - Pennsylvania State University · 2017. 2. 1. · GEOG487$Lesson$5:$Step2by2Step$Activity;$Author:$Rachel$Kornak,GISP.Updated$2/1/2017.$ $Page$1$of$21$ ©199922017$The$PennsylvaniaState$University.$!

GEOG  487  Lesson  5:  Step-­‐by-­‐Step  Activity;  Author:  Rachel  Kornak,  GISP.  Updated  2/1/2017.    Page  3  of  21  ©  1999-­‐2017  The  Pennsylvania  State  University.  ©  1999-­‐2017  The  Pennsylvania  State  University.    

 

Make  sure  you  have  the  correct  answer  before  moving  on  to  the  next  step.    • Check  the  location  of  your  plots  by  comparing  your  plot  shapefile  to  the  

map  below.    Note:  Your  map  will  not  look  exactly  like  this  by  default.    I  changed  the  symbology  of  the  points,  added  labels,  and  added  the  Imagery  layer  in  the  background  to  make  it  easier  to  compare  your  data  to  the  example.    If  you  add  the  imagery  base  map  again,  make  sure  you  remove  it  from  your  map,    reset  the  coordinate  system  to  NAD  1983  UTM  16N  and  save  before  moving  on  to  the  next  step.  

 

 

Page 4: Lesson05 Step by Step - Pennsylvania State University · 2017. 2. 1. · GEOG487$Lesson$5:$Step2by2Step$Activity;$Author:$Rachel$Kornak,GISP.Updated$2/1/2017.$ $Page$1$of$21$ ©199922017$The$PennsylvaniaState$University.$!

GEOG  487  Lesson  5:  Step-­‐by-­‐Step  Activity;  Author:  Rachel  Kornak,  GISP.  Updated  2/1/2017.    Page  4  of  21  ©  1999-­‐2017  The  Pennsylvania  State  University.  ©  1999-­‐2017  The  Pennsylvania  State  University.    

 3. Calculate  the  Carbon  Sequestered  by  Each  Tree  

 a. Add  the  tree  measurements  excel  worksheet  from  your  L5Data  folder  to  your  map  and  

explore  the  attributes.      What  does  DBH  mean?  b. We  need  to  add  several  new  fields  to  the  table  to  calculate  the  carbon  values  for  each  

tree.    ArcMap  will  not  allow  you  to  add  new  fields  to  an  Excel  worksheet.    Export  it  to  a  .dbf  file  of  the  same  name  using  the  export  option  listed  in  the  dropdown  menu  in  the  upper  left  corner  of  the  attribute  table.  Make  sure  to  select  the  file  type  as  dBASE  table  so  it  has  the  “.dbf”  extension.  Add  the  resultant  file  to  your  map.

 c. Remove  the  "Tree_Measurements$"  Worksheet  from  your  map  and  save.  

 

 

 

We  are  going  to  use  a  somewhat  general  set  of  equations  to  estimate  the  carbon  stored  in  each  tree.    For  this  lesson,  we  do  not  need  a  high  level  of  accuracy.    The  important  part  is  to  demonstrate  the  concept  of  how  one  can  calculate  carbon  credits  using  GIS.    You  can  read  more  about  the  method  we  will  use  at:  http://goo.gl/HgSWQh.      

There  are  more  sophisticated  methods  you  can  use  that  take  into  account  the  tree  species,  age,  climate,  and  other  factors.    The  paper,  “Methods  for  Calculating  Forest  Ecosystem  and  Harvested  Carbon  with  Standard  Estimates  for  Forest  Types  of  the  United  States”  highlights  an  example  of  a  more  complex  methodology:  http://www.nrs.fs.fed.us/pubs/gtr/ne_gtr343.pdf.    An  example  of  a  simpler  method  is  highlighted  in  the  “Landowner’s  Guide  to  

Page 5: Lesson05 Step by Step - Pennsylvania State University · 2017. 2. 1. · GEOG487$Lesson$5:$Step2by2Step$Activity;$Author:$Rachel$Kornak,GISP.Updated$2/1/2017.$ $Page$1$of$21$ ©199922017$The$PennsylvaniaState$University.$!

GEOG  487  Lesson  5:  Step-­‐by-­‐Step  Activity;  Author:  Rachel  Kornak,  GISP.  Updated  2/1/2017.    Page  5  of  21  ©  1999-­‐2017  The  Pennsylvania  State  University.  ©  1999-­‐2017  The  Pennsylvania  State  University.    

Determining  Weight  and  Value  of  Standing  Pine  Trees”  -­‐  https://www.uaex.edu/publications/pdf/FSA-­‐5017.pdf  

 d. Add  7  new  double  fields  (scale  &  precision  of  0)  to  the  Tree_Measurements  dbf  table.    

Use  the  names  below:  i. DBH_in    (this  is  to  convert  units  from  cm  to  in)  ii. Height_ft  (this  is  to  convert  units  from  m  to  ft)  iii. Wa_lbs  (above  ground  tree  weight)  iv. Wt_lbs  (total  tree  weight  with  roots)  v. Wd_lbs  (dry  tree    weight)  vi. Wc_lbs  (weight  of  carbon)  vii. Ws_lbs  (weight  of  carbon  dioxide  sequestered)  

 e. Use  the  field  calculator  and  the  equations  below  to  populate  the  new  fields  from  step  d.      

 Variable   Description   Units   Equation  

D   Measured  tree  diameter  (DBH)   Inches   See  Tree  Measurements  Table  (be  careful  with  your  units  here).  

H   Measured  tree  height   Feet   See  Tree  Measurements  Table  (be  careful  with  your  units  here).  

Wa   Total  above  ground  weight  of  the  tree  (w/o  roots)  

Pounds   Wa  =  0.15D2  *H  

Wt   Total  weight  of  the  tree  and  roots  

Pounds   Wt  =  1.2  Wa  

Wd   Dry  weight  of  the  tree   Pounds   Wd  =  0.725Wt  

Wc   Weight  of  carbon  in  the  tree   Pounds   Wc  =  0.5Wd  

Ws   Weight  of  carbon  dioxide  sequestered  in  the  tree  

Pounds   Ws=3.6663Wc  

 Tips  for  Success:  o Don’t  forget  to  convert  units  when  necessary.      Check  www.onlineconversion.com  if  you  

are  unsure  of  the  conversion  equations.      Round  the  conversion  factors  to  the  nearest  4  decimal  places  (e.g.,  0.3937007874  =  0.3937).    What  is  the  conversion  factor  for  meters  to  feet?  

o Make  sure  to  use  double  number  types  with  scales  and  precisions  of  zero.    Remember  that  double  fields  are  for  decimals  and  integer  fields  are  for  whole  numbers.  

o I  recommend  starting  an  edit  session  so  you  have  the  option  to  undo.    Note:  You  will  need  to  do  this  after  you’ve  added  all  of  your  new  fields.  

o To  calculate  D2  in  the  field  calculator,  multiply  D  *  D.  

Page 6: Lesson05 Step by Step - Pennsylvania State University · 2017. 2. 1. · GEOG487$Lesson$5:$Step2by2Step$Activity;$Author:$Rachel$Kornak,GISP.Updated$2/1/2017.$ $Page$1$of$21$ ©199922017$The$PennsylvaniaState$University.$!

GEOG  487  Lesson  5:  Step-­‐by-­‐Step  Activity;  Author:  Rachel  Kornak,  GISP.  Updated  2/1/2017.    Page  6  of  21  ©  1999-­‐2017  The  Pennsylvania  State  University.  ©  1999-­‐2017  The  Pennsylvania  State  University.    

o The  example  below  shows  the  equation  you  would  type  into  the  field  calculator  to  convert  the  DBH  values  from  centimeters  to  inches.      

 

Make  sure  you  have  the  correct  answer  before  moving  on  to  the  next  step.  

Compare  your  data  with  the  summary  statistics  below  for  the  "Ws"  variable.  

If  your  data  does  not  match  this,  go  back  and  redo  your  calculations.    Pay  special  attention  to  unit  conversations  (make  sure  to  round  to  the  nearest  4  decimal  places),  data  types  of  the  fields  you  used,  and  typos  in  equations.

   4. Combine  the  Carbon  Calculations  with  the  Plot  Shapefile  

 Ultimately,  we  want  to  join  the  calculations  from  Step  3  to  the  plot  shapefile  we  created  in  Step  2.    However,  we  can’t  do  this  directly,  because  there  is  more  than  one  entry  in  the  tree  measurement  table  for  each  plot  in  the  shapefile.    We  know  this  is  true  because  there  are  278  trees  but  only  18  plots.    Before  we  can  join  the  two  files,  we  need  to  summarize  the  tree  data  to  the  plot  level.      

a. Calculate  the  total  carbon  sequestered  per  plot.    Open  the  "Tree_Measurements.dbf"  table.    Right  click  on  the  "PLOTID"  field  >  Summarize.    Use  the  settings  shown  on  the  next  page.    Make  sure  the  extension  is  a  .dbf  file.  

   

Page 7: Lesson05 Step by Step - Pennsylvania State University · 2017. 2. 1. · GEOG487$Lesson$5:$Step2by2Step$Activity;$Author:$Rachel$Kornak,GISP.Updated$2/1/2017.$ $Page$1$of$21$ ©199922017$The$PennsylvaniaState$University.$!

GEOG  487  Lesson  5:  Step-­‐by-­‐Step  Activity;  Author:  Rachel  Kornak,  GISP.  Updated  2/1/2017.    Page  7  of  21  ©  1999-­‐2017  The  Pennsylvania  State  University.  ©  1999-­‐2017  The  Pennsylvania  State  University.    

   

 

Page 8: Lesson05 Step by Step - Pennsylvania State University · 2017. 2. 1. · GEOG487$Lesson$5:$Step2by2Step$Activity;$Author:$Rachel$Kornak,GISP.Updated$2/1/2017.$ $Page$1$of$21$ ©199922017$The$PennsylvaniaState$University.$!

GEOG  487  Lesson  5:  Step-­‐by-­‐Step  Activity;  Author:  Rachel  Kornak,  GISP.  Updated  2/1/2017.    Page  8  of  21  ©  1999-­‐2017  The  Pennsylvania  State  University.  ©  1999-­‐2017  The  Pennsylvania  State  University.    

b. Add  the  "Carbon_per_plot"  table  to  your  map  when  prompted  and  look  at  the  attribute  table.    Notice  there  are  only  18  records  now  instead  of  278.    The  "Count_PLOTID"  is  the  number  of  trees  within  each  plot.    (Now  is  a  good  time  to  change  the  field  alias  to  “Number  _Trees”  so  you  remember  what  this  means  later  on.    Right  click  on  the  field  >  properties  >  alias.)    The  "Sum_Ws_lbs"  is  the  total  carbon  sequestered  for  all  trees  within  the  plot.  

c. Now  we  know  the  total  carbon  sequestered  for  each  plot.    However,  we  still  need  to  normalize  this  data  before  we  can  interpolate  it,  since  some  of  the  plots  have  more  trees  than  others.    Since  the  diameter  of  each  plot  is  10  meters,  we  know  the  area  of  each  plot  is  78.5  square  meters.    

d. Add  a  new  double  field  named  "c_lbsqm"  to  the  "Carbon_per_plot"  table.    Calculate  the  pounds  of  carbon  sequestered  per  square  meter  for  each  plot.      

   

 

Make  sure  you  have  the  correct  answer  before  moving  on  to  the  next  step.  

Compare  your  data  with  the  summary  statistics  below  for  the  "c_lbsqm"  variable.  

If  your  data  does  not  match  this,  go  back  and  redo  your  calculation.    

 e. Join  the  "Carbon_per_plot"  table  with  the  "Plots"  shapefile  based  on  the  PLOTID  field.    

Open  the  attribute  table  to  make  sure  your  join  worked  properly.      f. Export  it  to  a  new  shapefile  in  your  L5  folder  named  "Plots_carbon."    Add  the  new  

shapefile  to  your  map.  g. Remove  the  "Tree_Measurement"  table,  "Carbon_per_plot"  table,  and  "Plots"  

shapefile.    Save  your  map.      

Page 9: Lesson05 Step by Step - Pennsylvania State University · 2017. 2. 1. · GEOG487$Lesson$5:$Step2by2Step$Activity;$Author:$Rachel$Kornak,GISP.Updated$2/1/2017.$ $Page$1$of$21$ ©199922017$The$PennsylvaniaState$University.$!

GEOG  487  Lesson  5:  Step-­‐by-­‐Step  Activity;  Author:  Rachel  Kornak,  GISP.  Updated  2/1/2017.    Page  9  of  21  ©  1999-­‐2017  The  Pennsylvania  State  University.  ©  1999-­‐2017  The  Pennsylvania  State  University.    

Part  II:  Interpolate  Point  Data  to  a  Continuous  Raster  

In  Part  II,  we  will  use  the  Spatial  Analyst  extension  tools  to  interpolate  the  carbon  sequestration  data  we  calculated  for  each  plot  to  the  entire  forest.    We  will  run  the  same  interpolation  tool  several  times  to  see  how  altering  the  extent,  mask,  and  cell  size  settings  affect  the  results.    We  will  start  by  accepting  all  default  settings.    Then  we  will  change  the  settings  one  at  a  time  to  see  how  each  one  affects  the  results.          

1. Look  for  Trends  in  the  Data    

a. Remember  from  Lesson  3  that  it  is  wise  to  be  aware  of  trends  and  spatial  patterns  in  your  data  before  you  start  to  modify  it  using  automated  tools.      

b. Open  the  "Plots_carbon"  attribute  table  and  explore  the  data.    You  may  need  to  set  the  alias  of  the  Cnt_PLOTID  again.  

 

 

Do  some  plots  have  more  trees  than  others?    Is  there  a  lot  of  variation  in  the  total  amount  of  carbon  or  carbon  per  square  meter  values?    If  so,  why  do  you  think  this  may  occur?    Hint:  Look  at  the  aerial  photo.  

 

 c. Change  the  symbology  to  Quantities  >  Proportional  Symbols.    Use  the  "c_lbsqm"  as  the  

value  field.    Accept  the  remaining  defaults  and  click  OK.      

 

 

Do  you  see  any  spatial  patterns  in  the  data?    For  example,  do  some  areas  of  the  forest  have  higher  values  than  others?    If  so,  why  do  you  think  this  may  occur?  

 

 2. Explore  Spatial  Analyst  Toolbox.  

 a. Make  sure  you  have  the  Spatial  Analyst  Extension  enabled  (Customize  >  Extensions).  

 

   

Page 10: Lesson05 Step by Step - Pennsylvania State University · 2017. 2. 1. · GEOG487$Lesson$5:$Step2by2Step$Activity;$Author:$Rachel$Kornak,GISP.Updated$2/1/2017.$ $Page$1$of$21$ ©199922017$The$PennsylvaniaState$University.$!

GEOG  487  Lesson  5:  Step-­‐by-­‐Step  Activity;  Author:  Rachel  Kornak,  GISP.  Updated  2/1/2017.    Page  10  of  21  ©  1999-­‐2017  The  Pennsylvania  State  University.    

b. Open  ArcToolbox  >  Spatial  Analyst  Tools  and  browse  through  the  available  tools.    We  will  be  using  these  tools  for  the  remainder  of  this  course.    

3. Interpolate  Data  Using  All  Default  Settings    Remember  from  the  Background  Information  section  that  the  Spatial  Analyst  tools  are  governed  by  user-­‐specified  settings.    Two  of  the  most  common  errors  when  using  Spatial  Analyst  tools  are  to  either  completely  ignore  these  settings,  or  to  set  them  improperly.    Let’s  try  to  interpolate  our  data  using  all  of  the  defaults  and  see  what  our  results  look  like.      

 

 

Make  sure  you  double-­‐check  ALL  environment  settings  before  running  ANY  tools  in  Spatial  Analyst!  The  program  often  resets  your  cell  size,  extent,  and  mask  to  program  or  data  layer  defaults.  

 a. Within  ArcMap,  go  to  ArcToolbox  >  Spatial  Analyst  Tools  >  Interpolation  >  IDW.      Use  

the  settings  below  to  interpolate  the  carbon  per  square  meter  values.    Save  the  output  raster  in  your  L5Data  folder  and  name  it  "default."    Click  OK.    

   

Page 11: Lesson05 Step by Step - Pennsylvania State University · 2017. 2. 1. · GEOG487$Lesson$5:$Step2by2Step$Activity;$Author:$Rachel$Kornak,GISP.Updated$2/1/2017.$ $Page$1$of$21$ ©199922017$The$PennsylvaniaState$University.$!

GEOG  487  Lesson  5:  Step-­‐by-­‐Step  Activity;  Author:  Rachel  Kornak,  GISP.  Updated  2/1/2017.    Page  11  of  21  ©  1999-­‐2017  The  Pennsylvania  State  University.    

 

Click  the  Show  Help  >>  button  to  help  define  particular  input  parameters.    

You  can  review  the  specific  input  and  environment  settings  you  used  at  Geoprocessing  >  Results.    This  can  be  helpful  if  you  are  not  sure  if  you  made  a  mistake  somewhere  along  the  way  during  a  complex  workflow.  

 

 b. Change  the  symbology  of  the  default  raster  as  shown  below  (5  classes,  colors  light  to  

dark  red).  

   

Page 12: Lesson05 Step by Step - Pennsylvania State University · 2017. 2. 1. · GEOG487$Lesson$5:$Step2by2Step$Activity;$Author:$Rachel$Kornak,GISP.Updated$2/1/2017.$ $Page$1$of$21$ ©199922017$The$PennsylvaniaState$University.$!

GEOG  487  Lesson  5:  Step-­‐by-­‐Step  Activity;  Author:  Rachel  Kornak,  GISP.  Updated  2/1/2017.    Page  12  of  21  ©  1999-­‐2017  The  Pennsylvania  State  University.    

   

 

Make  sure  you  have  the  correct  answer  before  moving  on  to  the  next  step.  

If  your  map  does  not  match  the  example  below,  go  back  and  redo  the  previous  step.  

 

 c. Compare  the  results  with  the  "Plots_carbon"  shapefile.    Areas  near  plots  with  high  

carbon  values  should  be  darker  than  areas  near  plots  with  low  carbon  values.    Confirming  your  output  results  assures  you  that  you  selected  the  correct  input  dataset  and  field  to  interpolate.  

d. Notice  how  the  interpolated  raster  does  not  match  the  forest  boundary,  how  the  shape  of  the  output  grid  is  a  perfect  rectangle,  how  the  extent  of  the  raster  matches  that  of  the  smallest  rectangle  that  can  contain  all  of  the  plot  points,  and  that  the  cell  size  is  0.87999…  meters.      

e. Why  did  this  occur?    Let’s  take  a  look  at  some  of  the  environment  settings  utilized  by  Spatial  Analyst  to  find  out.    Go  to  Geoprocessing  >  Environments….    As  noted  earlier  in  this  course,  environment  settings  are  the  system  wide  default  settings  that  are  used  by  every  tool.    Spatial  Analyst  utilizes  Workspace,  Output  Coordinates,  Processing  Extent,  Raster  Analysis,  and  Raster  Storage  settings.      

   

Page 13: Lesson05 Step by Step - Pennsylvania State University · 2017. 2. 1. · GEOG487$Lesson$5:$Step2by2Step$Activity;$Author:$Rachel$Kornak,GISP.Updated$2/1/2017.$ $Page$1$of$21$ ©199922017$The$PennsylvaniaState$University.$!

GEOG  487  Lesson  5:  Step-­‐by-­‐Step  Activity;  Author:  Rachel  Kornak,  GISP.  Updated  2/1/2017.    Page  13  of  21  ©  1999-­‐2017  The  Pennsylvania  State  University.    

f. Read  the  embedded  help  articles  for:  i. Processing  Extent  >  Extent  ii. Raster  Analysis  >  Cell  Size  iii. Raster  Analysis  >  Mask  iv. Raster  Storage  >  Pyramid  

 g. Pyramids  allow  for  the  rapid  display  of  large  raster  datasets  at  multiple  scales.    While  

this  may  prove  useful  for  very  large  datasets,  creating  pyramids  has  two  important  drawbacks.    First,  because  of  its  design,  it  will  generalize  data  as  the  scale  gets  larger,  which  will  reduce  the  visible  accuracy  of  the  displayed  data.    Second,  because  of  this  generalization,  layouts  created  at  large  scales  may  not  properly  represent  the  actual  data,  and  may  appear  coarser  than  it  actually  is.      

h. I  recommend  NOT  creating  pyramids  unless  working  with  a  particular  dataset  significantly  degrades  ArcMap’s  performance.    For  this  course,  we  will  disable  pyramid  creation  when  we  set  the  Spatial  Analyst  environment  settings.    To  do  this,  go  to  Spatial  Geoprocessing  >  Environments…  >  Raster  Storage,  and  uncheck  Build  Pyramids.    Click  OK  to  save  this  setting.  

       

Page 14: Lesson05 Step by Step - Pennsylvania State University · 2017. 2. 1. · GEOG487$Lesson$5:$Step2by2Step$Activity;$Author:$Rachel$Kornak,GISP.Updated$2/1/2017.$ $Page$1$of$21$ ©199922017$The$PennsylvaniaState$University.$!

GEOG  487  Lesson  5:  Step-­‐by-­‐Step  Activity;  Author:  Rachel  Kornak,  GISP.  Updated  2/1/2017.    Page  14  of  21  ©  1999-­‐2017  The  Pennsylvania  State  University.    

 

 

What  is  the  default  setting  for  analysis  extent?      

Why  does  the  "default"  raster  we  created  have  a  cell  size  of  0.87999…  meters?  

 

 

 

 

Raster  Attribute  Tables  

You  may  notice  that  the  option  to  open  the  attribute  table  of  the  "default"  raster  is  grayed  out.    ArcMap  only  builds  raster  attribute  tables  if  certain  conditions  are  met.    One  of  the  conditions  is  that  the  values  in  the  raster  have  to  be  integers.    Since  the  values  in  our  raster  have  decimals,  it  is  not  possible  to  view  the  attribute  table.    You  can  read  more  about  these  concepts  in  the  Esri  help  article  "Raster  dataset  attribute  tables."      

 

 4. Interpolate  Data  –  Set  Extent  

 Now  that  we’ve  explored  the  default  settings,  let’s  see  what  happens  if  we  alter  just  the  extent  settings.    Unlike  vector  files,  rasters  will  always  have  the  shape  of  a  perfect  rectangle.    The  size  and  location  of  the  rectangle  is  defined  by  its  extent.        

a. Open  your  previous  results  –  Geoprocessing  >  Results  >  Current  Session  >  IDW  (double  click  on  the  name).    You  should  see  the  inputs  automatically  populated  with  the  values  we  used  in  step  3a.      

b. You’ll  notice  a  red  x  next  to  the  “Output  Raster”  name.    Change  it  from  “C:\GEOG487\L5Data\default”  to  C:\GEOG487\L5Data\forest_extent.  

c. Notice  the  default  cell  size  is  currently  listed  as  0.879999994163401.  d. There  is  an  oddity  within  ArcMap  where  it  does  not  apply  all  of  the  global  environment  

settings  from  the  main  toolbar  >  Geoprocessing  >  Environment  to  some  tools  within  ArcToolbox.    We’ll  need  to  set  the  extent  settings  using  the  Environments…  option  within  the  IDW  tool  itself.    Click  on  Environments…  >  Processing  Extent,  choose  "Same  as  Layer  Forest_Boundary"  as  the  extent.    

Page 15: Lesson05 Step by Step - Pennsylvania State University · 2017. 2. 1. · GEOG487$Lesson$5:$Step2by2Step$Activity;$Author:$Rachel$Kornak,GISP.Updated$2/1/2017.$ $Page$1$of$21$ ©199922017$The$PennsylvaniaState$University.$!

GEOG  487  Lesson  5:  Step-­‐by-­‐Step  Activity;  Author:  Rachel  Kornak,  GISP.  Updated  2/1/2017.    Page  15  of  21  ©  1999-­‐2017  The  Pennsylvania  State  University.    

       

 e. Notice  how  the  output  cell  size  changed  to  “1.17340837377682.”    Make  sure  to  review  

the  embedded  help  topic  to  understand  why  this  happened.  f. To  keep  the  output  rasters  consistent  throughout  the  lesson,  we  need  to  manually  

override  the  cell  size  setting.    Copy  and  paste  0.879999994163401  into  the  cell  size  input  and  click  OK.  

Page 16: Lesson05 Step by Step - Pennsylvania State University · 2017. 2. 1. · GEOG487$Lesson$5:$Step2by2Step$Activity;$Author:$Rachel$Kornak,GISP.Updated$2/1/2017.$ $Page$1$of$21$ ©199922017$The$PennsylvaniaState$University.$!

GEOG  487  Lesson  5:  Step-­‐by-­‐Step  Activity;  Author:  Rachel  Kornak,  GISP.  Updated  2/1/2017.    Page  16  of  21  ©  1999-­‐2017  The  Pennsylvania  State  University.    

   

 

Make  sure  you  have  the  correct  answer  before  moving  on  to  the  next  step.  

If  your  map  does  not  match  the  example  below,  go  back  and  redo  the  previous  step.  

   

g. Change  the  symbology  of  the  forest_extent  raster  as  we  did  in  Step  3b,  except  use  light  to  dark  blue  for  the  color  ramp.  

h. Compare  the  "forest_extent"  raster  to  the  "default"  raster.    You  may  need  to  rearrange  the  files  in  the  Table  of  Contents.    Notice  how  the  extent  of  the  "forest_extent"  raster  matches  that  of  the  smallest  rectangle  that  can  contain  the  forest  boundary  polygon.  

i. Repeat  Step  4,  except  use  the  "Parcel_Boundary"  file  as  the  extent.    Make  sure  you  use  the  same  cell  size  as  the  default  and  forest-­‐extent  rasters.    Name  the  output  raster  "parcel_extent."      

j. Change  the  symbology  like  we  did  previously,  except  use  an  orange  color  scale.    Compare  the  output  with  the  parcel  boundary.    Save  your  map.  

 

 

 

How  do  the  extents  of  the  "parcel_extent,"  "forest_extent"  and  "default"  rasters  compare?    

 

Page 17: Lesson05 Step by Step - Pennsylvania State University · 2017. 2. 1. · GEOG487$Lesson$5:$Step2by2Step$Activity;$Author:$Rachel$Kornak,GISP.Updated$2/1/2017.$ $Page$1$of$21$ ©199922017$The$PennsylvaniaState$University.$!

GEOG  487  Lesson  5:  Step-­‐by-­‐Step  Activity;  Author:  Rachel  Kornak,  GISP.  Updated  2/1/2017.    Page  17  of  21  ©  1999-­‐2017  The  Pennsylvania  State  University.    

5. Interpolate  Data  –  Set  Mask    Now  let’s  see  what  happens  if  we  alter  the  mask  and  extent  settings.      Even  though  all  rasters  are  defined  as  perfect  rectangles,  you  can  still  represent  your  data  as  a  sinuous  shape.    The  computer  creates  this  illusion  by  assigning  cells  outside  the  sinuous  shape  values  of  "NoData."    There  is  not  a  direct  equivalent  to  this  concept  in  vector  files.          

a. Open  your  previous  results  –  Geoprocessing  >  Results  >  Current  Session  >  IDW  (double  click  on  the  name).    You  should  see  the  inputs  automatically  populated  with  the  values  we  used  in  step  4.      

b. Change  the  output  name  to  “for_msk_ext.”  c. Click  on  Environments…  >  Processing  Extent  >  choose  "Same  as  layer  Forest_Boundary"  

as  the  extent.      d. Within  Raster  Analysis  >  select  Forest_Boundary  as  the  Mask.    Click  OK  to  save  the  

environment  settings.  e. Make  sure  the  cell  size  is  0.879999994163401.    Click  OK  to  run  the  tool.  f. Change  the  symbology  as  before  except  use  a  purple  color  scale.    Compare  the  output  

raster  to  the  forest  boundary.    Your  raster  should  now  match  the  shape  and  size  of  the  forest  boundary  polygon.      

g. What  happened  to  the  cells  outside  of  the  forest  boundary?    By  default,  ArcGIS  displays  raster  values  of  NoData  without  a  color.    Change  the  color  of  NoData  to  black  on  the  symbology  tab  and  examine  the  results.  

 

Page 18: Lesson05 Step by Step - Pennsylvania State University · 2017. 2. 1. · GEOG487$Lesson$5:$Step2by2Step$Activity;$Author:$Rachel$Kornak,GISP.Updated$2/1/2017.$ $Page$1$of$21$ ©199922017$The$PennsylvaniaState$University.$!

GEOG  487  Lesson  5:  Step-­‐by-­‐Step  Activity;  Author:  Rachel  Kornak,  GISP.  Updated  2/1/2017.    Page  18  of  21  ©  1999-­‐2017  The  Pennsylvania  State  University.    

 

 

What  would  the  output  raster  look  like  in  the  following  scenario?  

• Mask:  forest  boundary;  Extent:  parcel  boundary    • Mask:  parcel  boundary;  Extent:  forest  boundary    • Mask:  "Plots_carbon"  shapefile;  Extent:  forest  boundary  

 

 6. Interpolate  Data  –  Set    Cell  Size  

 In  Step  3,  we  learned  that  the  default  cell  size  will  depend  on  the  input  data.    If  you  are  using  one  or  more  rasters  as  inputs,  the  cell  size  will  default  to  the  coarsest  raster  resolution.    If  you  are  using  a  vector  file,  it  will  calculate  the  cell  size  based  on  the  extent  of  the  file  to  create  250  cells.    The  default  for  rasters  seems  appropriate,  since  GIS  best  practices  dictate  that  you  should  always  go  with  the  cell  size  of  your  coarsest  input  dataset.    However,  the  default  for  vector  files  is  quite  arbitrary.        How  do  we  choose  a  more  meaningful  cell  size  for  our  analysis?    One  rule  of  thumb  is  that  you  don’t  want  to  "create"  higher  resolution  data  than  what  exists  in  your  measured  values.    We  know  that  the  tree  data  was  collected  by  measuring  trees  that  fell  within  10  m  diameter  circular  plots.    A  cell  size  of  1  cm  would  not  be  appropriate,  because  we  do  not  know  how  the  data  varies  at  that  scale.    A  cell  size  of  1,000  m  would  be  too  large,  since  it  is  larger  than  our  study  area.      For  this  project  we  will  use  a  cell  size  of  1  m,  since  our  carbon  values  are  in  pounds  per  square  meter.    

a. Open  your  previous  results  –  Geoprocessing  >  Results  >  Current  Session  >  IDW  (double  click  on  the  name).    You  should  see  the  inputs  automatically  populated  with  the  values  we  used  in  step  5.      

b. Change  the  output  name  to  "carbon1m."      c. Click  on  Environments…  Set  the  "Forest  Boundary"  as  the  mask  and  extent  and  click  OK  

to  save  the  environment  settings.  d. Change  the  output  cell  size  to  1.    Click  OK  to  run  the  tool.  e. Change  the  symbology  as  before,  except  use  a  green  color  scale.    Compare  the  output  

to  the  "for_msk_ext"  raster.    At  first  glance,  the  output  raster  may  not  look  very  much  different  than  the  "for_msk_ext"  raster,  since  they  have  the  same  mask,  extent,  and  very  similar  cell  size  settings.      

   

Page 19: Lesson05 Step by Step - Pennsylvania State University · 2017. 2. 1. · GEOG487$Lesson$5:$Step2by2Step$Activity;$Author:$Rachel$Kornak,GISP.Updated$2/1/2017.$ $Page$1$of$21$ ©199922017$The$PennsylvaniaState$University.$!

GEOG  487  Lesson  5:  Step-­‐by-­‐Step  Activity;  Author:  Rachel  Kornak,  GISP.  Updated  2/1/2017.    Page  19  of  21  ©  1999-­‐2017  The  Pennsylvania  State  University.    

f. Right  click  on  the  "carbon1m"  raster  in  the  Table  of  Contents  >  Properties  >  Source.    Browse  through  the  available  information.    Notice  the  extent  and  cell  size.      Compare  this  information  to  the  properties  of  the  "for_msk_ext"  raster  as  shown  on  the  right.  

 "carbon1m"  properties   "for_msk_ext"  properties  

 7. Interpret  Results  –  Calculate  Carbon  for  Entire  Study  Area  

 Now  that  we  have  an  understanding  of  how  the  spatial  analyst  environment  settings  function,  we  can  return  to  our  original  question.    We  want  to  figure  out  how  much  carbon  the  study  forest  sequesters.    To  accomplish  this,  we  will  use  the  "Zonal  Statistics"  tool  in  Spatial  Analyst.    This  tool  allows  us  to  calculate  statistics  of  the  cell  values  of  one  raster  (e.g.  carbon1m)  within  zones  specified  by  another  file  (e.g.  forest  boundary).    We  will  use  it  to  sum  the  carbon  values  in  each  cell  to  create  a  total  for  the  entire  forest.  

a. Go  to  ArcToolbox  >  Spatial  Analyst  Tools  >  Zonal  >  Zonal  Statistics  as  Table.    Use  the  settings  below  to  find  the  total  carbon  for  the  forest.    Name  the  output  table  "carbon1m_sum"  in  your  L5  folder.    

 

Page 20: Lesson05 Step by Step - Pennsylvania State University · 2017. 2. 1. · GEOG487$Lesson$5:$Step2by2Step$Activity;$Author:$Rachel$Kornak,GISP.Updated$2/1/2017.$ $Page$1$of$21$ ©199922017$The$PennsylvaniaState$University.$!

GEOG  487  Lesson  5:  Step-­‐by-­‐Step  Activity;  Author:  Rachel  Kornak,  GISP.  Updated  2/1/2017.    Page  20  of  21  ©  1999-­‐2017  The  Pennsylvania  State  University.    

 b. After  you  click  OK,  the  summary  table  will  appear  in  ArcMap.    Notice  the  field  "SUM."    

This  value  represents  the  total  carbon  in  the  forest.    Close  the  table.  c. Notice  that  this  table  can  be  joined  to  the  "Forest_Boundary"  layer  since  they  share  the  

field  "Name".    You  may  find  it  useful  to  join  these  tables  together  if  you  wish  to  visually  map  the  zonal  statistics.      

 

 

ArcMap  may  not  show  all  the  digits  in  a  table  by  default.    If  your  numbers  do  not  match  the  numbers  in  the  quiz,  expand  the  columns  in  your  table  to  display  all  the  digits.      

 d. One  credit  is  earned  for  each  metric  ton  (mT)  of  carbon  sequestered.    How  many  carbon  

credits  does  the  study  forest  qualify  for?    Note  that  1  metric  ton  =  2,204.6  lbs.  

 

 

The  monetary  value  of  each  carbon  credit  fluctuates  based  on  the  current  market  conditions.    Check  out  the  current  price  of  carbon  within  California’s  cap  and  trade  system  at  http://calcarbondash.org/.      

   

 

 

One  of  the  main  take  away  points  from  this  lesson  is  that  Spatial  Analyst  is  a  modeling  tool.    Models  don’t  give  exact  final  answers;  rather  they  give  you  estimates  of  reasonable  answers  based  on  a  set  of  assumptions.        

Environment  Settings  allow  you  to  easily  alter  the  underlying  assumptions  of  your  model  (cell  size,  mask,  extent)  and  then  quickly  recalculate  your  results.      

Selecting  environment  settings  in  Spatial  Analyst  can  be  confusing  and  seem  somewhat  arbitrary.    If  you  don’t  know  which  Environment  Settings  you  should  use  for  a  particular  scenario,  you  can  try  experimenting  with  a  variety  of  options.    This  type  of  sensitivity  analysis  will  help  you  understand  how  changing  model  assumptions  affect  your  final  results.    

 

   

Page 21: Lesson05 Step by Step - Pennsylvania State University · 2017. 2. 1. · GEOG487$Lesson$5:$Step2by2Step$Activity;$Author:$Rachel$Kornak,GISP.Updated$2/1/2017.$ $Page$1$of$21$ ©199922017$The$PennsylvaniaState$University.$!

GEOG  487  Lesson  5:  Step-­‐by-­‐Step  Activity;  Author:  Rachel  Kornak,  GISP.  Updated  2/1/2017.    Page  21  of  21  ©  1999-­‐2017  The  Pennsylvania  State  University.    

That’s  it  for  the  required  portion  of  the  Lesson  5  Step-­‐by-­‐Step  Activity.    Please  consult  the  Lesson  Checklist  for  instructions  on  what  to  do  next.  

 

 

Try  one  or  more  of  the  activities  listed  below:          

• In  Lesson  5,  we  used  the  defaults  for  many  of  the  input  parameters  of  the  Interpolation  Tool  such  as  "z  value  field,"  "power,"  and  "search  radius  type."    Alter  some  of  these  parameters  to  see  how  they  affect  your  results.  

• There  are  several  other  interpolation  methods  to  choose  from  in  addition  to  Inverse  Distance  Weighted,  such  as  "Spline"  and  "Kriging."  Explore  some  of  the  other  options  to  see  how  they  affect  your  results.  

• Export  the  study  boundary  to  a  KML  file  using  ArcToolbox  >  Conversion  Tools  >  To  KML  >  Layer  to  KML.    Open  the  KML  file  in  Google  Earth,  zoom  to  the  study  boundary,  and  explore  the  historical  imagery  for  the  study  site.      

Note:  Try  This  Activities  are  voluntary  and  are  not  graded,  though  I  encourage  you  to  complete  the  activity  and  share  comments  on  Piazza  in  the  “#lesson5”  folder  with  the  tag  “#Try_This.”