Lesson 2 Diffractometers & Phase...

47
Lesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation, Bettlach, Switzerland February 11 – 14, 2013, Riga, Latvia

Transcript of Lesson 2 Diffractometers & Phase...

Page 1: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Lesson 2Diffractometers &

Phase Identification

Nicola DöbelinRMS Foundation, Bettlach, Switzerland

February 11 – 14, 2013, Riga, Latvia

Page 2: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

2

Repetition: Generation of X-rays

Target (Cu, Mo, Fe, Co, ...)

e‒

Vac

uum

Wavelength (nm)In

tens

ity0.00 0.05 0.10 0.15 0.20 0.25 0.30

Cu

Kα1

Kα2

Cu Radiation

Ni filter

Ni-filtered Cu Radiation

Graphite Monochromator

CuKα1/2Radiation

Page 3: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Repetition: Powder Diffraction

3

n · λ = 2 · d · sin(θ)

d

λ

θθ 2θ

(120)

(100)

(010)

Powder sample

Page 4: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Repetition: Powder Diffractometer

4

X-ray tube

Primary Beam

PowderSample

Diffraction Cones«Secondary Beams»

X-ray Detectorscanning X-ray intensity

vs. 2θ angle

Page 5: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Analogue Cameras

5

http://adias-uae.com

Debye-Scherrer Camera:

Powder in Glass Capillary

Diffraction pattern recordedon photographic film

2θ angle

Various alternative setups:

Gandolfi …

Guinier …

Straumanis …

Bradley …

Seemann-Bohlin …

…Camera

Page 6: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Digital Diffractometer

6

Debye-Scherrer Configuration

Transmission Geometry

Glass Capillary

FoilFluid Cell

Capillaries are ideal for:

• Light atoms (Polymers, Pharmaceuticals)

• Small amounts

• Hazardous materials

• Air-sensitive materials

Page 7: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Bragg-Brentano Diffractometer

7

Flat powder sample

Bragg-Brentano Configuration

Reflective Geometry

Reflective Geometry is ideal for:

• Absorbing materials (Ceramics, Metals)

• Thin films

• Texture analysis

Page 8: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Instruments

8

Lab Instrument Monochromator Configuration

RTU Rigaku Ultima+ Graphite

Monochromator

Bragg-Brentano

(Reflection)

RTU Panalytical X’Pert Ni-Filter Bragg-Brentano

(Reflection)

LU Bruker D8 Ni-Filter Bragg-Brentano

(Reflection)

Uppsala Uni Bruker D8 Ni-Filter Bragg-Brentano

(Reflection)

RTU Salaspils Bruker D8 Energy-dispersive

Detector

Bragg-Brentano

(Reflection)

RMS (Uni Bern) Panalytical X’Pert Ni-Filter Bragg-Brentano

(Reflection)

RMS (Uni Bern) Panalytical CubiX Graphite

Monochromator

Bragg-Brentano

(Reflection)

Page 9: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Bragg-Brentano Diffractometer

9

Flat powder sample

More optical elements are requiredto control the beam pattern.

X-ray tube

Detector

Kβ filter

Page 10: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Beam Divergence

10

Angle of Divergence Point focus

Line Focus

Page 11: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Beam Divergence

11

Limiting vertical divergencewith a «divergence slit» (DS)

Limiting horizontal divergencewith a «Collimator»

Collimator for Line focus= «Soller Slits» (SS):

Non-parallel rays areblocked by lamellae

Beam Mask:Limits the beam width

Page 12: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Beam Divergence

12

Divergence Slit

Soller Slit

Beam Masks

Page 13: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Soller Slits

13

Poster

Viewed throughSoller Slit

Page 14: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Bragg-Brentano Parafocusing Diffractometer

14

Sample

X-raytube

Detector

Goniometercircle

Divergenceslit

Sollerslit

Sollerslit

Anti-Scatterslit

Beammask

Anti-Scatterslit

Receivingslit

Focusingcircle

Kβ Filter

Typical Configuration(with Kβ filter)

Page 15: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Bragg-Brentano Parafocusing Diffractometer

15

Sample

Detector

Sollerslit Anti-Scatter

slit

Receivingslit

Secondarymonochromator

Typical Configuration(with secondary monochromator)

Modern instruments are modular.

Configuration can be changed easily.

PANalytical: «PreFIX»

Bruker: «SNAP-LOCK»

Page 16: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Example: PANalytical X’Pert Pro MPD

16

Tube

Soller Slits

ProgrammableDivergence Slit

Beam Mask

Sample Stage«Spinner»

Anti-ScatterSlit

ProgrammableAnti-Scatter Slit

Soller Slit

Ni-Filter

Detector

Page 17: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Optimum Settings: Divergence Slit

17

80° 2θ

20° 2θ

20° 2θ

Wide divergence slit:Beam spills over sample at low 2θ angles.

Use narrower divergence slit.

Page 18: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Optimum Settings: Divergence Slit

18

20° 2θ 80° 2θ

Low incident angle:

- Low penetration depth

- Large illuminated area

High incident angle:

- Deep penetration depth

- Small illuminated area

Fixed divergence slit:

Irradiated Volumeis constant

Constant intensity ofdiffraction pattern

20° 2θ

Low incident angle:

- Narrow divergence slit

- Low penetration depth

Variable divergence slit:

80° 2θ

High incident angle:

- Wide divergence slit

- Deep penetration depth

Irradiated Areais constant

Higher diffracted intensityat high 2θ angle

Page 19: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Fixed vs. Variable Divergence Slit

19

20 30 40 50 60 70 80 90

Inte

nsity

[a.u

.]

Diffraction Angle [°2θ]

fixed

variable

More than 2x higherintensity at 90° 2θwith variable DS

Page 20: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Optimum Settings: Divergence Slit

20

Sample holder

Sample surface

Recommendation:

- Set divergence slit to «variable»

- Adjust «irradiated length» and beam maskfor maximum illumination

- But avoid beam spill-over!

Irradiated area

Primarybeam

Correct! Wrong! Wrong!Reduce «irradiated length»

of divergence slitUse a smaller Beam Mask

Page 21: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Optimum Settings: Divergence Slit

21

Using sample holders of various sizes?

Match your Divergence Slit and Beam Mask!

Or else: Waste of intensity Beam spill-overor

Page 22: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Variable Divergence Slit: Irradiated Length

22

30.2 30.3 30.4 30.5 30.6 30.70

500

1000

1500

2000

2500

3000In

tens

ity [c

ount

s]

Diffraction Angle [°2θ]

5mm 10mm 15mm

Soller Slits: 0.02 rad

Beam Mask: 10mm

Page 23: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Variable Divergence Slit: Irradiated Length

23

30.2 30.3 30.4 30.5 30.6 30.70

20

40

60

80

100In

tens

ity [%

]

Diffraction Angle [°2θ]

5mm 10mm 15mm

Soller Slits: 0.02 rad

Beam Mask: 10mm

Page 24: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Beam Mask

24

30.2 30.3 30.4 30.5 30.6 30.70

500

1000

1500

2000

2500

3000

3500In

tens

ity [c

ount

s]

Diffraction Angle [°2θ]

5mm 10mm 20mm

Soller Slits: 0.02 rad

Irradiated Length: 10mm

Page 25: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Beam Mask

25

30.2 30.3 30.4 30.5 30.6 30.70

20

40

60

80

100In

tens

ity [%

]

Diffraction Angle [°2θ]

5mm 10mm 20mm

Soller Slits: 0.02 rad

Irradiated Length: 10mm

Page 26: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Soller Slits

26

30.2 30.3 30.4 30.5 30.6 30.70

1000

2000

3000

4000

5000

6000

7000In

tens

ity [c

ount

s]

Diffraction Angle [°2θ]

0.02rad 0.04rad

Beam Mask: 10mm

Irradiated Length: 10mm

Page 27: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Soller Slits

27

30.2 30.3 30.4 30.5 30.6 30.70

20

40

60

80

100In

tens

ity [%

]

Diffraction Angle [°2θ]

0.02rad 0.04rad

Beam Mask: 10mm

Irradiated Length: 10mm

Affects resolution atlow 2θ angles

(effect is less pronouncedat high 2θ angles)

Page 28: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Receiving Slit

28

Strongly affects theresolution.

(Not all instrumentshave a receiving slit)

Parrish, W. Advances in X-ray diffractometry of clay minerals. X-ray analysis papers(W. Parrish, ed.), pp. 105-129. Centrex, Eindhoven, The Netherlands, 1965.

Page 29: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Summary: Optical Elements

29

Optical Element Effect Too Small Too Large

Divergence Slit Adjusts beam length

on the sample

Loss of intensity Beam spills over

sample

Soller Slit Reduces peak

asymmetry

Loss of intensity,

Better resolution

More asymmetry,

Less resolution

Anti-Scatter Slit Reduces background

signal

Loss of intensity High background

Beam Mask Adjusts beam width

on the sample

Loss of intensity Beam spills over

sample

Receiving Slit Adjusts peak width /

resolution

Loss of intensity

Better resolution

Loss of resolution

Higher intensity

Kβ Filter Reduces Kβ peaks - -

Graphite

Monochromator

Eliminates Kβ peaks - -

Page 30: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Detectors

30

Detector’swindow

Receivingslit

Point Detector (0D) Linear Detector (1D) Area Detector (2D)

Receiving slitdetermines

active height

Linear array ofsolid statedetectors

2D array ofsolid statedetectors

Scintillation counterSOL-XE

X’CeleratorLynxEye

D/teX Ultra

PIXcelVÅNTEC

SOL-XE: Energydispersive

Fast

Can be set to«0D mode»

2D image ofDebye rings

Can be set to «1D»and «0D» mode

DetectorType

Example

KeyFeatures

Needs receiving slit!

Position-sensitive«bins»

Page 31: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Instruments

31

Lab Instrument Monochr. Detector

RTU Rigaku Ultima+ Graphite 0D

RTU Panalytical X’Pert Ni-Filter 1D X’Celerator

LU Bruker D8 Ni-Filter 1D LynxEye

Uppsala Uni Bruker D8 Ni-Filter 1D LynxEye

RTU Salaspils Bruker D8 Energy-disp.

Detector

0D SOL-XE

RMS (Uni Bern) Panalytical X’Pert Ni-Filter 1D X’Celerator

RMS (Uni Bern) Panalytical CubiX Graphite 0D

Page 32: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Phase Identification

32

10 20 30 40 50 60

0

200

400

600

800

1000

Inte

nsity

[cou

nts]

Diffraction Angle [°2θ]

A crystal structure will generatea characteristic XRD pattern. Feature Origin

Peak positions - Symmetry of the unit

cell

- Dimensions of the

unit cell

Relative peak intensities - Coordinates of atoms

in unit cell

- Species of atoms

Absolute peak intensities - Abundance of phase

- Primary beam

intensity

Peak width - Crystallite size

- Stress/Strain in crystal

lattice

Page 33: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Phase Identification

33

10 20 30 40 50 60

0

200

400

600

800

1000

Inte

nsity

[cou

nts]

Diffraction Angle [°2θ]

1. Extract peak positions

Page 34: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Phase Identification

34

10 20 30 40 50 60

0

200

400

600

800

1000

Inte

nsity

[cou

nts]

Diffraction Angle [°2θ]

Sample

Corundum

Fluorite

1. Extract peak positions

2. Compare withdata base

Page 35: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

35

Page 36: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Databases

36

Database Publisher # of Entries Data sets

PDF-2 ICDD(http://www.icdd.com)

250’182 All

PDF-4+ ICDD(http://www.icdd.com)

328’660 Inorganic

PDF-4/Minerals ICDD(http://www.icdd.com)

39’410 Minerals(Subset of PDF-4+)

PDF-4/Organics ICDD(http://www.icdd.com)

471’257 Organics

COD CODhttp://www.crystallography.net

215’708 All(excl. biopolymers)

Databases containing powder diffraction data (line positions)

Commercial

Open Access

(Received funding by Research Council of Lithuania (2010-2011))

Page 37: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Programmes for Search / Match

37

Programme Publisher Supported Databases*

HighScore PANalytical PDF-2/4

COD

EVA Search/Match Bruker PDF-2/4

PDXL2 Rigaku PDF-2

COD

RayfleX GE PDF-2/4

Sleve ICDD PDF-2/4

Match! Crystal Impact PDF-2/4

COD

CSM Oxford Cryosystems PDF-2/4

Jade MDI PDF-2/4

+ many more(see http://www.ccp14.ac.uk/solution/search-match.htm)

*incomprehensive

Page 38: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Search / Match: Restrictions

38

By chemical Composition By Subfile

Page 39: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Summary: Phase Identification I

39

- Phases are identified from XRD patterns by comparing peakpositions with database entries

- Search/Match software & database are required

- Various commercial / open programmes and databases

- Qualitative (sometimes semi-quantitative) results are obtained

- Phase identification is independent of Rietveld refinement(must be done before)

Page 40: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Question I: Polytypes

40

Is powder XRD the ideal tool to distinguishand identify the following phases?

Phase Composition Space Group

Calcite CaCO3 R-3c

Magnesite MgCO3 R-3c

Siderite FeCO3 R-3c

Structurally very similar (polytypes)

They generate similar diffraction patterns

XRD provides no direct information on Ca/Mg/Fe content

Only changes in unit cell dimensions.

Page 41: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Question I: Polytypes

41

Calcite CaCO3

Magnesite MgCO3

- Similar diffraction patterns(mostly peak shifts)

- Some information on Mg/Ca/Fecontens from unit celldimensions

Solution:Combine XRD with chemicalanalysis (ICP, XRF, EDX, XPS…)

Siderite FeCO3

Page 42: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Question II: Polymorphs

42

Is powder XRD the ideal tool to distinguishand identify the following phases?

Phase Composition Space Group

Calcite CaCO3 R-3c

Vaterite CaCO3 P63/mmc

Aragonite CaCO3 Pnam

Structurally different (polymorphs)

Chemical analyses not able to distinguish (chem. identical)

XRD can easily distinguish

Page 43: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Question II: Polymorphs

43

Calcite CaCO3

Aragonite CaCO3

Vaterite CaCO3

- Strongly different diffractionpatterns.

- Easily identified by XRD

Page 44: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Summary: Phase identification II

44

- XRD is mostly sensitive to structural differences

- Only little information on chemical differences

- Chemical analyses (XRF, ICP, EDX,…) providecomplementary information

- Sometimes additional chemical information can be veryhelpful for phase identification

- For a comprehensive material characterization, combineXRD with chemical analysis

Page 45: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Typical Slit Configuration

45

Page 46: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

X-ray Mirrors

46

• Collimators and Divergence Slits cut off intensity

• There are no lenses for X-rays(Index of refraction for all materials ~1)

• Bragg diffraction can be used to construct mirrors

• Single crystal with parabolic surface: All beams coming from the tube focusare in diffraction condition for Kα1/2

Parallel Kα1/2 beam

Goebel Mirror

Focused Kα1/2 beam

Focusing Mirror

Page 47: Lesson 2 Diffractometers & Phase Identificationprofex.doebelin.org/wp-content/uploads/2014/02/Lecture-2.pdfLesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation,

Polycapillary Optics

47

Latest generation:

Polycapillary glass fiber opticsConserves most of the primary beam intensity