Lesson 17: The Mean Value Theorem and the shape of curves

39
. . . . . . Section 4.3 The Mean Value Theorem and the shape of curves Math 1a March 14, 2008 Announcements Midterm is graded. Problem Sessions Sunday, Thursday, 7pm, SC 310 Office hours Tues, Weds, 2–4pm SC 323 . . Image: Flickr user Jimmywayne32

description

The Mean Value Theorem is the Most Important Theorem in Calculus because it relates information about the derivative of a function to information about the function itself.

Transcript of Lesson 17: The Mean Value Theorem and the shape of curves

Page 1: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

Section4.3TheMeanValueTheoremandtheshapeofcurves

Math1a

March14, 2008

Announcements

◮ Midtermisgraded.◮ ProblemSessionsSunday, Thursday, 7pm, SC 310◮ OfficehoursTues, Weds, 2–4pmSC 323

..Image: Flickruser Jimmywayne32

Page 2: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

Announcements

◮ Midtermisgraded◮ ProblemSessionsSunday, Thursday, 7pm, SC 310◮ OfficehoursTues, Weds, 2–4pmSC 323

Page 3: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

HappyPiDay!

3:14PM Digitrecitationcontest! Reciteallthedigitsyouknowof π(inorder, please). Pleaseletusknowinadvanceifyou’llrecite π inabaseotherthan10(theusualchoice), 2, or16.Onlypositiveintegerbasesallowed–nofairtomemorize πinbase π/(π − 2)...

4PM —Pi(e)eatingcontest! Cornbreadaresquare; pieareround.Youhave3minutesand14secondstostuffyourselfwithasmuchpieasyoucan. Theleftoverswillbeweighedtocalculatehowmuchpieyouhaveeaten.

ConteststakeplaceinthefourthfloorloungeoftheMathDepartment. .

.Image: FlickruserPaulAdamSmith

Page 4: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

Outline

Recall: Fermat’sTheoremandtheClosedIntervalMethod

TheMeanValueTheoremRolle’sTheorem

WhytheMVT istheMITC

TheIncreasing/DecreasingTestUsingthederivativetosketchthegraph

TestsforextemityTheFirstDerivativeTestTheSecondDerivativeTest

Page 5: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

Fermat’sTheorem

DefinitionLet f bedefinednear a. a isa localmaximum of f if

f(x) ≤ f(a)

forall x inanopenintervalcontaining a.

TheoremLet f havealocalmaximumat a. If f isdifferentiableat a, thenf′(a) = 0.

Page 6: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

TheClosedIntervalMethod

Let f beacontinuousfunctiondefinedonaclosedinterval [a,b].Weareinsearchofitsglobalmaximum, callit c. Then:

◮ Either themaximumoccursatanendpointoftheinterval, i.e., c = aor c = b,

◮ Or themaximumoccursinside (a,b). Inthiscase, c isalsoalocalmaximum.

◮ Either f isdifferentiableat c, inwhichcase f′(c) = 0byFermat’sTheorem.

◮ Or f isnotdifferentiableat c.

Thismeanstofindthemaximumvalueof f on [a,b],weneedtocheck:

◮ a and b◮ Points x where f′(x) = 0◮ Points x where f isnot

differentiable.

Thelattertwoarebothcalledcriticalpoints of f. ThistechniqueiscalledtheClosedIntervalMethod.

Page 7: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

TheClosedIntervalMethod

Let f beacontinuousfunctiondefinedonaclosedinterval [a,b].Weareinsearchofitsglobalmaximum, callit c. Then:

◮ Either themaximumoccursatanendpointoftheinterval, i.e., c = aor c = b,

◮ Or themaximumoccursinside (a,b). Inthiscase, c isalsoalocalmaximum.

◮ Either f isdifferentiableat c, inwhichcase f′(c) = 0byFermat’sTheorem.

◮ Or f isnotdifferentiableat c.

Thismeanstofindthemaximumvalueof f on [a,b],weneedtocheck:

◮ a and b◮ Points x where f′(x) = 0◮ Points x where f isnot

differentiable.

Thelattertwoarebothcalledcriticalpoints of f. ThistechniqueiscalledtheClosedIntervalMethod.

Page 8: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

MeettheMathematician: PierredeFermat

◮ 1601–1665◮ Lawyerandnumber

theorist◮ Provedmanytheorems,

didn’tquiteprovehislastone

Page 9: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

Outline

Recall: Fermat’sTheoremandtheClosedIntervalMethod

TheMeanValueTheoremRolle’sTheorem

WhytheMVT istheMITC

TheIncreasing/DecreasingTestUsingthederivativetosketchthegraph

TestsforextemityTheFirstDerivativeTestTheSecondDerivativeTest

Page 10: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

Rolle’sTheorem

Theorem(Rolle’sTheorem)Let f becontinuouson [a,b]anddifferentiableon (a,b).Suppose f(a) = f(b) = 0.Thenthereexistsapointc ∈ (a,b) suchthat f′(c) = 0. . .•

.a.•.b

.•.c

Proof.If f isnotconstant, ithasalocalmaximumorminimumin (a,b).Callthispoint c. ThenbyFermat’sTheorem f′(c) = 0.

Page 11: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

Rolle’sTheorem

Theorem(Rolle’sTheorem)Let f becontinuouson [a,b]anddifferentiableon (a,b).Suppose f(a) = f(b) = 0.Thenthereexistsapointc ∈ (a,b) suchthat f′(c) = 0. . .•

.a.•.b

.•.c

Proof.If f isnotconstant, ithasalocalmaximumorminimumin (a,b).Callthispoint c. ThenbyFermat’sTheorem f′(c) = 0.

Page 12: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

Rolle’sTheorem

Theorem(Rolle’sTheorem)Let f becontinuouson [a,b]anddifferentiableon (a,b).Suppose f(a) = f(b) = 0.Thenthereexistsapointc ∈ (a,b) suchthat f′(c) = 0. . .•

.a.•.b

.•.c

Proof.If f isnotconstant, ithasalocalmaximumorminimumin (a,b).Callthispoint c. ThenbyFermat’sTheorem f′(c) = 0.

Page 13: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

TheMeanValueTheorem

Theorem(TheMeanValueTheorem)Let f becontinuouson [a,b]anddifferentiableon (a,b).Thenthereexistsapoint c in(a,b) suchthat

f(b) − f(a)b− a

= f′(c). . .•.a

.•.b

.•.c

Page 14: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

TheMeanValueTheorem

Theorem(TheMeanValueTheorem)Let f becontinuouson [a,b]anddifferentiableon (a,b).Thenthereexistsapoint c in(a,b) suchthat

f(b) − f(a)b− a

= f′(c). . .•.a

.•.b

.•.c

Page 15: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

TheMeanValueTheorem

Theorem(TheMeanValueTheorem)Let f becontinuouson [a,b]anddifferentiableon (a,b).Thenthereexistsapoint c in(a,b) suchthat

f(b) − f(a)b− a

= f′(c). . .•.a

.•.b

.•.c

Page 16: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

ProofoftheMVT

Proof.Thelineconnecting (a, f(a)) and (b, f(b)) hasequation

y− f(a) =f(b) − f(a)

b− a(x− a).

ApplyRolle’sTheoremtothefunction

g(x) = f(x) − f(b) − f(a)b− a

(x− a).

Then g iscontinuouson [a,b] anddifferentiableon (a,b) since fis. Also g(a) = 0 and g(b) = 0 (checkboth). Sothereexistsapoint c ∈ (a,b) suchthat

0 = g′(c) = f′(c) − f(b) − f(a)b− a

.

Page 17: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

QuestionOnatollroadadrivertakesatimestampedtoll-cardfromthestartingboothanddrivesdirectlytotheendofthetollsection.Afterpayingtherequiredtoll, thedriverissurprisedtoreceiveaspeedingticketalongwiththetollreceipt. Whichofthefollowingbestdescribesthesituation?

(a) Theboothattendantdoesnothaveenoughinformationtoprovethatthedriverwasspeeding.

(b) Theboothattendantcanprovethatthedriverwasspeedingduringhistrip.

(c) Thedriverwillgetaticketforalowerspeedthanhisactualmaximumspeed.

(d) Both(b)and(c).

Bepreparedtojustifyyouranswer.

Answer(b)and(c).

Page 18: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

QuestionOnatollroadadrivertakesatimestampedtoll-cardfromthestartingboothanddrivesdirectlytotheendofthetollsection.Afterpayingtherequiredtoll, thedriverissurprisedtoreceiveaspeedingticketalongwiththetollreceipt. Whichofthefollowingbestdescribesthesituation?

(a) Theboothattendantdoesnothaveenoughinformationtoprovethatthedriverwasspeeding.

(b) Theboothattendantcanprovethatthedriverwasspeedingduringhistrip.

(c) Thedriverwillgetaticketforalowerspeedthanhisactualmaximumspeed.

(d) Both(b)and(c).

Bepreparedtojustifyyouranswer.

Answer(b)and(c).

Page 19: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

Outline

Recall: Fermat’sTheoremandtheClosedIntervalMethod

TheMeanValueTheoremRolle’sTheorem

WhytheMVT istheMITC

TheIncreasing/DecreasingTestUsingthederivativetosketchthegraph

TestsforextemityTheFirstDerivativeTestTheSecondDerivativeTest

Page 20: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

WhytheMVT istheMITC

TheoremLet f′ = 0 onaninterval (a,b).

Then f isconstanton (a,b).

Proof.Pickanypoints x and y in (a,b) with x < y. Then f iscontinuouson [x, y] anddifferentiableon (x, y). ByMVT thereexistsapointz ∈ (x, y) suchthat

f(y) − f(x)y− x

= f′(z) = 0.

So f(y) = f(x). Sincethisistrueforall x and y in (a,b), then f isconstant.

Page 21: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

WhytheMVT istheMITC

TheoremLet f′ = 0 onaninterval (a,b). Then f isconstanton (a,b).

Proof.Pickanypoints x and y in (a,b) with x < y. Then f iscontinuouson [x, y] anddifferentiableon (x, y). ByMVT thereexistsapointz ∈ (x, y) suchthat

f(y) − f(x)y− x

= f′(z) = 0.

So f(y) = f(x). Sincethisistrueforall x and y in (a,b), then f isconstant.

Page 22: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

WhytheMVT istheMITC

TheoremLet f′ = 0 onaninterval (a,b). Then f isconstanton (a,b).

Proof.Pickanypoints x and y in (a,b) with x < y. Then f iscontinuouson [x, y] anddifferentiableon (x, y). ByMVT thereexistsapointz ∈ (x, y) suchthat

f(y) − f(x)y− x

= f′(z) = 0.

So f(y) = f(x). Sincethisistrueforall x and y in (a,b), then f isconstant.

Page 23: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

Outline

Recall: Fermat’sTheoremandtheClosedIntervalMethod

TheMeanValueTheoremRolle’sTheorem

WhytheMVT istheMITC

TheIncreasing/DecreasingTestUsingthederivativetosketchthegraph

TestsforextemityTheFirstDerivativeTestTheSecondDerivativeTest

Page 24: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

TheIncreasing/DecreasingTest

Theorem(TheIncreasing/DecreasingTest)If f′ > 0 on (a,b), then f isincreasingon (a,b). If f′ < 0 on (a,b),then f isdecreasingon (a,b).

Proof.Itworksthesameasthelasttheorem. Picktwopoints x and y in(a,b) with x < y. Wemustshow f(x) < f(y). ByMVT thereexistsapoint c ∈ (x, y) suchthat

f(y) − f(x)y− x

= f′(c) > 0.

Sof(y) − f(x) = f′(c)(y− x) > 0.

Page 25: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

TheIncreasing/DecreasingTest

Theorem(TheIncreasing/DecreasingTest)If f′ > 0 on (a,b), then f isincreasingon (a,b). If f′ < 0 on (a,b),then f isdecreasingon (a,b).

Proof.Itworksthesameasthelasttheorem. Picktwopoints x and y in(a,b) with x < y. Wemustshow f(x) < f(y). ByMVT thereexistsapoint c ∈ (x, y) suchthat

f(y) − f(x)y− x

= f′(c) > 0.

Sof(y) − f(x) = f′(c)(y− x) > 0.

Page 26: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

ExampleFindtheintervalsofmonotonicityof f(x) = 2/3x− 5.

Solutionf′(x) = 2/3 isalwayspositive, so f isincreasingon (−∞,∞).

Page 27: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

ExampleFindtheintervalsofmonotonicityof f(x) = 2/3x− 5.

Solutionf′(x) = 2/3 isalwayspositive, so f isincreasingon (−∞,∞).

Page 28: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

ExampleFindtheintervalsofmonotonicityof f(x) = x2 − 1.

Solutionf′(x) = 2x, whichispositivewhen x > 0 andnegativewhen x is.Wecandrawanumberline:

. .f′.− ..0.0 .+

Page 29: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

ExampleFindtheintervalsofmonotonicityof f(x) = x2 − 1.

Solutionf′(x) = 2x, whichispositivewhen x > 0 andnegativewhen x is.

Wecandrawanumberline:

. .f′.− ..0.0 .+

Page 30: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

ExampleFindtheintervalsofmonotonicityof f(x) = x2 − 1.

Solutionf′(x) = 2x, whichispositivewhen x > 0 andnegativewhen x is.Wecandrawanumberline:

. .f′.− ..0.0 .+

Page 31: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

ExampleFindtheintervalsofmonotonicityof f(x) = x2 − 1.

Solutionf′(x) = 2x, whichispositivewhen x > 0 andnegativewhen x is.Wecandrawanumberline:

. .f′

.f

.−.↘

..0.0 .+

.↗

Page 32: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

ExampleFindtheintervalsofmonotonicityof f(x) = x2/3(x + 2).

SolutionWrite f(x) = x5/3 + 2x2/3. Then

f′(x) = 53x

2/3 + 43x

−1/3

= 13x

−1/3 (5x + 4)

Thecriticalpointsare 0 andand −4/5.

. .x−1/3..0.×.− .+

.5x + 4..−4/5

.0.− .+

.f′(x)

.f(x).

.−4/5

.0 ..0.×.+

.↗.−.↘

.+

.↗

Page 33: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

ExampleFindtheintervalsofmonotonicityof f(x) = x2/3(x + 2).

SolutionWrite f(x) = x5/3 + 2x2/3. Then

f′(x) = 53x

2/3 + 43x

−1/3

= 13x

−1/3 (5x + 4)

Thecriticalpointsare 0 andand −4/5.

. .x−1/3..0.×.− .+

.5x + 4..−4/5

.0.− .+

.f′(x)

.f(x).

.−4/5

.0 ..0.×.+

.↗.−.↘

.+

.↗

Page 34: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

ExampleFindtheintervalsofmonotonicityof f(x) = x2/3(x + 2).

SolutionWrite f(x) = x5/3 + 2x2/3. Then

f′(x) = 53x

2/3 + 43x

−1/3

= 13x

−1/3 (5x + 4)

Thecriticalpointsare 0 andand −4/5.

. .x−1/3..0.×.− .+

.5x + 4..−4/5

.0.− .+

.f′(x)

.f(x).

.−4/5

.0 ..0.×.+

.↗.−.↘

.+

.↗

Page 35: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

Outline

Recall: Fermat’sTheoremandtheClosedIntervalMethod

TheMeanValueTheoremRolle’sTheorem

WhytheMVT istheMITC

TheIncreasing/DecreasingTestUsingthederivativetosketchthegraph

TestsforextemityTheFirstDerivativeTestTheSecondDerivativeTest

Page 36: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

TheFirstDerivativeTest

Let f becontinuouson [a,b] and c in (a,b) acriticalpointof f.

Theorem

◮ If f′(x) > 0 on (a, c) and f′(x) < 0 on (c,b), then f(c) isalocalmaximum.

◮ If f′(x) < 0 on (a, c) and f′(x) > 0 on (c,b), then f(c) isalocalminimum.

◮ If f′(x) hasthesamesignon (a, c) and (c,b), then (c) isnotalocalextremum.

Page 37: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

TheSecondDerivativeTest

Let f, f′, and f′′ becontinuouson [a,b] and c in (a,b) acriticalpointof f.

Theorem

◮ If f′′(c) < 0, then f(c) isalocalmaximum.◮ If f′′(c) > 0, then f(c) isalocalminimum.◮ If f′′(c) = 0, thesecondderivativeisinconclusive(thisdoes

notmean c isneither; wejustdon’tknowyet).

Page 38: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

ExampleFindthelocalextremaof f(x) = x3 − x.

Page 39: Lesson 17: The Mean Value Theorem and the shape of curves

. . . . . .

Nexttime: graphingfunctions