Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12....

30
BME 333 Biomedical Signals and Systems - J.Schesser 100 Z Transforms Lesson 20 6DT

Transcript of Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12....

Page 1: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

100

Z Transforms

Lesson 206DT

Page 2: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

101

Z Transforms – A Definition

• In a sense similar to the LT except it is associated with discrete time functions.

• Let’s assume we have a continuous time function, f (t), and let’s create a discrete time function from it, f (n) by sampling it at a rate T. We would then have:

• Taking the LT of f(n) we would have:

[ ] ( ) ( )n

f n f t t nT

0 0

( ) £[ [ ]] ( ) ( ) ( ) ( )

( )

st st

n n

snT

n

F s f n f t t nT e dt f t t nT e dt

f nT e

Page 3: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

102

Z Transforms – A Definition Continued

• Replacing esT with z we have the definition of the z-transform:

• Note that this is a 2-sided summation. Since many signals are zero for t<0, we can also define a 1-sided z-transform as:

• Note that both versions F(z) can be written in closed form when the series converges

n

nznTfzF )()(

0

)()(n

nznTfzF

Page 4: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

103

Z-transform 2-sided Calculations - Examples

First, recall that the geometric series Arn

n0

converges to A

1 - r provided that r 1.

Example 1), let:f [n] eaTn for n 0; 0 otherwise

F(z) eaTnzn

eaTnzn

0

(eaT

z)n

0

Using the result of a geometric series:

F(z) 1

1 eaT

z

z

z eaT

and will converge when eaT

z 1 or z eaT

Page 5: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

104

Examples Continued

1

11

1 0

0

Example 2), let:[ ] for 0; 0 otherwise

( ) let we have:

( ) ( ) where m p 1

( )

Using the result of a geometric se

aTn

aTn n aTn n

aTm m aT m aT p

aT aT p

f n e n

F z e z e z m -n

e z e z e z

e z e z

ries:

1( ) ( ) 1

and will converge when 1 or z

aTaT aT

aT aT

zF z e ze z z e

e z e

We see that we have to provide a region of convergence, in addition, to the function F(z) to completely define the z-transform of a f [n].

Page 6: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

105

1-sided z-transforms

• Useful since most functions we use are zero for t<0.

F(z) f (nT )zn

n0

Page 7: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

106

1-sided z-transforms

• Some examples (see p. 396 Tables 6DT.1 & 6DT.2 for more):

00

0

0 0

1

1 2 20 0

(Unit sampling function) [ ] 1 for 0, 0 otherwise; ( ) 1 1

[ ] 1 for 0, 0 otherwise1 1( ) 1 ( ) converges for z 11 11

1[ ] ( ) co(1 ) ( 1)

n n

n n

n n F z z

u n n zF z z

z zz

Tz TznTu n nTz T nz z z

2

23

nverges for z 1

( 1)[ ] converges for z 1( 1)

T z zn u nz

Page 8: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

107

Proof0 0

0 1 2 3 4

1 2 3 1 2 3 1 2 3

1 2 3 1 2

1[ ] ( )

1 1 1 1 1{0( ) 1( ) 2( ) 3( ) 4( ) }

1 1 1 1 1 1 1 1 1 1 1{0 [1 2( ) 3( ) 4( ) ]} {0 [1 ( ) ( ) ( ) ( ) 2( ) 3( ) ]}

1 1 1 1 1 1 1{0 [1 ( ) ( ) ( ) [1 2( ) 3( )

n nnu n nTz T nz

Tz z z z z

T Tz z z z z z z z z z z

Tz z z z z z z

1 2 3 1 2 1 1

2 2

]]}

1 1 1 1 1 1 1 1 1 1{0 [1 ( ) ( ) ( ) [1 ( ) ( ) [1 ( ) ( ) ]]]}

1 1 1 1 1 1 1 1 1 1 1 1 1{ [ [ [ [ ]]]]} { ( )[1 [1 [1 [1 ]]]]}1 1 1 1 11 1 1 1 1

1 1 1 1 1 1 1{ ( )[1 ( ) ( ) ]} { (11 1

Tz z z z z z z z z z

T Tz z z z z z z z

z z z z z

T Tz z z z z

z

11 1

1

1 2 2

1)( )}1 11

1 1 1{ ( )( )} { ( )( )}1 1 1 1

converges for z 1(1 ) ( 1)

z zz zT z T

z z z z zTz Tz

z z

Page 9: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

108

1-sided z-transforms

• Some examples (see p. 396 Tables 6DT.1 & 6DT.2 for more):

eaTnu[nT ]z

z eaT converges for z eaT

aTnu[nT ] anT zn

n0

(aT

z)n

n0

1

1 aT

z

z

z aT converges for z aT

Page 10: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

109

Properties of z-transforms

Z{f1[nT ] f2[nT ]} F1(z) F2 (z)Z{af [nT ]} aF(z)Z{f [nT T ]} z1F(z)Z{f [nT mT ]} zmF(z)

Z{nTf [nT ]} TzdF(z)

dz

If f [nT ] f1[nT kT ] f2[kT ]k0

n

, then F(z) F1(z)F2 (z)

Page 11: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

110

Proof of Delay Property

Given:Z{f [nT T ]} z1F(z)Z{ f [nT ]} F(z)

Z{f [nT T ]} f (nT T )zn

n0

f ([n 1]T )zn

n0

Let n -1 m

f ([n 1]T )zn

n0

f (mT )zm1

m1

f (mT )zm

m0

z1

Since f (T ) 0

z1 f (mT )zm

m0

z1F(z)BME 333 Biomedical Signals and Systems

- J.Schesser110

Page 12: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

111

Proof of (nT)f[nT] Property

0

0

1 10

0 0

1 1

0 0

0

( ){ [ ]} [ ]

( ) [ ]

[ ]( ) - [ ] - [ ]

( ) - [ ] [ ]

[ ] { [ ]}

n

n

n

n

n

n nn

n n

n n

n n

n

n

dF znTf nT nTf nT z Tzdz

F z f nT z

d nT zdF z nf nT z nz f nT z

dz dzdF zTz Tz nz f nT z Tznz f nT z

dz

nTf nT z nTf nT

f

Page 13: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

112

Properties of z-transforms

If Z{nTf [nT ]} TzdF(z)

dz; then

Z{(nT )2 f [nT ]} Z{nTg[nT ]} TzdG(z)

dz

where g[nT ] nTf [nT ] but G(z) TzdF(z)

dz;

dG(z)dz

T {dF(z)

dz z

d 2F(z)dz2 }

And

Z{(nT )2 f [nT ]} TzdG(z)

dz Tz(T {

dF(z)dz

zd 2F(z)

dz2 })

T 2 {zdF(z)

dz z2 d 2F(z)

dz2 }

Z{(nT )M f [nT ]} TzdG(z)

dz;where G(z) Z{(nT )M 1 f [nT ]}

Page 14: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

113

Inverting the z-transform

• Several Methods:– Taylor series expansion:

results. same theyield also should of form closed theofdivision Long

|!1)(by ] of values theare[which series thisof tscoefficien

thecalculate , thereforeandexpansion seriesTaylor ajust is that thisnote and)()2()()0(

wherefunction new a definecan We)()2()()0()( Since

0

21

1

21

F(z)dyd

nnTff(n)

ynTfyTfyTffφ(y)zy(y)

znTfzTfzTffzF

yn

n

n

-

n

Page 15: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

114

Inverting the z-transform Continued

– Residue Method which relates the zT, F(z), to the LT, F(s):

assTn

n

n

sT

z-eF(s)as

dsd

n

F(s)z-e

F(s)zF

|]1

)[()!1(1

:asn order a)of(s pole afor calculated are residues The

of poles at the 1 of residues)(

shown that becan It

11

1

1

Page 16: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

115

Inverting the z-transform Continued

2)21(

2|)2(

2|])2(2[

2)21(2|)2(

2

2)12(

2|)1(

21)1(2)1)(2(

2)()1)(2(

2)(

21211

10

2221

12

012

2

zz

z

z

zzdzdM

zM

zK

zM

zM

zK

zzzzF

zzzzF

1for ][ ]12[2)(1

2)1(

22

2)(

12

)1(2

22)(

2

2

Tnunnfz

zz

zz

zzF

zzzzzF

n

( )Partial Fraction Expansion of (since most discrete functions we deal with are of the form [ ] [ ] z

and, therefore, due to [ ], ( ) will have a in its numerator; (

e.g.,Z{ [ ] [ ]} ( ) i

F z f n u n

u n F z zz

f n u n F z

)

and will have terms of the form which can be inverted.)( ) ( )

i

k k

pi

kp p

k kk

z z zAz z z z

Page 17: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

116

Another Inversion Example2 2

2 2 2 2

2

2 2

0 01 12 2

2 2

0 2 2

2

0

( 2 1) ( 2 1)( )( 1) ( ) ( )

( ) ( 2 1)( ) ( )

* *( ) ( )( 2 1) ( 2 1)|

( ) ( )( 1 2 1) 2( 1 )

(2 ) 41 (1 )21* (1 )2

z j

z z z z z zF zz z j z j

F z z zz z j z j

A AA Az j z j z j z jz z j jA

z j j jj j

j

j

A j

2

1 2

2

3 3

2

3 3

3

1

1

( 2 1)[ ] |( )

(2 2)( ) 2( 2 1)[ ] |( ) ( )

(2 2)( ) 2( 2 1)[ ]( ) ( )

(4( 1) 4 ) 2( 1) 4 2)[ ] 0( )

Likewise for * 0

z j

z j

d z zAdz z j

z z j z zz j z j

j j j j jj j j j

j jj j

BA

Page 18: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

117

Another Inversion Example Continued4 4

2 2 2 2 2 2

2 2 2

22

2

1 1 1( ) 2[ ]2 ( ) 2 ( ) 2 ( ) ( )

This looks like the term is related to ( ) ( )

( ){ [ ]} ; Recall { [ ]} ; 1( )

( ) 1( )(

j jj j

j j

j n

j

j

j z j z z zF z e ez j z j z e z e

z zz e z e

z dF zZ e u n Z nf n z Tz e dz

zddF z z e

dz dz

2 2

2 2 2 2 2 2 2

222

2 2

22

2 2

) ( ) ( ) ( )

( ) ( ) { [ ]}( )

Likewise

{ [ ]}( )

j j

j j j j

jj j n

j

jj n

j

z z e z ez e z e z e z e

zddF z zez ez z Z ne u n

dz dz z e

zeZ ne u nz e

Page 19: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

118

Another Inversion Example Continued

Continuing

F(z) 12

2[e j 4e j 2 ze j 2

(z e j 2 )2 e j 4e j 2 ze j 2

(z e j 2 )2 ]

f [n] 12

2[e j 4ne jn 2 e j 4ne jn 2 ]u[n]

12

2[ne j(n 2 4) ne j(n 2 4) ]u[n]

2[n{e j(n 2 4) e j(n 2 4)

2}]u[n]

2[ncos(n 2 4)]u[n]

Page 20: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

119

Difference Equations

• It can be shown that for a function which equals zero for t<0, any initial conditions will not affect the following formulation:

)()(

:as (n)),function, samplingunit the todue response theis(which function system thehave weAnd

)(

Or

)()()()(:yield willsystem this totransform-z theapplyingThen

][])1([][][])1([][:equation by thisgiven system a have weIf

01

1

01

1

01

101

1

0101

zXY(z)zH

H(z)

azazabzbzb

zXY(z)

zXbzbzbzYazaza

nxbTpnxbpTnxbnyaTmnyamTnya

mm

mm

pp

pp

pp

pp

mm

mm

ppmm

Page 21: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

120

Example

][ ]12[2][have weexample, preceding a From

)1)(2(2

)1()2(2)(

)2(2)(

And)2(

2)2)(1(

)1(2)23(

)1(2)()()(

)()1(2)()23()1(

)(

Then, otherwise. 0 ,0for ][ where][2]1[2][2]1[3]2[

have weAssume

22

2

2

2

nunnf

zzz

zz

zzV

zzY

zzzz

zzzzH

zVzY

zVzzYzzz

zzV

kkkvkvkvkykyky

n

Page 22: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

121

Example

-1

-1

-1

1

1

2But ( ) which is not in any table,( 2)

but if: [ ] { ( )} Then, [ 1] { ( )}

2{ } 2 2( 2)

[ 1] 2 for 01

Therefore, [ ] 2 for 1Alternatively, using { [ 1]} ( )

(

n

n

m

H zz

h n Z H zh n Z zH z

zZz

h n nn m

h m mZ f n z F z

H z

1 -1 1

1 1 1 1 1

2 2 2) ; but { } 2 2 2 [ ]( 2) ( 2) ( 2)

2 2And { } { } { ( )} [ 1] 2 [ 1]( 2) ( 2)

n n

- - - n

z zz Z u nz z z

zZ Z z Z z F z f n u nz z

Page 23: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

122

Another Exampler

vi(n+1)

g g

vi(n-1)

r

vo(n+1)

g

vo(n-1)

r

vi(n)

vo(n)

r

)()())2(

rglet and ]1[][)2(]1[][/1

][][]1[][][]1[:have wen, nodeat LawCurrent sKirchoff'By

:network iterative thisof voltagenodal thecalculate sLet'

11

0

00

zVzVz(-z

nvnvrgnvnrgvg

nvnvr

nvnvr

nvnv

o

ooi

iooo

2

21,2

1 2 1 2

2

1 2

( ) ;(2 ) 1

(1 ) (1 ) 12 2

since c 1, then 1 or and 1Therefore,

( )(2 ) 1 ( )( 1 )

( )( )( 1 ) ( ) ( 1 )

zH zz z

p

p p p p p /p

z zH zz z z p z p

K KH zz z p z p z p z p

By the way this looks like our first exercise when ( ) for 0; 0 otherwise - (the pole part)and ( ) for 0; 0 otherwise - the 1/ pole part. So the left hand side of [ ] can be asso

at

at

f t e t pf t e t p h n

ciated with a 0 1-sided ZT and the right hand side of [ ] with a 0 1-sided ZT.n h n n

][][1

][

1 where)/1

(1

)(

11|

11|

1

2

2

2/12

21

nuppppnh

pzppz

zpz

zppzH

pp

pppzK

pp

pppzK

nn

pz

pz

Page 24: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

123

One More ExampleR

0

C

v2(t)

and )( of version discrete a define First we.derivative theeapproximatmust first webut techiqueiterativean use We

)]()([1)(computer?digit aon thissolve wedo How

1122

212

(nT) v(t) v(nT) v tv

tvtvRCdt

tdv

v1(t)

AlgorithmEuler forward theasknown ][])1[()( 222

TnTvTnv

dttdv

][])1(1[][)1(1

)(

1]1)1[(

,1)]1(1[

)1(1)]1()[1()(

2

2

21

212

nunvz

zz

zzV

KK

zK

zK

zzzzV

n

RCT where1)()()]1([

)(][][)1(])1[(

][1][1][])1[(

12

122

1222

zzzVzVz

nuRCTnTvRC

TnTvRCTTnv

nTvRCnTvRCTnTvTnv

v2 (nT)

v2 [(n-1)T]v2 [(n+1)T]

Page 25: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

124

Forward Euler Algorithm ContinuedEstimate of the output voltage vs sampling time

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

CT0.1

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

CT0.5

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

CT1

-20

-15

-10

-5

0

5

0 5 10 15 20 25

CT5

Page 26: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

125

Continued

and of version discrete a define First we.derivative theeapproximatmust first webut techiqueiterativean use We

)]()([1)(computer?digit aon thissolve wedo How

1122

212

(nT) v(t) v(nT) v(t) v

tvtvRCdttdv

R

0

C

v2(t)

v1(t)

AlgorithmEuler backward theasknown ])1[(][)( 222

TTnvnTv

dttdv

][])1

1(1[][

)1(1

1

1)(

11

]1)1

1[(

)1

1(1,1

]1

11[

)1(1

111

)(

12

2

21

212

nunv

z

z

zzzV

KK

z

KzK

zzV

n

]11)[1(

1])1)[(1(

)(

RCT where1)()()]1([

)(][][)1(])1[(

][1][1])1[(][

12

121

122

1222

zz

z

zzzzV

zzzVzVz

nuRCTnTvRC

TnTvRCTTnv

nTvRCnTvRCTTnvnTv

v2 (nT)

v2[(n-1)T]v2 [(n+1)T]

Page 27: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

126

Backward Euler Algorithm Continued Estimate of the output voltage vs sampling time

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

CT0.1

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

CT0.5

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

CT1

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

CT5

Page 28: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

127

Time Domain to Frequency Domain Transformations

Time Domain Time Signal

Type Quadratic Content

Transformation

Type

Frequency Domain

Periodic & Continuous

)(tx

Finite

Fourier Series FS

2/

2/

2

)(1 T

T

tT

kj

k dtetxT

a

Discrete Spectrum

ka

Non-Periodic &

Continuous )(tx

Finite

Continuous Time Fourier Transform

CTFT

dtetxjX tj )()(

Continuous Spectral

Density )( jX

Discrete ][nx

Finite

Discrete Time Fourier Transform

DTFT

n

njj enxeX ˆˆ ][)(

Continuous Spectral

Density )( ̂jeX

Discrete

][nx

Finite

Discrete Fourier Transform DFT

21

0( ) [ ]

L j knN

nX k x n e

Discrete Spectral Density

)(kX

Non-Periodic, Continuous

& Zero for t < 0

)(tx

Not

Necessarily Finite

Laplace Transform

0

)()( dtetxsX st

Complex Spectrum

)(sX

Non-Periodic,

Discrete &

Zero for n < 0 ][nx

Not

Necessarily Finite

1-sided Z Transform

0

][)( nznxzX

Complex Spectrum

)(zX

Page 29: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

128

Homework

• Problems: 2.16 ,2.17

1

1 1

2.16Consider the LTI system and find the output [ ] for [ ] [ ]:

1[ ] [ 1] [ ], 03

2.17Find [ ] .

536( ) 1 1(1 )(1 )

4 3

y n x n u n

y n y n x n n

x n

zX z

z z

Page 30: Lesson 20 6DT - New Jersey Institute of Technologyjoelsd/signals/classwork/BME314... · 2015. 12. 7. · BME 333 Biomedical Signals and Systems - J.Schesser 102 Z Transforms – A

BME 333 Biomedical Signals and Systems - J.Schesser

129

Homework

• Problems: 2-19, 2-25

step.unit a],[ ofinput an for output theFind

)611)(

311(

1)(

forequation difference theFind2.25

][)31(][)

21(][

for transform- theFind2.19

11

nu

zzzH

nununx

z

nn